
Node Compromise in Sensor Networks: The Need 
for Secure Systems 

 
Carl Hartung, James Balasalle, Richard Han 

 
Department of Computer Science 
University of Colorado at Boulder 

 
Technical Report CU-CS-990-05 

 
January 2005



Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005 

Node Compromise in Sensor Networks:  The Need 
for Secure Systems 

 
 

Carl Hartung, James Balasalle, Richard Han 
 

Department of Computer Science 
University of Colorado, Boulder 

 
{carl.hartung, james.balasalle, richard.han}@colorado.edu 

 
 

ABSTRACT 
While sensor network deployment is becoming 
more commonplace in environmental, business, 
and military applications, security of these 
networks emerges as a critical concern.  Without 
proper security, it is impossible to completely 
trust the results reported from sensor networks 
deployed outside of controlled environments. 
 Much of the current research in sensor 
networks has focused on protocols and 
authentication schemes for protecting the 
transport of information.  However, all of those 
schemes are useless if an attacker can obtain a 
node from the network and extract the 
appropriate information, such as security keys, 
from it. 
 We focus our research on the area of secure 
systems.  In this paper we demonstrate the ease 
with which nodes can be compromised as well as 
show exactly what information can be obtained 
and how it can be used to disrupt, falsify data 
within, or eavesdrop on sensor networks.  We 
then suggest mechanisms to detect intrusions into 
individual sensor nodes.  Finally, we come up 
with security measures that can be implemented 
in future generation nodes to improve security. 
 
1. INTRODUCTION 
While node compromise is often discussed as a 
potential vulnerability in sensor networks [5], 
almost no work has been done to prove the 

viability of such attacks.  Thus, we have 
designed and carried out a number of 
experiments detailing the relative ease with 
which commonly used current generation 
sensor nodes can be compromised using regular 
'off the shelf' products and readily available, 
free software.  While we found it is very easy to 
compromise a node and exploit it for various 
purposes, we also found a number of 
improvements that can be made in future 
generations of nodes in order to help alleviate 
the possibility of sensor node compromise. 
 To understand the dangers of node 
compromise, we must first define what we 
mean by node compromise.  Node compromise 
occurs when an attacker, though some subvert 
means, gains control of a node in the network 
after deployment.  Once in control of that node, 
the attacker can alter the node to listen to 
information in the network, input malicious 
data, cause DOS, black hole, or any one of a 
myriad of attacks on the network.  The attacker 
may also simply extract information vital to the 
network’s security such as routing protocols, 
data, and security keys.  Generally compromise 
occurs once an attacker has found a node, and 
then directly connects the node to their 
computer via a wired connection of some sort.  
Once connected the attacker controls the node 
by extracting the data and/or putting new data 
or controls on that node. 
 Generally, all sensors must have an interface 
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that enables them to be programmed by another 
machine.  The exception to this would be 
preprogrammed sensors for a specific task, but 
current sensor technology demands that sensors 
are flexible and can be programmed and 
reprogrammed for a number of different uses.  
Tamper proof hardware is also available, but 
significantly increases cost and reduces the 
leeway for user/programmer error, as well as 
eliminates the reprogramability.  Typically the 
programming interface on a sensor node is either 
a direct serial, parallel connection, or USB 
connection (henceforth referred to as 'wired'), or 
an intermediate programming board which is 
connected to both the node and a wired 
connection.  These programming interfaces, 
which provide so much flexibility in 
programming sensor nodes, also provide would-
be attackers with the easiest means of 
compromise. 
 For our experiments we programmed a sensor 
node with various applications and various 
operating systems, and attempted to extract that 
information using freely available software, 
standard computer exploits such as buffer 
overflows, and various debugging mechanisms.  
Debugging tools are usually the most popular 
weapons for attackers to determine how to 
exploit programs, and that generality is still true 
for sensor networks.  We tried our exploits on 
both TinyOS[3], an event based operating 
system, and Mantis OS[4], a multi-threaded 
operating system.  Our results showed that both 
operating systems were susceptible to the same 
attacks. 
 In our experiments were able to, in very little 
time (<1 minute), extract all of the information 
located onboard the node's EEPROM, Flash, and 
SRAM.  Once the attacker has access to all of 
this data, they can analyze it to ascertain keys, 
routing protocols, and other security sensitive 
information.  With this information an attacker 
could adversely affect the network in a variety of 
ways.  Attackers could simply use the keys to 
decrypt messages and listen to all the traffic in 
the network, or possibly modify the code in order 

to inject malicious messages into the network 
and confuse it, or provide false data to the end 
user application. 
 The remainder of this paper is organized as 
follows:  Section 2 discusses the design of 
current sensor hardware.  Section 3 analyzes 
different attack models and scenarios.  We 
discuss the problems presented by these 
vulnerabilities in Section 4.  In section 5 we 
discuss possible improvements for next 
generation nodes, and in section 6 we discuss 
future work which needs to be done in this area.  
Finally, we sum up the conclusions of our paper 
in section 6. 
 

 
Figure 1)  A) Programming board with Mica2 plugged 
in.  B)  Other side of Mica2.  C)  AVR ICE JTAG 
programmer connected to programming board with 
ribbon and connected to computer via serial cable. 
 
2. SENSOR HARDWARE 
The sensor hardware we chose for our 
experiments was the Mica2 mote by XBow.  
These motes are currently the most widely used 
sensor node, having been used in several 
wireless sensor network installations [2].   
 The Mica2 uses an Atmega128 chip for its 
processor.  It is an 8-bit processor running at 
4MHz.  They come with 128KB of instruction 
flash, 4KB SRAM, and 4KB EEPROM.  The 
chip is designed using a harvard architecture.  It 
is important to note the harvard architecture as 
it prevents a handful of standard computer 
attacks, such as buffer overflow, which we will 
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discuss later in the paper.  Interestingly enough, 
the use of the harvard architecture in embedded 
systems, and specifically in sensor nodes, was 
not intended to provide security features.  Rather, 
the design of the harvard architecture, using 
separate memories for data and instructions and 
requiring different busses for each, allows 
instructions and operands to be fetched 
simultaneously.  This means the architecture can 
run much faster as it is able to fetch the next 
instruction at the same time it completes the 
current instruction.  It is important to note the 
improvement in speed as the nodes tend to be 
extremely resource constrained.  Thus, though 
only intended to provide a speed boost to the 
system, the harvard architecture actually 
provides a good level of security against radio 
attacks, specifically against standard buffer 
overflow attacks. 
 The Mica2 has a serial interface connected to a 
programming board.  Typically the Mica2 is 
programmed using the intermediate 
programming board connected to the computer 
with either a serial or parallel connection.  The 
programming board also has a JTAG interface 
which also allows for programming, as well as 
using GBD for On Chip Debugging (OCD).  A 
JTAG interface is an IEEE standardized interface 
to processors which allows for accessing and 
controlling signal levels on the chip.  Figure 1 
shows an AVR ICE JTAG programmer interface 
as well as a programming board with a mica2 
attached. 
 Though we only tested the Mica2 hardware, 
our results can be generalized over sensor 
networks as a whole.  Code on current sensor 
nodes needs to be installed and reinstalled.  Thus, 
today’s sensor technology requires direct access 
to the node via a wired interface or through some 

type of intermediate programming board.  Also, 
not all processors use the JTAG interface for 
OCD, but most which have been used in sensor 
node development do, and others provide 
similar chip debugging mechanisms. 
 
3. ATTACK MODELS 
3.2  Types of Attack 
 There are different attack models we must 
consider, but many are outside the scope of this 
paper.  An attacker may range from a prankster 
with a laptop and a serial cable with a few 
hours to kill to a military installation with 
hundreds of scientists with unlimited money 
and time. 
 We first consider the latter of the above 
mentioned cases:  a military installation or other 
science lab with many scientists.  In this 
example you can assume that the scientists have 
access to oscilloscopes, process analyzers, and 
any number of other analytical machines to help 
them crack the system.  These machines 
typically cost thousands of dollars and are 
rarely found outside of such installations.  
Given the resources of such installations, it is 
reasonable to assume that given the correct 
amount of time all information could be 
extracted from a sensor node.  The only real 
way to prevent this is tamper proof hardware 
which triggers some type of self destruct 
mechanism upon attempted compromise.  One 
can also assume that if the enemy has such 
capabilities and desires to learn what the sensor 
net is doing, that the implementers would, in 
fact, use some sort of tamper proof hardware.   
 Since it is almost impossible to stop unlimited 
time and money, and tamper proof hardware is 
generally prohibitively expensive, the above 
scenario is a bit beyond the scope of 
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Figure 2)  Programming a node with Tiny OS’ TinySec feature.  Key is highlighted. 
 

 
Figure 3)  Hex dump of output of SRAM gathered using the JTAG interface.  Key is highlighted.
 
this paper.  Therefore, we turn our focus to the 
simpler and more likely case of someone with a 
laptop or computer, a serial cord, and possibly a 
programming board.  Assuming the user has a 
computer, serial cords are on the order of dollars, 
and programming boards usually run in the tens 
to hundreds of dollars, making this scenario 
much more plausible.  We also assume that the 
attacker has good familiarity with standard 
debugging tools such as GDB.  With these 
assumptions, we now show how an attacker can 
compromise a node in less than 1 minute. 

3.2  Physical Attacks 
 First, we used only a programming board and 
a serial cable to launch our attack.  Using a 
freely available tool called UISP we were able 
to dump the program flash as well as the 
information stored in the EEPROM.  A simple 
execution of an avr tool, avr-objcopy, converted 
the source flash into an assembly file as shown 
in figure 4.  Once in assembly format, an 
attacker could analyze the code to ascertain 
routing protocols and/or any pre-coded keys.  
Depending on the complexity of the program, 
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the analysis could take significant time, but that 
is outside the scope of this paper.  The danger 
here is that it took <1 minute to obtain the source 
image.  As all of the above commands are simply 
one command line execution with a handful of 
arguments, a majority of the time, about 45 
seconds, was spent transmitting the binary image 
over the relatively slow serial interface onto the 
computer's hard drive, or converting from one 
format to another.  The rest of the time, about 15 
seconds, was human interface time typing the 
necessary commands for retrieving the flash, 
which can also be automated for maximum 
speed. 
 Next, we used an AVR JTAG interface to 
attempt to acquire the same data from the sensor 
node.  With the JTAG programmer we found that 
not only were we able to dump the program flash 
and the EEPROM, but we were also able to 
dump the chip's SRAM in a matter of seconds.  
Generally the SRAM is considered the safest 
place to store keys and other sensitive 
information due to its volatile nature.  However, 
the ease with which the data was extracted from 
SRAM proved that the notion of SRAM being 
safer is false.  This alone invalidates the security 
claims of many of the global and shared key 
schemes.  Again, the extraction took mere 
seconds and again a majority of the time was 
spent transferring the data from the node to the 
computer.  The longest task was dumping the 
program flash (128K), and that only took ~30 
seconds. 
 After having discovered the above simple 
methods to get the data, we ran an experiment to 
quickly analyze the ease at which we can 
discover keys buried within that data. We loaded 
TinyOS' TinySec[1] security protocol onto a 
node and then used our JTAG attack to 
determine if we could decipher the keys.  We 
dumped the SRAM and converted it into HEX 
format, again using freely available tools, and 
saw the "secret" key right in front of us.  A few 
iterations with other programs that have 
implemented TinySec showed that the key was 
always in the same location in SRAM.  Figures 2 

and 3 show the output from both TinySec's 
programming the key into the node, and the 
HEX dump of the SRAM from the node.  One 
thing to note is that TinySec does not specify 
any key pre-distribution method, it merely 
assigns a global key to the system.  Thus, an 
attacker seeking the TinySec key need only 
target a well-known address or area of memory 
in advance, rather than downloading the 
complete binary image of the operating system 
and applications, thereby reducing the 
download further and enabling compromise in 
mere seconds. 
  

 
Figure 4)  Assembly output after retrieving from flash 
and altering using avr-objcopy. 
   
 
4. DISCUSSION 
 Looking at most current security protocols in 
sensor networks reveals assumptions that keys 
or algorithms are hard to obtain.  Our research 
shows the opposite of this assumption.  Given 
that it takes less than 1 minute to dump all of 
the EEPROM, program Flash, and a chip's 
SRAM, it is impossible to assume that any 
stored keys are safe on a sensor node.  Also, 
given enough time assembly code can be 
analyzed and modified, or even decompiled into 
C code using various primitive decompilers. 
 Since we cannot truly state that our keys on 
our nodes are secure, we cannot then state that 
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our data is secure an accurate.  This could lead to 
huge issues in any sensor node deployment from 
agriculture to military.   Even our supposedly 
secure protocols cannot be considered safe since 
one would never know if an attacker had 
obtained the protocol's keys or not. 
 These discoveries demonstrate the need to 
develop secure systems in sensor networks.  
Simply securing the data transmitted from node 
to node is not enough.  If a single node in the 
network can be compromised, the security 
encapsulating the transmitted data is also 
compromised.  Though tamper proof hardware is 
available, it is too expensive to use in most 
deployments.  Therefore, securing the entire 
system is essential to guarantee accurate and 
secure data.  
 As is, sensor nodes cannot determine whether a 
user is simply using debugging tools or 
attempting to hack in.  There need to be 
mechanisms to turn off debugging tools at a level 
other than hardware.  These problems are not 
paramount in standard computer systems as it is 
rare that someone will open a computer up and 
directly interface with its processor or 
motherboard.  However, since direct 
communication is such a common way of 
interfacing with sensor nodes, the ability to 
disable debugging tools is important to ensure 
security. 
  Current literature[6,13] suggests schemes where 
pre-distributed keys are erased after new keys 
have been established using the pre-distributed 
ones.  We agree that these approaches mitigate 
node compromise.  These schemes usually 
involve encrypting a challenge with the key 
before destroying it.  This challenge enables the 
node to communicate with other nodes that also 
have the challenge.  Since the challenge is stored 
in memory, compromising the node still gains 
access to the challenge.  The literature[9] 
suggests ways to find keys in memory, but since 
a challenge could be vastly different from a key, 
it might take significantly longer to find.  
Therefore erasing a node’s keys could 
significantly slow down an attacker, but since 

that attacker can access all the SRAM it may 
not completely prevent an attacker from still 
participating in the network. 
 LEAP [13] assumes that a global key is 
erased after an initial setup period Test.  The 
assumption is that Test is much less than the 
time to compromise a node Tmin.  However, as 
we have shown, this assumption can be violated 
if it only takes on the order of seconds to 
compromise a node.  Also, in this scheme, we 
would expect that there will be cases when Test 
would in reality be on the order of tens of 
minutes in certain deployment schemes, e.g. 
dropped and scattered from airplanes.  In these 
scenarios, the scattered nodes, even if dropped 
simultaneously, may arrive in different parts of 
the network at different times and will need 
some slack time to set up the network and 
bootstrap pairwise links using the transitory 
global key.  During this time, if an adversary 
observes a node and quickly obtains the key 
using any of the techniques shown here, i.e. Test 
> Tmin,  then the global key will be 
compromised, allowing the adversary unlimited 
access to any portion of the network.  LEAP 
also assumes that moving the global key from 
non-volatile memory into volatile memory 
provides added security.  As we have shown, 
that assumption is false, because both RAM and 
flash are accessible to an adversary.   
 
5.  IMPROVEMENTS 
  As stated above the Atmel processor has an on 
chip debugging feature.  This feature is what 
enables us to easily obtain the contents of main 
memory.  On chip debugging greatly facilitates 
the development of new applications and 
devices.  However, it exposes a new set of 
security vulnerabilities to an attacker.  
Currently it is possible to turn the on-chip 
debugging feature off.  However, it is a very 
simple to turn it back on using publicly 
available debugging tools.  A version of the 
Atmel processor with the on-chip debugging 
feature on/off switch in software rather than 
hardware would eliminate a category of 
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possible attacks.  Furthermore, if the OCD 
request generated an interrupt which could be 
caught by software then the node could erase any 
important information.  Toggling the OCD in 
software would mean that an attacker would have 
to replace the code image on the node, destroying 
all of the data they are trying to extract.  Sensor 
networks deployed in especially hostile 
environments such as a battlefield, or in 
particularly sensitive areas such as a hospital or 
financial applications, it would be desirable to 
have a sensor node which would not respond to 
the standard on-chip debugging. 
 Another possible solution would be to use 
location aware applications[8] that could detect 
movement on a fine scale, GPS, or group 
communication techniques.  The network could 
then mark 'moved' nodes as possibly 
compromised and flag their data at the end-user 
application.  Furthermore, if a node can detect its 
own movement by either accelerometers or GPS 
then it can preemptively delete important 
information stored in SRAM, flash, or anywhere 
else on the system.   
  
6.  FUTURE WORK 
Future research in this area needs to be done so 
that we can understand better ways of preventing 
and detecting system level attacks.  Possible 
areas of prevention include location aware nodes 
that can detect when they are moved.  Another 
means of prevention is the hardware support to 
disable the on-chip debugging, which would 
prevent an attacker from using a JTAG or similar 
device.  While research on intrusion detection of 
a network is underway, intrusion detection of an 
individual node is an area of research that 
especially needs to be addressed.  Intrusion 
detection is extremely difficult because of the 
resource constraints imposed by sensor node 
hardware.  In SWATT [12], nodes apply a MAC 
to the operating system to detect whether the 
binary image of the operating system has been 
changed and new code loaded.  Since an attacker 
can completely erase and reprogram a node, it is 
difficult to detect this behavior, especially when 

the "new" node still contains all the required 
security information.  When an attacker 
physically finds a node without tamper resistant 
hardware, he has fewer constraints and many 
attack options are available to him.  However, 
this means he has to find the nodes first.  
Finally, one more area that needs additional 
research is that of public key infrastructure on 
sensor nodes.  In [7] elliptic curve cryptography 
is presented to address some of the 
shortcomings of most key pre-distribution 
solutions.  Developing this idea could also 
better secure the operating systems of sensor 
nodes. 
 
7. CONCLUSIONS 
 There is a great need to design secure systems 
for sensor networks.  The flexibility of the 
current generation of sensor nodes leaves too 
many holes open which allow attackers access 
to vital system information.  Until such systems 
exist, it is impossible to confidently trust the 
data from any sensor network deployed outside 
of a controlled environment.  We have shown 
that it is trivially easy to retrieve program code, 
static data, and even dynamic program memory 
from sensor nodes.  Current sensor nodes are 
easily tampered with, code can be easily 
altered, and system critical information is easily 
obtained using freely available software and 
cheaply available hardware.  With this 
information, attackers have virtually free reign 
to spy on, participate in, or subvert sensor 
networks.  There exist several research 
opportunities to pursue in the directions of 
detecting attempted compromise, or outright 
prevention of node compromise.  Only when 
we have a secure system design can we be 
confident that our secure transmission protocols 
will once again be safe. 
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