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Abstract
In this paper we present X-MAC, a low power MAC

protocol for wireless sensor networks (WSNs). Standard
MAC protocols developed for duty-cycled WSNs such as
BMAC, which is the default MAC protocol for TinyOS, em-
ploy an extended preamble and preamble sampling. While
this “low power listening” approach is simple, asynchronous,
and energy-efficient, the long preamble introduces excess la-
tency at each hop, is suboptimal in terms of energy consump-
tion, and suffers from excess energy consumption at non-
target receivers. X-MAC proposes solutions to each of these
problems by employing a shortened preamble approach that
retains the advantages of low power listening, namely low
power communication, simplicity and a decoupling of trans-
mitter and receiver sleep schedules. We demonstrate through
implementation and evaluation in a wireless sensor testbed
that X-MAC’s shortened preamble approach significantly re-
duces energy usage at both the transmitter and receiver, re-
duces per-hop latency, and offers additional advantages such
as flexible adaptation to both bursty and periodic sensor data
sources.

1 Introduction and Motivation
Energy efficiency is a fundamental theme pervading the

design of communication protocols developed for wireless
sensor networks (WSNs), including routing and MAC layer
protocols. One of the primary mechanisms for achieving
low energy operation in energy-constrained WSNs is duty
cycling. In this approach, each sensor node periodically cy-
cles between an awake state and a sleep state. Key parame-
ters that characterize the duty cycle include sleep time, wake
time, and the energy consumed during the awake state and
the sleep state. The period of a duty cycle is equivalent to
its sleep time plus awake time. Given duty cycling sensor
nodes, the challenges faced by designers of communication
protocols are how to achieve high throughput, low delay,
and energy efficiency as nodes are waking and sleeping in
the network. This paper focuses on the design of X-MAC,
an adaptive energy-efficient MAC layer protocol for duty-
cycled WSNs.

Standard MAC protocols developed for duty-cycled
WSNs can be roughly categorized into synchronized and
asynchronous approaches, along with hybrid combinations.

∗This work was supported by the National Science Foundation
(NSF) CAREER award 0134051 and NSF ITR grant 0427947

These approaches are motivated by the desire to reduce idle
listening, which is the time that the node is awake listening
to the medium even though no packets are being transmit-
ted to that node. Idle listening has been found in 802.11
protocols to consume substantial energy [8, 15], and there-
fore must be avoided in WSNs. Synchronized protocols,
such as S-MAC [17] and T-MAC [16], negotiate a sched-
ule that specifies when nodes are awake and asleep within
a frame. Specifying the time when nodes must be awake in
order to communicate reduces the time and energy wasted in
idle listening. Asynchronous protocols such as B-MAC [14],
and WISEMAC [7], rely onlow power listening, also called
preamble sampling, to link together a sender with data to
a receiver who is duty cycling. Idle listening is reduced in
asynchronous protocols by shifting the burden of synchro-
nization to the sender. When a sender has data, the sender
transmits a preamble that is at least as long as the sleep pe-
riod of the receiver. The receiver will wake up, detect the
preamble, and stay awake to receive the data. This allows
low power communication without the need of explicit syn-
chronization between the nodes. The receiver only wakes for
a short time to sample the medium, thereby limiting idle lis-
tening. Hybrid protocols also exist that combine a synchro-
nized protocol like T-MAC with asynchronous low power
listening [9].

A key advantage of asynchronous low power listening
protocols is that the sender and receiver can be completely
decoupled in their duty cycles. The simplicity of this de-
sign removes the need for, and the overhead introduced
by, synchronized wake/sleep schedules. Studies of lower
power listening have demonstrated its energy-saving capa-
bilities [14, 9].

While the low power listening approach is simple, asyn-
chronous, and energy-efficient, the long preamble in low
power listening exhibits several disadvantages: it is subop-
timal in terms of energy consumption at both the sender and
receiver; it is subject to overhearing that causes excess en-
ergy consumption at non-target receivers; and it introduces
excess latency at each hop. First, the receiver typically has to
wait the full period until the preamble is finished before the
data/ack exchange can begin, even if the receiver has woken
up at the start of the preamble. This wastes energy at both
the receiver and transmitter. Second, the low power listen-
ing approach suffers from theoverhearing problem, where
receivers who are not the target of the sender also wake up
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during the long preamble and have to stay awake until the
end of the preamble to find out if the packet is destined for
them. This wastes energy at all non-target receivers within
transmission range of the sender. Third, because the target
receiver has to wait for the full preamble before receiving
the data packet, the per-hop latency is lower bounded by the
preamble length. Over a multi-hop path, this latency can ac-
cumulate to become quite substantial.

This paper proposes a new approach to low power listen-
ing called X-MAC, which employs ashort preambleto fur-
ther reduce energy consumption and to reduce latency. The
first idea is to embed address information of the target in the
preamble so that non-target receivers can quickly go back to
sleep. This addresses the overhearing problem. The second
idea is to use astrobed preambleto allow the target receiver
to interrupt the long preamble as soon as it wakes up and
determines that it is the target receiver. This short strobed
preamble approach reduces the time and energy wasted wait-
ing for the entire preamble to complete. We demonstrate
through implementation in a wireless sensor testbed that X-
MAC results in significant savings in terms of both energy
and per-hop latency. Finally, X-MAC includes an automated
algorithm for adapting the duty cycle of the nodes to best
accomodate the traffic load in the network. We demonstrate
the additional savings in energy and latency achieved by this
adaptation.

This paper makes the following contributions:

• X-MAC introduces a series of short preamble packets
each embed target address information, thereby avoid-
ing the overhearing problem of low power listening, and
saving energy on non-target receivers.

• X-MAC inserts pauses into the series of short pream-
ble packets, creating a strobed preamble, which enables
the targeted receiver to shorten the strobed preamble
via an early acknowledgement, thereby achieving ad-
ditional energy savings at both the sender and receiver,
as well as a reduction in per-hop latency.

• We describe an adaptive algorithm for automatically ad-
justing the duty cycle of receivers to the offered traffic
load, which further reduces per-hop latency.

• Experimental evaluation validates the performance
gains and energy savings of the X-MAC protocol in
comparison to a traditional asynchronous duty cycle
techniques.

In the following, Section 2 describes related work. Sec-
tion 3 describes the basic X-MAC protocol design. Section 4
presents an optimal algorithm for adapting the receiver’s
duty cycle, and then presents a practical approximation. Sec-
tion 5 describes the experimental implementation and eval-
uation on a testbed of motes. Sections 6 and 7 provide a
discussion of future work and our conclusions.

2 Related Work
There are a number of approaches to duty-cycling MAC

protocols seen in the literature. These approaches can be
broadly divided into two categories: techniques that use
some method of synchronization to assure that the wake pe-

riods of the nodes are concurrent; and those that have no
synchronization requirements and instead depend on an ex-
tended preamble and low power listening.

S-MAC [17] is a low power RTC-CTS based MAC proto-
col that makes use of loose synchronization between nodes to
allow for duty cycling in sensor networks. The protocol uses
three techniques to achieve low power duty cycling: periodic
sleep, virtual clustering, and adaptive listening. The nodes in
the network periodically wake up, receive and transmit data,
and return to sleep. At the beginning of the awake period,
a node exchanges synchronization and schedule information
with its neighbors to assure that the node and its neighbors
wake up concurrently. This schedule is only adhered to lo-
cally, resulting in a virtual cluster, which mitigates the need
for system wide sychronization. Nodes that lie on the border
of two virtual clusters adhere to the schedules of both clus-
ters, which maintains connectivity across the network. Af-
ter the synchronization information is exchanged, the nodes
transmit packets using RTS-CTS until the end of the awake
period and the nodes then enter sleep mode. In [18], the
authors introduce adaptive listening to reduce latency. With
this, when a node hears an RTS or CTS from its neighbor,
it will wake up briefly at the end of the transmission. If the
node is the next hop on the data path, waking up at the end
of the transmission will reduce latency as the packet can be
forwarded immediately without having to wait until the next
scheduled awake period.

T-MAC [16] improves on the design of S-MAC by short-
ening the awake period if the channel is idle. In S-MAC,
the nodes will remain awake through the entire awake period
even if they are neither sending nor receiving data. T-MAC
improves S-MAC by listening to the channel for only a short
time after the synchronization phase, and if no data is re-
ceived during this window, the node returns to sleep mode.
If data is received, the node remains awake until no further
data is received or the awake period ends. The authors show
that, for variable workloads, T-MAC uses one fifth of the
energy used by S-MAC. While this adaptive duty cycling re-
duces energy usage for variable workloads, these gains come
at the cost of reduced throughput and increased latency.

A comparison of duty cycling MAC protocols for WSNs
is performed in [9]. Specifically, S-MAC and T-MAC are
compared to standard CSMA/CA. S-MAC and T-MAC are
also modified to use low power listening during the awake
period, which further decreases the energy consumption of
the protocols. While they show that T-MAC in combina-
tion with low power listening provides very low power com-
munication, the protocol still suffers the same drawbacks as
T-MAC, namely high latency and overhead associated with
synchronization.

B-MAC [14], developed at the University of California
at Berkeley, is a CSMA-based technique that utilizes low
power listening and an extended preamble to achieve low
power communication. Nodes have an awake and a sleep
period, and each node can have an independent schedule. If
a node wishes to transmit, it precedes the data packet with
a preamble that is slightly longer than the sleep period of
the receiver. During the awake period, a node samples the
medium and if a preamble is detected it remains awake to
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receive the data. With the extended preamble, a sender is
assured that at some point during the preamble the receiver
will wake up, detect the preamble, and remain awake in or-
der to receive the data. B-MAC also provides an interface by
which the application can adjust the sleep schedule to adapt
to changing traffic loads. The method of adaptation is left
to the application developer. The authors show that B-MAC
surpasses existing protocols in terms of throughput, latency,
and for most cases energy consumption. While B-MAC per-
forms quite well, it suffers from the overhearing problem,
and the long preamble dominates the energy usage.

WiseMAC [7], which is based on Aloha, also uses pream-
ble sampling to achieve low power communications in in-
frastructure sensor networks. WiseMAC uses a similar tech-
nique to B-MAC, but the sender learns the schedules of the
receiver awake periods, and schedules its transmission so as
to reduce the length of the extended preamble. To achieve
this, the receiver puts the time of its next awake period in the
data acknowledgement frame. The next time the transmitter
wants to send to that receiver it can begin the preamble only
a short time before the receiver will awaken, taking into ac-
count possible clock skew. This reduces the energy expended
when sending the preamble. In addition, for low traffic loads
where the preamble is longer than the data frame, WiseMAC
repeats the data frame in place of the extended preamble.
Receivers process this data frame and if the node is not the
intended recipient it returns to sleep. If the node is the recip-
ient, it remains awake until the end of the transmission and
sends an acknowledgement. While WiseMAC solves many
of the problems associated with low power communications,
it does not provide a mechanism by which nodes can adapt
to changing traffic patterns.

In addition, low power listening has been implemented
by a number of commercial radios, for example the Chipcon
CC2500 [1] and the MaxStream XBee radios [3]. The XBee
radio modules allow the user to set the sleep period of the
radio and to set the length of the preamble that precedes the
data packet. The user must be sure to set the sleep period
to a duration shorter than the preamble length in order to be
assured that the radio was awakened by the preamble. The
Chipcon CC2500 uses a similar mechanism, but it has the
added benefit of using a low power radio circuit that listens
for the preamble. If in Wake-On-Radio mode, a low power
radio circuit is used to intermittently sample the channel for a
preamble. If the preamble is detected, the main radio circuit
is woken up and the radio receives the data packet.

A variety of techniques have employed a Wake-On-
Radio approach [15, 12] for energy-efficient communication.
These approaches employ a second low power radio as a trig-
ger to wake up the primary radio. These WOR approaches
require special hardware assistance.

The 802.11 MAC protocol implements a power save
mode that allows a base station access point to synchronize
receivers to a wake/sleep schedule [13]. The base station
transmits periodic beacons once every 100 ms to synchro-
nize the clients. The clients wake up at the start of a beacon
interval and checks the beacon to see if there is queued data
waiting for it. If so, it stays awake and otherwise goes back
to low power sleep mode. This is designed for infrastructure

mode wireless LANs.

3 X-MAC Protocol Design
The design goals of the X-MAC protocol for duty-cycled

WSNs are:

• energy-efficiency

• simple, low-overhead, distributed implementation

• low latency for data

• high throughput for data

• adaptivity to offered data load

• applicability across all types of packetizing and bit
stream digital radios

For many applications, asynchronous duty cycling tech-
niques are preferable to synchronized techniques in terms of
energy consumption, latency, and throughput. In part, thisis
because they do not incur overhead due to synchronization.
In addition, asynchronous techniques do not have to share
schedule information and only stay awake long enough to
sample the medium unless, of course, they are receiving or
transmitting data. Hence, the awake period can be signif-
icantly shorter than that of synchronized methods. With a
shorter awake period, asynchronous protocols can wake up
more often while still maintaining a low duty cycle. Conse-
quently, they experience reduced latency and higher through-
put. However, as acceptable latency increases, the extended
preamble begins to dominate energy consumption for asyn-
chronous techniques. In general, for applications with very
loose latency requirements, synchronized approaches may
be more appropriate. In [14], the authors show that for a
10 hop network B-MAC outperforms S-MAC with respect
to energy for latencies under 6 seconds.

For these reasons, X-MAC builds upon the founda-
tion provided by asynchronous duty-cycled MAC protocols.
While asynchronous techniques perform quite well, there are
a number of problems which, if mitigated, would allow for
even more efficient communication. X-MAC’s design is mo-
tivated by the goal of mitigating the following four problems
of low power listening: overhearing, excessive preambles,
packetizing radios, and lack of automated adaptation to vary-
ing traffic loads.

3.1 Asynchronous Duty Cycling
A visual representation of asynchronous low power lis-

tening (LPL) duty cycling is summarized in the top section
of Figure 1. When a node has data to send, it first transmits
an extended preamble, and then sends the data packet. All
other nodes maintain their own unsynchronized sleep sched-
ules. When the receiver awakens, it samples the medium. If
a preamble is detected, the receiver remains awake for the
remainder of the long preamble, then determines if it is the
target. After receiving the full preamble, if the receiver is not
the target, then it goes back to sleep.

3.2 Embedding the Target ID in the Preamble
to Avoid Overhearing

A key limitation of LPL is that non-target receivers who
wake and sample the medium while a preamble is being sent
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Figure 1. Comparison of the timelines between LPL’s
extended preamble and X-MAC’s short preamble ap-
proach.

must wait until the end of the extended preamble before find-
ing out that they are not the target and should go back to
sleep. This is termed as the overhearing problem, and ac-
counts for much of the inefficiency and wasted energy in
current asynchronous techniques. This means that for ev-
ery transmission, the energy expended is proportional to the
number of receivers in range. Hence, the energy usage is
dependent on density as well as traffic load. This problem
is exacerbated by the fact that sensor networks are often de-
ployed with high node densities in order to provide sensing
at a fine granularity.

In X-MAC, we ameliorate the overhearing problem by di-
viding the one long preamble into a series of short preamble
packets, each containing the ID of the target node, as indi-
cated in Figure 1. The stream of short preamble packets ef-
fectively constitutes a a single long preamble. When a node
wakes up and receives a short preamble packet, it looks at
the target node ID that is included in the packet. If the node
is not the intended recipient, the node returns to sleep imme-
diately and continues its duty cycling as if the medium had
been idle. If the node is the intended recipient, it remains
awake for the subsequent data packet. As seen in the figure,
a node can quickly return to sleep, thus avoiding the over-
hearing problem.

With this technique, the energy expenditure is indepen-
dent of network density. The approach of a series of short
preamble packets scales well with increasing density, i.e.
as the number of senders increases in a neighborhood, en-
ergy expenditure remains largely flat. In comparison, as the
number of senders increase in each neighborhood of a WSN
practicing LPL, the entire WSN stays awake for increasing
amounts of time.

Another advantage of this approach is that it can be em-
ployed on all types of radios. Any packetizing radio, such
as the CC2420 characteristic of MICAZ and TelosB motes,
the CC2500, and/or the XBEE, will be capable of sending a
series of short packets containing the target ID. As we will

see later, such universal support across packetizing radios is
not true of the traditional extended preamble LPL. In addi-
tion, the short preamble packets can be supported across all
radios with bit streaming interfaces, e.g. the CC1000 that is
found in the Mica2 mote.

3.3 Short Strobed Preamble to Reduce Exces-
sive Preamble

Using an extended preamble and preamble sampling al-
lows for low power communications, yet even greater en-
ergy savings are possible if the total time spent transmit-
ting preambles is reduced. In traditional asynchronous tech-
niques, the sender sends the entire preamble even though,
on average, the receiver has woken up half way through the
preamble. The entire preamble needs to be sent before every
data transmission because there is no way for the sender to
know that the receiver has woken up. This is one case where
more time is spent sending the preamble than is necessary,
as illustrated by the extended wait time in Figure 1. Another
case occurs when there are a number of transmitters waiting
to send to a particular receiver. After the first sender begins
transmitting preamble packets, subsequent transmitters will
stay awake and wait until the channel is clear. They will
then begin sending their preamble, and this occurs for every
subsequent sender. Consequently, each sender transmits the
entire preamble when in fact the receiver was woken up by
the first transmitter in the series.

In the development of X-MAC, we provide solutions for
both of these cases. Instead of sending a constant stream of
preamble packets, as would most closely approximate tradi-
tional LPL, we insert small pauses between each packet in
the series of short preamble packets, during which time the
transmitting node pauses to listen to the medium. These gaps
enable the receiver to send anearly acknowledgementpacket
back to the sender by transmitting the acknowledgement dur-
ing the short pause between preamble packets. When a
sender receives an acknowledgement from the intended re-
ceiver, it stops sending preambles and sends the data packet.
This allows the receiver to cut short the excessive pream-
ble, which reduces per-hop latency and energy spent unnec-
essarily waiting and transmitting, as can be seen in Figure 1.
Since the sender quickly alternates between a short preamble
packet and a short wait time, we term this approach astrobed
preamble.

In addition to shortening the preamble by use of the ac-
knowledgement, X-MAC also addresses the problem of mul-
tiple transmitters sending the entire preamble even though
the receiver is already awake. In X-MAC, when a trans-
mitter is attempting to send but detects a preamble and is
waiting for a clear channel, the node listens to the channel
and if it hears an acknowledgement frame from the node
that it wishes to send to, the transmitter will backoff a ran-
dom amount and then send its data without a preamble. The
randomized backoff is necessary because there may be more
than one transmitter waiting to send, and the random backoff
will mitigate collisions between multiple transmitters. Also,
the backoff is long enough to allow the initial transmitter to
complete its data transmission. To enable this technique, af-
ter the receiver receives a data packet it will remain awake
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for a short period of time in case there are additional trans-
mitters waiting to send. The period that a receiver remains
awake after receiving a data packet is equal to the maximum
duration of the senders backoff period, to assure that the re-
ceiver remains awake long enough to receive any additional
transmitters data packet.

Together, these two techniques greatly reduce excessive
preambles, result in the reduction of wasted energy, and al-
low for lower latency and higher throughput. In addition,
both of these techniques are broadly applicable across all
forms of digital radios, including packetized and bit stream,
because the short time gaps, early acknowledgements, and
random backoff can all be implemented in software.

3.4 Packetizing Radios
LPL has a limited ability to support packetizing radios.

For example, B-MAC is the default MAC protocol for
TinyOS [10] but is incapable of supporting some packet ra-
dios such as the Chipcon 2420. B-MAC was originally de-
veloped for bit streaming radios like the Chipcon CC1000,
which provides low-level access to the individual bits re-
ceived by the radio. With these radios, B-MAC can gener-
ate long preambles. However, the new generation of sensor
motes, such as the MicaZ [2], TelosB [4], and iMote [11],
make use of the Chipcon CC2420 [1] 802.15.4 radio. In-
stead of transmitting a raw bit stream, this type of packetiz-
ing radio takes as input the payload of the packet, and the ra-
dio module inserts its own preamble, header information and
CRC. When a packet is received, the radio strips the header,
checks the CRC, and if the packet is not corrupted passes
the payload of the packet to the microprocessor. While the
packet interface is a valuable advance in radio technology,as
it reduces the burden on the microprocessor, it limits the abil-
ity of the application to precisely control the bits that aresent
over the air. Most pertinent, with these radios the application
cannot send a preamble of arbitrary length. This precludes
the use of LPL protocols that depend on an extended pream-
ble.

For these radios, it is also not possible to mimic an ex-
tended preamble by sending a long data packet, which acts
as a pseudo-preamble. This is because the receiver will be
unable to sample the packet containing the pseudo-preamble,
i.e. the packetizing radio will only deliver the packet after it
has fully received the entire pseudo-preamble. This defeats
the purpose of preamble sampling.

LPL is supported in certain kinds of packetizing radios,
such as in the Chipcon 2500 and MaxStream XBee radios,
but only because it is implemented directly in the hardware.
In this case, long preambles can be specified because the ra-
dio supports this configuration option, unlike the Chipcon
2420.

In contrast, X-MAC’s short strobed preamble is well-
suited to all types of digital radios, as mentioned earlier.

4 Adaptation to Traffic Load
While many sensor network application produce periodic

and non-varying traffic, there is also the need to adapt to vari-
able traffic loads. In addition, different nodes in a multi-hop
network will experience different average traffic loads. For
example, in a network with a tree topology where the nodes

sense data periodically and transmit the data over multiple
hops to a base station, nodes closer to the base station will
receive and transmit more data than those further towards
the leaves. As such, nodes in the network must have dif-
ferent sleep schedules to effectively accomodate the differ-
ent traffic loads. Even for a periodic sensing application, it
would be quite difficult for a human operator to hand tune
all of the nodes sleep schedules, while for applications with
time varying traffic loads hand tuning is simply not possible.
Consequently, an effective duty cycling MAC protocol must
automatically adapt to varying traffic patterns.

The performance of a duty-cycling MAC is largely deter-
mined by the choice of sleep, wake, and radio use periods for
both the senders and receivers. One of X-MAC’s key contri-
butions, which we describe next, is a lightweight adaptation
algorithm which closely approximates the optimal values for
these periods.

4.1 Optimality
We consider the following metrics for MAC quality:

sender and receiver energy consumption and latency. The
achieved throughput equals the offered load at any usage
level for which a duty-cycling MAC makes sense. For cur-
rent devices, the power drawn is almost entirely determined
by the node’s sleep state and radio operation mode. (See Ta-
ble 1, appendix A) The expected energy consumption can
therefore be modeled in terms of the durations of the sender
and receiver sleep, listen, and transmission periods.

We will show that if the probability of receiving a packet
in any given interval,Pd(t), is known then sender and re-
ceiver tunable parameters can be set to optimal values. Let
PTx, PRx, andPs be the power required to transmit, receive,
and sleep, respectively.Sp, Sal, andSd denote the duration
of the sender’s preamble, acknowledgement listen, and data
(packet body) transmission periods.Rl and Rs denote the
receiver sleep and listen periods.

The expected energy to send a packet is given by:

Es =(preamble energy + energy per ACK listen)

∗ (expected preamble-listen iterations required)

+ (energy to send packet)

=(PTxSp+PRxSal)





1
(

Rl−Sp
Rl +Rs

)



+SdPTx

=
(PTxSp+PRxSal)(Rl +Rs)

Rl −Sp
+SdPTx

(1)

The expected energy to receive a packet is given by:

Er =(listen cycle energy + sleep cycle energy)

∗ (expected iterations for a preamble to arrive)

+ (energy to send an ACK)

+ (energy to receive packet)

=
PsRs+PRxRl

1− (1−Pd(t))(Rl +Rs)
+PTxRa +RdPRx

(2)
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The expected latency for a single packet is:

Lat =(duration of preamble + ACK listen)

∗ (expected number of iterations required)

+ (duration to send packet)

=





1
(

Rl−Sp
Rl +Rs

)



∗ (Sp+Sal)+Sd

=
(Sp +Sal)(Rl +Rs)

Rl −Sp
+Sd

(3)

These models lead to the following observations, the
derivations of which can be found in appendix B.
THEOREM 4.1. Energy and latency are both minimized
when Sp and Sal are set to the lowest values which allow for
the preamble to be transmitted and ACK received, respec-
tively.

For any objective functionf (·) which is a function of
sender energy, receiver energy, and latency:
THEOREM 4.2. Optimal receiver sleep and listen times for
minRs,Rl f (·) depend solely on Pd(t) and device constants.

For any objective functionf (·) consisting of aconvexity-
preservingcombination of sender energy, receiver energy,
and latency:
THEOREM 4.3. minRs,Rl f (·) can be found by standard con-
vex optimization techniques.

Thus, given an estimate ofPd(t), the protocol parameters
can be determined mechanically.

4.2 Approximation
Nonlinear minimization is too demanding a process to

be desirable in a sensor networking MAC. That said, the
mapping Pd(t) → (Rs

∗
,Rl

∗) is smooth enough to admit
lightweight approximations. Figure 2 shows this mapping
over a range of packet arrival rates.
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Figure 2. Energy-optimal sleep and listen times

The on-node approximation is based on linear interpola-
tion: We pre-compute a table ofPd(t) values and their asso-
ciated optimalRs

∗,Rl
∗ values[6]. In on-line operation, the

sensor node uses its estimatêPd(t) to perform a table lookup
and interpolates between the closest pre-computed values.

Numerical simulations suggest that this approximation
achieves energy efficiency comparable to direct optimiza-
tion. We chose an interpolation table of 24 exponentially-
spaced entries, ranging between 10−4 and 103 expected
packets per second. The energy-efficiency of the optimal
and interpolated values ofRs andRl were then compared for
ten thousand values ofPd. Figures 3 and 4 show the results
of this experiment: Figure 3 shows the “raw” difference be-
tween optimal and interpolated results, and Figure 4 shows
the difference as a fraction of the optimal value. The mean
difference is 0.45%, and 95th percentile difference is 1.3%.
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Figure 3. Energy waste per packet due to interpolation.
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4.3 Estimating Traffic Load
The preceding produces near-optimal values when the

traffic loadPd(t) is known. An estimate of the instantaneous

value,P̂d(t) can be derived from the observed packet arrival
rate: The likelihood ofk packets arriving over a period of
n∗ t can be modelled as a Bernoulli process ofn trials with
probability of successPd(t). The most likely value ofPd(t)
is that which maximizes the probability of the observed out-
come. Applying Bayes’ rule, the most likely value ofPd(t)
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is the maximum on the interval(0,1) of the function:

f (Pd|k,n) =

n!
(n−k)!k! Pd

k(1−Pd)n−k f (Pd)
R 1

0
n!

(n−k)!k! Pd
k(1−Pd)n−k f (Pd) dPd

(4)

THEOREM 4.4. P̂d(t) = k
n is an optimal instantaneous esti-

mate of Pd(t).
In the case where there is no prior knowledge of the prob-

ability distribution ofPd(t), equation 18 has its maximum at
k
n. The derivation is given in appendix B.

A moving estimate can be maintained by any of the stan-
dard mechanisms; without knowing the dynamics of appli-
cation load change it is impossible to identify an optimum.

5 Evaluation
In order to evaluate and demonstrate the correctness and

benefits of X-MAC we have implemented the protocol on
top of the Mantis Operating System (MOS) [5]. MOS is
an open source, multi-threaded operating system developed
at the University of Colorado at Boulder for use on wire-
less sensor networking platforms. It is currently ported to
the Mica2, MicaZ, and TelosB sensor nodes and is writ-
ten entirely in C. X-MAC is implemented as a MAC layer
protocol and an application initiates the protocol by calling
wor init(), which takes 3 parameters. The parameters are
minimum sleep time, maximum sleep time, and default sleep
time, which determines the initial sleep period. The mini-
mum sleep time parameter allows the application developer
to specify the minimum sleep time that enables the network
to achieve some application specific minimum network life-
time. The maximum sleep time parameter allows the devel-
oper to bound the one hop latency in order to meet latency
requirements.

The wake-on-radio initialization functionwor init()
spawns a receive thread that queues incoming packets for
processing by the application layer, and also wakes and
sleeps the radio according to the duty cycle. A second thread,
the application thread, is written by the developer and makes
use ofwor send(), which implements the sending function-
ality of X-MAC, and the MOS functioncomrecv(), which
processes the packets in the receive queue. The application
developer is responsible for waking and sleeping the applica-
tion thread if they wish to completely sleep the sensor node.
For these evaluations, the awake time is always 15 ms. This
is the amount of time necessary to receive a preamble packet,
determine if the node is the intended receiver, and return the
acknowledgement packet to the transmitting node.
5.1 Experimental Setup

For our experiments, we used a deployed indoor testbed
of TelosB motes. The TelosB platform was developed at the
University of California at Berkeley and is marketed and sold
by Moteiv and Crossbow. The radio used by the TelosB is the
Chipcon CC2420, which is an 802.15.4 compliant device,
has a data rate of 250kbps, and operates in the 2.4 GHz ISM
band. The mote uses an 8 MHz TI MSP430 and has 1 MB
of external flash. The current draw of the device, excluding
the radio, is 1.8 mA in active mode and 5.1µA when in sleep
mode. The CC2420 radio consumes 23 mA in receive mode,
17.5 mA when transmitting at 0 dBm, 21µA in idle mode,

and 1µA in sleep mode. When X-MAC “sleeps” the radio,
in fact it puts the radio into idle mode, as sleep mode turns
off the oscillator and requires a longer time to transition back
to receive mode.

As the energy draw of the radio when receiving is far
greater than when in idle mode, it is of the utmost importance
to achieve a low duty cycle to extend the life of the network.
Because the processor consumes an extremely small amount
of energy in comparison with the radio, in our evaluation we
allow the application thread to run continuously while the ra-
dio is turned on and off according to the duty cycle. If a node
wishes to transmit a packet, it turns the radio on and attempts
to send the packet. Consequently, the total time that the ra-
dio is on is the time spent sampling the channel for preamble
packets, the time awake receiving premble packets and data
packets, and the time that the radio is awake attempting to
send a packet.

As a comparison protocol for X-MAC, we have imple-
mented a simple asynchronous LPL MAC protocol. This
protocol is the closest approximation that we could develop
using a packetizing radio. When sending, the transmitter
sends a stream of preamble packets as rapidly as possible,
and after the extended preamble the data packet is sent.
There are two differences between X-MAC and the simple
LPL protocol; first, the simple protocol does not inspect the
preamble packets for the target ID so all receivers will re-
main awake until they receive the data packet; second, with
the simple protocol, transmitters always send the entire ex-
tended preamble and receivers do not send an acknowledge-
ment packet to the transmitter. In addition, the adaptational-
gorithm cannot be applied to the simple protocol. Although
the receiver can adjust its sleep period, the transmitter will
not be aware of this change so it will not know to adjust the
length of its preamble. In X-MAC, the preamble is truncated
by the acknowledgement so the transmitter does not need to
be explicitly informed of the change in receiver sleep period.
When comparing X-MAC to the simple protocol, we attempt
to calculate the sleep period that best accomodates the traffic
load.

5.2 X-MAC Performance
To show the performance benefits of the X-MAC proto-

col, we performed a number of simple experiments that eval-
uate X-MAC without adaptation for simple topologies with
no contention and low injection rates. This allows us to see
clearly the functioning of X-MAC.

5.2.1 Duty Cycle
To demonstrate the benefits of the overhearing avoidance

and the short strobed preamble in X-MAC, we performed an
experiment with a varying number of nodes. For this, we set
up a star topology where multiple senders are transmitting to
a single receiver, and all nodes are within transmission range
of each other. Each node sends a packet once every 5 sec-
onds to the receiving node and all nodes have a sleep period,
and preamble length, of 500 ms. We proceeded to measure
the percentage of time the nodes are in sleep mode. The ex-
periment is repeated with a varying number of senders, from
1 to 5, and the transmissions are timed so as to avoid con-
tention. This means that for the single sender case, there is
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Figure 5. Duty cycles of senders and the receiver as a
function of network density.

one packet being sent every 5 seconds while for the 5 sender
case there are 5 packets being sent every 5 seconds.

As can be seen in Figure 5, with X-MAC the duty cycle
does not vary greatly as network density increases. As there
is a small amount of processing time needed to check the
ID in the preamble, we see a slight decrease in sleep time
at higher densities. In contrast, with the simple LPL asyn-
chronous protocol, nodes wake up when they detect pream-
ble packets transmitted from the other senders, as they do not
know if the transmission is intended for them or not. With
the simple protocol, as network density increases, the timea
node sleeps decreases in proportion to the number of trans-
mitters it can overhear.

For this experiment, we also show the duty cycle of the re-
ceiver seperately. This allows us to see the change in receiver
duty cycle as the traffic load increases. As can be seen, the
receiver is able to sleep more when using X-MAC because it
sends the early acknowledgement and returns to sleep. The
ability of X-MAC to substantially prolong energy lifetime is
highlighted by looking at the single sender case. In this case,
the receiver’s duty cycle is 5% under X-MAC and 13% under
LPL, resulting in a doubling to tripling of the energy lifetime
of the receiver for X-MAC.

Additionally, X-MAC further reduces energy consump-
tion at the transmitter by having the receiver send an ac-
knowledgement packet when it awakens, effectively truncat-
ing the preamble. In X-MAC, when a preamble is detected
the receiver sends the early acknowledgement packet and
the transmitter immediately sends the data packet and both
nodes return to sleep; thus saving energy at both the sender
and the receiver. In contrast, with the simple protocol the
receiver must remain awake for the remainder of the pream-
ble and the transmitter sends the entire extended preamble
before every transmission, thus wasting energy. The benefit
of the shortened preamble is highlighted by looking at the
duty cycle of the single sender case for X-MAC and the sim-
ple protocol. Here, it can be seen that, while both protocols
send one packet with one preamble, X-MAC uses substan-
tially less energy because its preamble is shortened by the

Node Density
1 2 3 4 5

m
A

6.5

7.5

8.5

9.5

10.5

11.5

12.5

Power Consumption per Node vs. Density

LPL Power Consumption

X−MAC Power Consumption

Figure 6. Power consumption per node versus density.

LPL X−MAC

m
s

0

500

1000

1500

2000

2500

3000

3500

4000

Avg Round Trip Time Per Packet

3972.3

2380.3

Figure 7. Latency

receiver, i.e. the duty cycle is 10% for X-MAC versus 17%
for LPL.
5.2.2 Energy Usage

In order to show the energy savings in terms of actual
power consumed, we attached an oscilloscope to one of the
transmitting nodes, and repeated the above experiment. We
measured the mean current draw in mA. As can be seen in
Figure 6, the energy consumed by the simple protocol in-
creases as network density increases. For X-MAC, energy
consumption remains constant as network density increases.
These results confirm our previous measurements of the duty
cycles.
5.2.3 Latency

In X-MAC, the extended preamble is truncated when the
receiver wakes up. While this provides significant energy
savings, it also reduces per hop latency because the receiv-
ing node can immediately begin forwarding the packet after
it receives it. To show the reduction in latency when using
X-MAC, we use a chain topology of 5 nodes. The sleep pe-
riod of all nodes is 500 ms, as is the preamble length. We
generate one packet every 5 seconds at one end of the chain,
transmit the packet over 4 hops to the far end of the chain,
and then forward the packet in the reverse direction back to
the originating node. We then measure the round trip time of
the packet. This reverse path is necessary to be sure that the
same clock that is used to time stamp the packet initially is
again used to measure the round trip time.

In Figure 7, we show the results of our 8 hop latency test.
For the simple protocol, the round trip time is nearly 4 sec-
onds, as would be expected because the packet incurs 500
ms of delay at each of 8 hops. In contrast, X-MAC experi-
ences a round trip time closer to 2.5 seconds. Analytically,
the round trip time should be about 2 seconds, as the receiver
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will wake up, on average, half way through the preamble. Of
course, the receiver does not always wake up exactly half
way through the preamble. Our experiments show that X-
MAC reduces latency by approximately 50%.

6 Discussion and Future Work
While our experiments have highlighted the substantial

first-order performance gains of X-MAC, more detailed ex-
periments are needed. Our duty cycle measurements are in
need of error bars. Our latency measurement needs to be
confirmed with more data points. We also would like to vary
other parameters, such as packet length, data rate, etc. We
intend to evaluate X-MAC on a tree-structured routing topol-
ogy. We also plan to evaluate X-MAC on a larger 50-node
testbed of motes. One of the key properties of MAC proto-
col design is fairness, and we hope to evaluate the fairness of
X-MAC in more detail. We were unable to evalute the adap-
tation algorithm and intend to compare its performance and
stability properties against basic B-MAC.

We estimate the memory consumption of the full X-MAC
implementation to consume 6-7 KB of flash. We did not
attempt to optimize this implementation at all, and instead
sought ease of implementation. We intend to explore a more
compact code implementation in the future. We also intend
to provide RAM consumption numbers in the next iteration.
For example, the table used for approximating the optimal
adaptation algorithm consists of only 20 integers stored in
RAM, but the other RAM consumption numbers need to be
determined.

X-MAC consumes a minimum of 15 ms listen time. We
need to understand in more detail the various contributionsto
this latency, so that we can reduce this minimum listen time
further.

We hope to have an implementation of X-MAC for
TinyOS in the near future. Since X-MAC does not depend
upon the radio being either bit-oriented or packet-oriented,
then X-MAC should enable TinyOS to operate our new
approach to LPL universally across MICA2, MICAz, and
TelosB motes.

7 Conclusions
This paper describes X-MAC, a new approach to low

power communication in WSNs. X-MAC employs a strobed
preamble approach by transmitting a series of short pream-
ble packets, each containing the address information of the
target receiver. The series of short preamble packets approxi-
mates a continuous preamble. Small pauses between pream-
ble packets permit the target receiver to send an acknowl-
edgment that stops the stream of preamble packets, thereby
truncating the extended preamble. The advantages of this ap-
proach are multi-fold: the transmitter does not need to send
the full extended preamble, thus saving energy at both the
transmitter and receiver and allowing for lower per hop la-
tency and higher throughput; non-target receivers who over-
hear the strobed preamble can go back to sleep immediately,
as compared to remaining awake for the full preamble as in
conventional LPL; and, this strobed preamble approach can
be readily adapted to the packetized radios that are emerg-
ing as the standard in today’s sensor motes. Another key
feature of X-MAC is its algorithm for adapting the duty cy-

cle of the receiver automatically to adapt to varying traffic
loads. We verified that X-MAC’s strobed preamble approach
outperforms traditional LPL by implementing the protocol
and performing an array of experiments using a testbed of
wireless sensor nodes. X-MAC is seen to lower per-hop la-
tency, reduce energy consumption, and allow for increased
throughput.
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A Definitions
A.1 Variables

PTx , Power to Tx

Ps , Power to sleep

PRx , Power to Rx

Sp , Duration of sender preamble

Sal , Duration of sender ACK listen

Sd , Duration of sender data Tx

Rs , Duration of receiver sleep

Ra , Duration of ACK send

Rl , Duration of receiver listen

Rd , Duration of receiver data Rx(= Sd)

Pd(t) , Packet probability per timet

A.2 Constraints
The following constraints describe the range of variable

values for which our model is reasonable:

{PTx,Ps,PRx,Sp,Sal,Sd,Rs,Ra,Rl ,Rd} > 0 (5)

0≤ Pd(t) ≤ 1 probability range (6)

Rl > Sp preamble reception possible (7)

Sal > Ra ACK reception possible (8)

Rd = Sd No Doppler effect (9)

A.3 Concrete Equations
Table 1 gives device-specific constants for the Telos IV

mote.

Variable value source
PTx 57.6 mW device-specific
Ps 0.0183 mW device-specific
PRx 74.4 mW device-specific
Sp 0.26 ms (msg. size)/bw +

overhead
Ra 0.26 ms (msg. size)/bw +

overhead
Sd, Rd application-

specific
Pd , Pd(1ms) application-

specific
Sal 0.26 ms free, butSal = Ra

is optimal.
Rs 0≤ Rs
Rl .26 ms≤ Rl

Table 1. Variable values

Substituting these values into equations 1 - 3 gives the
following, where time, power, and energy are measured in
ms, mW andµJ respectively:

Es = 57.6Sd +
34.32(Rs+Rl)

Rl −0.26
(10)

Ee =
0.0183Rs+74.4Rl

1− (1−Pd)
Rs+Rl

+74.4Sd +14.976 (11)

Lat = Sd +
0.52(Rs+Rl)

Rl −0.26
(12)

B Proofs
B.1 Theorem 4.1
B.1.1 Sender Preamble Time

The sender preamble durationSp affects the expected en-
ergy to send and the expected latency (equations 1 and 3.)
Both take their optimal (minimal) values whenSp is mini-
mized, as will be shown shortly.Sp is bounded from below
by the message size / the available bandwidth + processing
overhead. The partial derivative of equations 1 and 3 with
respect toSp are given below.

∂Es

∂Sp
=

(Rs+Rl) (PTxSp+PRxSal)

(Rl −Sp)
2 +

PTx (Rs+Rl)

Rl −Sp
(13)

∂Lat
∂Sp

=
(Rs+Rl) (Sp +Sal)

(Rl −Sp)
2 +

Rs+Rl

Rl −Sp
(14)

It follows from constraints 5 and 7 that∂Es
∂Sp

> 0 and
∂Lat
∂Sp

> 0 for all permissible values. Thus, within the de-
fined bounds, the expected latency and expected sender en-
ergy consumption are always reduced by loweringSp, and
expected receiver energy consumption is unaffected.
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B.1.2 Sender ACK Listen Time
The sender acknowledge listen time,Sal also affects equa-

tions 1 and 3.
The partial derivative of equation 1 with respect toSal is

given below.

∂Es

∂Sal
=

PRx(Rs+Rl)

Rl −Sp
(15)

It follows from constraints 5 and 7 that∂Es
∂Sal

≥ 0 for all feasi-
ble values of all variables. Consequently,Es is always mini-
mized when the lowest permissible value is chosen forSal.

Similarly for the expected latency,

∂Lat
∂Sal

=
Rs+Rl

Rl −Sp
(16)

it is always the case that∂Lat
∂Sal

≥ 0.

From the preceding paragraphs, it follows that latency, re-
ceiver energy consumption and sender energy consumption
all take minimal values whenSal is minimized.

B.2 Theorem 4.2
Once the device attributes and the parameters with invari-

ant optimal values are fixed, all three objective functions are
given by equations 10 - 12. The values of the objectives de-
pend on, at most,{Pd,Sd,Rl ,Rs}.

Pd andSd can be regarded as unknown constants1. Thus,
given any particularPd andSd and a constrained range values
for Rl andRs, there exist minimal valuesE∗

s , E∗
r , andLat∗.

For any given(Pd,Sd), for each objective or for any com-
bination thereof, there exists a non-empty set of(R∗

l ,R
∗
s)

pairs producing the minimal value of the objective. Addi-
tionally, Sd does not appear in the partial derivative ofEs,
Er , or Lat with respect toRl or Rs. Consequently, the sets
of values which minimize those objectives do not depend
on the value ofSd. Thus, any objective based on some
combination ofEs, Er , andLat, can be be written as some
f (Pd,Rl ,Rs) : R3 → R.

B.3 Theorem 4.3
Consider f (x) ∈ {Es,Er ,Lat}. Each function is convex

over the domainx consistent with the constraints given in ap-
pendix A.2. All three functions are twice differentiable over
this domain, and thus have a well-defined Hessian matrix.
For eachf , ∀x∈ dom f :

▽2 f (x) � 0

Therefore, eachf is convex over the appropriate range
of Rs and Rl . By extention, anyg(x) which consists of
convexity-preserving combinations of thesef s is also con-
vex. A notable group of these is the set of nonnegative linear
combinations off s.

Any local minimum ofg(x) within the appropriate range
will therefore also be a global minimum, which means that
many non-linear programming techniques can be applied.

1They can, of course, change value over time.

B.4 Theorem 4.4
For any givenPd(t), the probability thatk packets will ar-

rive over durationnt can be modelled as a Bernoulli process
of n trials with probability of successPd. The frequency
mass function for the probability ofk “hits” in n trials is
given by

Pn(k) = f (k,n|Pd) =

(

n
k

)

Pd
k(1−Pd)

n−k (17)

Applying Bayes’ rule, we get the following frequency
density function:

f (Pd|k,n) =
f (k,n|Pd) f (Pd)

R 1
0 f (k,t|Pd) f (Pd) dPd

=

n!
(n−k)!k! Pd

k(1−Pd)n−k f (Pd)
R 1

0
n!

(n−k)!k! Pd
k(1−Pd)n−k f (Pd) dPd

(18)

In the case where there is no prior information about the
distribution, that is wheref (Pd) is uniform, andk≥ 0, equa-
tion 18 reduces to:

f (Pd|k,n) =
(1−Pd)

n−k Pd
k

R 1
0 (1−Pd)

n−k Pd
k dPd

(19)

The best estimatêPd(t) is the value ofPd which maxi-
mizes f (Pd|k,n). Note that equations 18 and 19 are unde-
fined wherePd is 0 or 1. For the special casesk= 0 andk= n,
f (Pd|k,n) has no extrema in the interval [0,1]. Wherek = 0,
the maximum is found wherePd = 0 and similarly where
k = n, the maximum occurs wherePd = 1. For 0< k < n, the
following analysis holds:

d f
dPd

=
k (1−Pd)

n−k Pd
k−1

R 1
0 (1−Pd)

n−k Pd
k dPd

−
(n−k) (1−Pd)

n−k−1 Pd
k

R 1
0 (1−Pd)

n−k Pd
k dPd

(20)
d f
dPd

is zero where:

Pd
k = −

k (1−Pd) Pd
k−1

k−n
(21)

Equation 21 has two solutions:Pd = 0 andPd = k
n. As

mentioned above, equations 18 and 19 are undefined where
Pd is 0. Thus:

P̂d(t) =







0 if k = 0
k
n if 0 < k < 1
1 if k = n

(22)

This is of course just̂Pd(t) = k
n for 0≤ k≤ n.

11


	University of Colorado, Boulder
	CU Scholar
	Spring 5-1-2006

	X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks ; CU-CS-1008-06
	Michael Buettner
	Gary Yee
	Eric Anderson
	Richard Han
	Recommended Citation



