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Abstract 

Now that we have end-user programming 
environments capable of empowering kids with no 
programming background to build games in a matter 
of hours, a new quest for raising the ceiling of end-
user development is emerging. Environments not only 
focusing on programming, but also including rich 
media such as 3D, could work as compelling tools for 
introducing information technology at the K-12 level, 
addressing even the problem of dwindling numbers of 
computer science student enrollments at universities. 
The new challenge is raising the ceiling without 
raising the threshold. Based on our experience with 
AgentSheets, which has been used worldwide for 
computational science and game design applications, 
we created a new authoring tool called AgentCubes. 
This article discusses the notion of Incremental 3D as 
a design approach for media-rich end-user 
development with low threshold and high ceiling in 
education. 

1. End-User Programming in Education 

One of the most important goals of end-user 
programming in education has been to employ the 
notion of programming as means of interactive 
expression. This kind of literacy [1] could allow kids to 
express complex ideas through creating simulations 
and models. However, programming turned out to be a 
daunting challenge. Early text-based programming 
languages, such as Logo, had limited success because 
of insufficient scaffolding, making it all too simple to 
create programs that did not work. It became clear that 
the notion of programming would have to be 
reconceptualized for end-users. To make this vision 
work, it was instrumental to devise new computational 
ideas that would lower the threshold of programming 
in order to make it work in educational contexts. 
Hence, end-user programming in education was born. 
This quest for new programming paradigms explored 
various mechanisms to scaffold the programming 
process.  

1.1 Trapped by Affordances 

An effect that we have called “Trapped by 
Affordances” [2] has turned out to be common to many 
end-user programming approaches aiming for a low 
programming threshold. An affordance is a property of 
an object that strongly suggests how it could be used. 
The idea of being trapped by an affordance means that, 
while initially the affordance makes a task 
extraordinarily simple, later that same affordance gets 
in the way. It either fails to help with more complex 
problems, or even worse, it actually makes a task 
potentially harder by forcing a user to think about a 
problem in a way that is not compatible with the 
problem. Affordances can trap users at the syntactic as 
well as the semantic level, hence preventing the 
programming ceiling from being raised. 
Syntactic level: Program syntax was commonly 
perceived to be one of the largest end-user 
programming challenges. Traditional programming 
languages included at the time, and still do, syntactic 
intricacies that are part of the language mostly to allow 
machine interpretation as opposed to human 
interpretation. One little semicolon at the wrong place 
and the program would no longer do what the 
programmer intended it to do. Programming languages 
such as the early BLOX Pascal [3] and the more recent 
LEGO Mindstorms strived to eliminate syntactic 
problems altogether by conceptualizing programming 
languages as puzzle pieces. These pieces are shaped in 
a way so that only syntactically correct programs can 
be written. The results of numerous variants of this 
visual programming idea are mixed at best. Many users 
and researches exploring these programming languages 
concluded that while they were a great starting point, 
they did not scale well. Complex programs quickly 
became unwieldy [4]. To a large degree, the very 
affordance of the puzzle piece idea that initially helped 
in building simple programs would trap users and for 
more complex programs would result in convoluted 
arrangements dictated by the visual metaphor.  



Semantic level: Graphical rewrite rules for 
programming agents, initially introduced by 
AgentSheets [5] and later adopted by KidSim1 [6], had 
users trapped by semantic affordances. Rewrite rules 
have employed notions of programming by example. 
For instance, an agent could be instructed to move to 
the right simply by using the mouse and dragging it to 
the right while telling the system to observe, record 
and potentially generalize the user actions and turn 
them into rewrite rules. Early usability testing 
indicated that even young kids quickly, and with 
almost no instructions, were able to use this 
programming paradigm. However, similar to the 
syntactic trap, graphical rewrite rules clearly had a 
strong affordance; one with even more severe 
limitations. As soon as users had to create more 
complex behaviors that either extended or were 
completely orthogonal to the graphical rewrite rule 
paradigm, the affordance turned into a trap. One such 
trap was the need to create a very large set of rules for 
generalized behavior such as a car agent trying to 
follow a road system including intersections [7]. 
Another semantic trap was the lack of procedural 
abstraction. Rewrite rules did not have a means to 
name a behavior and be able to invoke the behavior 
through actions. 

1.2 Tactile Programming: AgentSheets 

After creating the graphical rewrite rule version of 
AgentSheets, we realized that because of the Trapped 
By Affordances effect we would not be able to have 
users build sophisticated applications. At the same time 
we had a developer version of AgentSheets that had to 
be programmed in AgenTalk (an agent-based version 
of Common Lisp). This allowed a number of power 
users to make sophisticated applications including 
games, scientific simulations, and even new authoring 
environments [5, 8] that would have never been 
possible with the graphical rewrite rules. Analyzing 
these Lisp-based applications and synthesizing ideas 
found in spreadsheets, rule-based programming and 
bottom up programming we devised the idea of Tactile 
Programming [9-11] exhibiting the following 
principles:  
• Composition: In AgentSheets’ Visual AgenTalk  

language components such as conditions and 
actions are elevated to the level of highly 
manipulatable objects. Users program by 
composing these objects via drag and drop 
operations into complete programs. Interactive 

                                                             
1 Later known as Stagecast Creator 

feedback guides users to create syntactically 
correct programs.  

• Comprehension: Tactile programming languages 
enable programs to be composed incrementally. 
The ability to perceive the consequences of 
incremental programming supports an exploratory 
style of programming, where users are allowed to 
play with the language and explore its 
functionality. Perception by manipulation afforded 
by tactile programming allows end-users to 
efficiently examine functionality in a direct 
exploration fashion in the same spirit as bricolage 
in Logo [12, 13], but with more support 
mechanisms. Tactile programming with 
decomposable test units at different levels of 
granularity of the programming language 
(individual commands, rules, methods) provides 
easy debugging for end-user programmers who do 
not posses the skills of professional programmers 
in debugging. 

• Decomposability: Decomposable units of behavior 
in tactile programming enable both testing, as 
mentioned above, and sharing. We found rule-
based languages especially decomposable. 
Individual conditions and actions can be taken 
much more easily out of context and tested 
compared to more traditional imperative 
programming approaches. Additionally, 
decomposability promotes sharing. Users are able 
to share simulation components locally or over a 
web-based repository [14, 15] making agents a 
form of currency in a community of simulation 
and game developers.  

1.3 Empirical Evidence of Low-Threshold 

Given that AgentSheets has been used for over a 
decade, perhaps just as important as theoretical 
perspectives are empirical results based on experiences 
with AgentSheets in game design and computational 
science applications. Over the years, the applications 
that users have produced have exceeded our own 
expectation. AgentSheets has been employed by a 
broad spectrum of users ranging from elementary 
school kids [16] simulating ecosystems to NASA 
scientists simulating experiments aboard the Discovery 
space shuttle [17]. AgentSheets has been used in 
different types of educational settings including 
elementary school science, introductions to 
information technology, middle school computer clubs, 
high school social studies curriculum and 
programming courses, science discovery after school 
programs, undergraduate game design courses, and 
graduate learning technology design courses. 



Initially, we mostly focused on the end-user 
programming mechanisms themselves, assuming that 
this would be the most important aspect of enabling 
end-users. However, once we started using the 
AgentSheets tool in traditional educational settings, we 
quickly realized that the end-user programming 
process in educational settings needs to be scaffolded 
with new instructional approaches in order to work. In 
the Trails project (http://www.trails-project.org), a 
consortium involving multiple universities, we started 
to develop game design curriculum for undergraduates. 
After teaching game courses and workshops in the 
USA, Europe and Japan for a number of years we were 
able to create perhaps the world’s shortest game design 
and development workshop called “Trails mini”. In 
this kind of workshop we can teach kids – and adults – 
how to make a video game in about three hours.  

2. AgentCubes 

Our new goal was to make a new kind of game and 
simulation authoring tool that would be as simple to 
use as AgentSheets, but would also allow the creation 
of sophisticated 3D applications. AgentCubes inherits 
much from its parent AgentSheets [5, 10, 11, 18, 19]. 
A cube is a four-dimensional structure consisting of a 
three-dimensional <row, column, layer> indexed 
matrix containing stacks of agents. Cubes can be 
recursive. Because cubes are agents themselves a stack 
of agents may contain nested cubes.  

 
Figure 1: An AgentCubes Soccer Game 

Agents have shapes that can be simple textured tiles, 
spheres, boxes, inflatable icons [20] or imported 3D 
models. Additionally, agents have built-in properties 
controlling their color, transparency, orientation, and 
size.  
  A world contains at least one cube. The world in 
Figure 1 shows a soccer simulation based on a single 
layer cube representing a soccer field. A pen and eraser 

based tool interface allows users to quickly create large 
and complex arrangement of agents in a world.  
Agents are programmed in VisualAgenTalk II. An 
extended VisualAgentTalk I [9-11] set of actions and 
conditions is used to create IF/THEN rules. Actions 
include basic movement, rotation control, message 
sending, color and transparency control, sound output, 
speech synthesis, spreadsheet-like formula evaluation, 
3D surface plotting, and chat interface control. 
Conditions include scene parsing, timers, probability, 
keyboard/gamepad input, and web page screen 
scraping.  
  To enable procedural abstraction, rules can be 
grouped into methods that are named by the user. 
Methods are invoked in the behavior through message 
actions, or, indirectly through triggers invoked by 
events such as mouse clicks. 

3. Incremental 3D 

Based on their daily exposure to information 
technology including game consoles, children today 
have higher expectations in terms of media. They 
expect rich media including MP3 sounds, movies, 3D 
models and more. This poses an interesting design 
challenge. To some degree, these new media can be 
added to authoring tools incrementally. Over time 
AgentSheets got extended with advanced media 
features including spatial sound, speech synthesis, 
speech recognition, Macromedia Flash output, 
QuickTime movie play and 3D visualizations. But 
even with these extensions, we recognized the need to 
raise the ceiling of end-user development [21, 22] for a 
new level of game design and computational science 
applications that could only be addressed with a new 
conceptual framework enabling what we call 
Incremental 3D. This conceptual shift hinges on the 
transition from end-user programming to end-user 
development. That is, we no longer limit the scope of 
authoring to programming but, instead, include all 
aspects of development necessary to create 3D 
applications.  
  AgentCubes is an Incremental 3D end-user 
development tool to create 2D/3D games and 
simulations. The fundamental idea of Incremental 3D 
is that a user should be able to suspend important 
design decisions to the point in time of the design and 
development process when the decision really needs to 
be made. For instance, many game and simulation 
applications can start as simple 2D applications that 
may or may not be turned into 3D applications. 
Initially, the user should not have to worry about the 
precise look, size, orientation and locations of objects 
in 3D space or how objects need to be animated when 
they move. For instance, by utilizing grids, we 



transition from the need to deal with Euclidian 
information (e.g., move my object 1.5 meters to the 
right), to topological information, (e.g., move my 
object right to the next space). 
  In the context of Incremental 3D, we intentionally use 
the term end-user development and not end-user 
programming to indicate the inclusion of non-
programming related design activities. For instance, we 
believe that it is crucial to include incremental 
mechanisms to rapidly sketch 3D models that may start 
out as simple 2D sketches. Similar to fat pen 
approaches used in architectural drawing design, 
Incremental 3D includes a set of “rough and ready” 
tools enabling the designer to explore design variations 
with great speed and low commitment [23]. 
  As a design process, Incremental 3D can address the 
low threshold, high ceiling [13] challenge. Many 
games and simulations can initially be conceptualized 
as applications that may have 3D manifestations, but at 
a logical level are essentially just 2D systems. If spatial 
relationships between objects are simplified through a 
strong spatial organization scheme such as a grid, then 
programming can be further simplified. From our 
AgentSheets experience we know that the grid 
significantly contributes towards lowering the 
programming threshold because it makes spatial 
relationships much more transparent. 
  Through the Incremental 3D design process, users 
move along well-defined stepping-stones from 2D to 
3D applications. This process is raising the ceiling and 
keeping the threshold low by employing tools 
described in the next sections. 

3.1 Incremental Animation  

Animations in games and simulations serve multiple 
roles. The most trivial role animation can play is to 
make applications look nicer. However, much more 
important is the role of animation to communicate 
complex relationships between objects. We have 
devised a novel animation approach that can be 
employed incrementally.  
Facilitating the perception of causality through 
animation. With his work on the perception of 
causality, Michotte [24] showed that humans perceive 
causality between objects depending on the exact 
timing of movement. At the time, his experiments were 
based on an elaborate mechanical apparatus allowing 
him to manipulate the animation of two seemingly 
interacting objects. His experiments showed that even 
small timing variations in the neighborhood of 100 
milliseconds would have people come up with 
completely different explanations of the causal 
connection between objects. He reasoned that the 
causality inferred was directly perceived without the 

involvement of higher order cognitive processes. In our 
daily experience, perception of causality is grounded in 
a world containing objects adhering to physical 
processes. In the world of computers, this means that 
animation plays a much more important role that to 
make, say, games look nicer. It is a crucial spatio-
temporal information channel that allows us to 
perceive and consequently to understand the world that 
is being simulated more effectively. 
  It is not hard to argue that animations play an 
important role in the simulation of physical systems. A 
simulation of a bouncing rubber ball would not be 
much of a simulation without actually showing a 
rubber ball exhibiting the physically grounded 
behavior. However, Michotte’s work can be applied to 
non-physical systems as well. As Michotte points out, 
humans will not only perceive causality in the physical 
sense, but will even attribute motivational and 
emotional aspects to interacting objects. This kind of 
interpretation including descriptions such as launching, 
chasing, and following can also be used in non-
physical contexts such as social science simulations. 
  To be able to achieve the desired effect in the 
Michottian sense, AgentCubes includes a number of 
mechanisms to enable and control animations. Users 
can adjust the time, the trajectory and acceleration of 
an animation. Using a simple slider, users can adjust 
the animation time anywhere between 0 (no animation) 
and a few seconds. We have been surprised how 
differently we perceive some of our classic simulations 
– AgentCubes is capable of importing AgentSheets 
projects – when animation is enabled. Especially 
simulations featuring large quantities of agents can 
sometimes be perceived qualitatively differently. 
Separation of Logic and Animation. An important 
aspect of Incremental 3D is that the logic part of end-
user programming and the animation part are kept 
separate. The logic part describes what the agent will 
do. For instance, in a Space Invaders game, the cursor 
controlled defender agent will move one grid space to 
the right. The user will simply use the Move <right> 
action to achieve this (Figure 2, left).  

        
Figure 2: Separate logic from animation. Left: move right 

action; Right: disclosed version showing additional parameters 
relevant to animation. 

Later in the development process, the user may want to 
add animation information. The user may want to use 
an accelerated animation in which the agent 
continuously accelerates and at the mid point starts to 



decelerate until it comes to a complete stop. The time 
is takes to run this animation can either be controlled 
by the end-user via a slider or through a computed or 
fixed value (Figure 2, right). 
Scene awareness. Animations quickly become 
complex for a user to operate if animations have no 
physical awareness of a scene. The move action hides 
an enormous amount of complexity because it includes 
automatic physical interpretations of a world. In 2D 
environments such as AgentSheets and KidSim, a 
move will simply remove an agent from one location 
in the grid and move it to a new location. It should not 
be any harder for a user to do this in 3D, but the system 
will have to fill in some blanks with respect to how a 
move should be interpreted in a three dimensional 
space. Consistent with the notion of stacks, an agent 
moving from one stack to another will automatically 
move on top of the new stack. The animation trajectory 
consisting of automatically generated x, y, z animation 
components will be computed to minimize the chance 
of object intersections. If an agent moves out of a stack 
but was not on top of the stack, then the stack will be 
compacted again. Consistent with gravity, all the 
agents above the agent moving out will drop down. Of 
course, some applications may not be consistent with 
stacks and gravity. In this case the user can use layers 
instead of stacks. 
  Without physical interpretation assisted by the 
notions of grids and stacks, a move would become 
tedious. For instance, in Alice [25] users would have to 
first write some kind of grid manager with gravity to 
spatially parse a scene. This would be used to either 
create a move based on three parallel x, y, z moves or 
to use the move_to method to move the object on top 
of the stack to be moved to.  
Parallel Time-Jump. AgentCubes uses the novel 
Parallel Time-Jump animation approach to allow any 
number of agents to animate in parallel. Animating 
large number of agents is a hard problem. Imagine 
even a simple simulation in which agents are moving 
around randomly. Agents moving to the same stack in 
the same layer will have to pile up. This would not be a 
problem if animation could be handled sequentially. 
The first agent moves to the stack and then the second 
agent moves on top of that agent in the same stack. 
This will work nicely with a small number of agents, 
but the total time it takes to transition an agent world 
from one step to the next will be the product of the 
animation time and the number of agents. In some of 
our science applications, e.g., eColi bacterial in 
Microgravity [17] we had 10000 agents. Animating 
only 1000 agents with 0.3 seconds per animation 
would total in a seemingly never-ending 5-minute 
animation. In such a case, animation would take too 
long time to execute, unless done in parallel. 

  But if animations need to be done in parallel, how can 
we know where the agents are moving? We can only 
make this decision once all the agents got dispatched 
and have been moved to their final destinations. 
Otherwise, individual agents cannot start their 
animation trajectory because they do not know where 
they will end up. This appears to be a contradiction. 
The Parallel Time-Jump avoids this contradiction by 
moving forward and backward in time. Conceptually 
speaking, the Parallel Time-Jump will first dispatch, 
move and rotate all agents without animation. Then it 
leaps back in time and generates all the transitional 
animations from were the agents currently are to where 
they will be. This way, the 1000 agents will only take 
0.3 seconds to be animated.  
  From the viewpoint of the user, the Parallel Time-
Jump is completely transparent. The time-jumps are all 
done without updating the screen. Users will not have 
to worry about what currently is in the scene and what 
will be in the scene. They can simply run or step the 
simulation. The animation will appear to the user as if 
all the agents already know where they need to move. 
An example may help to illustrate this point. Say there 
are two crates and one wall agents (Figure 3a). Both 
crate agents want to move on top of the wall agent. 
Agents are dispatched in random order. Figure 3b 
shows the animation resulting when the right crate 
agent gets dispatched first. Animations are intrinsically 
hard to capture in paper media. The motion blur 
provides a very limited sense of the complex trajectory 
of the two crates. Note, for instance, that the left crate 
is significantly overshooting vertically to avoid 
“unnatural” intersection with the right crate as they 
both move towards their destination in parallel. 
  The essence of Parallel Time-Jump is that users can 
effectively employ the animation of a large number of 
objects without the need to track object locations and 
without the overhead of sequential animation. This is 
important in all kinds of 3D applications. 

  
Figure 3: (a) two crate agents (left, right) both want to move on 
top of brick agent. (b) Right crate gets dispatched first but both 

crates know where they need to move to. Both crates move in 
parallel to their respective destinations. The animation makes 

the left crate overshoot vertically to avoid intersection. 



3.2 Incremental 3D Model Development 

A big question is where do 3D models come from? 
From our experience with AgentSheets, we know that 
allowing user to create their own 2D agent depictions 
in many cases serves an important role. The icons 
created may not be professional, but they are an 
important part of communicating personal ideas. 
Creating a good-looking 2D icon is by no means 
trivial, but creating a 3D model is quite often a 
daunting process. Sophisticated 3D modeling tools 
such as Maya have extremely steep learning curves. 
This is not compatible with the notion fat pen design 
approaches [9] or Incremental 3D.  The following steps 
help users to develop 3D models incrementally. 
Tiles. The first step towards a 3D application may be to 
create a project or import an existing 2D project. Icons 
are represented as textured flat tiles (Figure 4). 

 
Figure 4: The 2D Sokoban game imported into AgentCubes. 

The tile-based 3D world is not completely flat. Each 
tile has a minimal height. Stacks of agents are still 
interpreted vertically. When importing existing 
AgentSheets games, we sometimes found problems 
that were not visible in AgentSheets. For instance, in a 
game such as Space Invaders it would be simple to 
forget to write rules about deleting dropped bombs that 
missed their targets. This could result in thousands of 
agent piling up in a worksheet. Over time, this kind of 
agent “leak” could use up all the memory. Without a 
3D interpretation there will be no visible clue if there is 
one or thousands of agents piled on top of each other. 
Agent leaks became immediately apparent when 
opening up worlds in 3D because they visibly render as 
tall stacks of agents. 
Basic 3D Shapes. To give a world a real 3D look and 
feel, the user maps agents to shapes with real 3D 
extend. For instance, in Sokoban the shape 
representing a crate will be turned into a 3D box by 
changing its shape type from tile to box. The original 
crate icon will be used as a texture (Figure 6).  
High Resolution Texture 3D Shapes. Most hand 
drawn 2D images are low resolution, e.g., 32 x 32 
pixel, icons. Especially when zoomed in close, this 
kind of texture will look too grainy. The user can now 

provide higher resolution image textures. Instead of a 
32 x 32 x 8 bit color pixel icon the user may want to 
use a 1024 x 1024 x 32 bit color texture including a 8 
bit alpha channel. With this, our shapes begin to look 
considerably more sophisticated.  
Inflatable Icons. Inflatable Icons2, is a new technique 
that interactively extrudes 2D pixel-based images into 
polygon-based 3D models, adding a third dimension to 
a two dimensional image. The general idea is that 
through the use of a diffusion-based inflation process 
and with minimal input from users suitable 2D icon 
artwork can serve as input for an interactive 2D to 3D 
transformation process [22]. The user can control 
inflation pressure, symmetry, and can add noise. 

      
Figure 5: Inflatable Icons turn simple 2D images into 3D models 

with thousands of polygons. 

Inflatable Icons are not meant to replace dedicated 
tools for creating 3D models, but they do allow 
creating multi thousand-polygon 3D objects in just 
seconds or minutes. 
Imported 3D models. A user can simply import 3D 
model files produced by third-party modeling tools or 
found in 3D model clipart collections. 

 
Figure 6: The 3D version of Sokoban turned bricks and crates 

into boxes and the lobster into an inflated icon. 

                                                             
2 Patent pending 



3.3 Incremental 3D Behavior Development 

Programming behaviors in a 3D environment can be a 
daunting task especially for end-users. More involved 
than 2D, the 3D environment can present additional 
challenges to end-user programmers. 3D authoring 
tools should provide scaffolding of the behavior 
development process to make the transition from 2D to 
3D more gradual. The following features help users to 
program 3D behaviors incrementally. 
Flat Tiles have 3D behaviors. A 2D project based on 
flat tiles already includes 3D behavior. A number of 
agents with flat tile shapes piling up will result in a 
stack that the user can visibly discern as a 3D stack. At 
this level, the user does not have to provide any 3D 
programming. A 2D project may have been created 
from scratch or by importing an existing 2D project 
from AgentSheets. Creating a 2D world is much less 
challenging than starting directly in 3D.  
3D Shapes have 3D behaviors. Once the user replaced 
flat tiles with 3D shapes (basic 3D shapes, Inflatable 
Icons, or imported 3D models) the world will exhibit 
more pronounced 3D behavior. At this stage, most of 
the imported objects require their behaviors not to be 
changed at all. We find, however, that many users do 
feel compelled, perhaps because of the increase in 
visual realism, to add and tweak animations. 
Layer-Based Behavior. More sophisticated 3D 
applications tend to use layers to include behaviors that 
could not be captured with stacks. Say we wanted to 
create a 3D version of the game Cubes3. Instead of just 
using the concept of two-dimensional neighborhood 
one could easily generalize the game and include the 
third dimension. Stacks would not be very useful for 
this application. It should be possible for a cube agent 
to float in free space without gravity pulling it down. 
Layers allow this. In the 3D Cube game if the user 
clicks a cube agent, it will check all its neighbors in 
three dimensions. This requires minimal additional 
programming. For instance, when a cube is checking 
for red neighbors, it also needs to look across layers for 
agents of the same color, in addition to checking left, 
right, up and down in the same layer.  

                                                             
3 In the Cubes game (http://www.sporecubes.com/), the 
player clicks groups of two or more of the same-color cubes 
to make them explode. Any cubes above the gap created will 
then fall down. If any gaps are created between columns, the 
cubes to the right of the gap will slide over to the left. The 
goal is to clear all cubes. 

 
Figure 7: Extending the 2D game of Cubes to a 3D game only 

requires minor additions to the 2D behavior to account for layer 
information. 

Conclusion 

Incremental 3D is a powerful end-user development 
process to scaffold the design and implementation of 
3D simulations and games. End-users start with 2D 
applications and gradually add 3D animations, models 
and behaviors. As a gradual process supported by well-
defined stepping-stones, Incremental 3D raises the 
ceiling of end-user development. When combined with 
a low-threshold end-user programming authoring 
system such as AgentSheets, Incremental 3D results in 
low-threshold, high-ceiling end-user development 
system. Our incarnation of such as system is called 
AgentCubes, a system that allows end-users with no 
programming background to quickly create 
sophisticated 3D games and simulations. 
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