
Computational Models
of Human Cognition



Models

A model is a means of representing the structure or 
workings of a system or object.

e.g., model car

e.g., economic model

e.g., psychophysics 
model
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Computational Models

Models expressed as 
computer programs 
(sequence of instructions) 
or as complex mathematical 
equations that require 
simulation.

e.g., air flow

e.g., Second Life (3d virtual 
reality world)



Computational Models of Human Cognition

Computer simulation of neural and/or cognitive processes 
that underlie performance on a task



Goals of Computational Modeling in Cog Sci

• Understand mechanisms of information processing in the 
brain

• Explain behavioral, neuropsychological, and 
neuroscientific data

• Suggest techniques for remediation of cognitive deficits 
due to brain injury and developmental disorders

• Suggest techniques for facilitating learning in normal 
cognition

• Construct computer architectures to mimic human-like 
intelligence



Why Build Models?

• Forces you to be explicit about hypotheses and 
assumptions

• Provides a framework for integrating knowledge from 
various fields

• Allows you to observe complex interactions among 
hypotheses

• Provides ultimate in controlled experiment

• Leads to empirical predictions

• A mechanistic framework will ultimately be required to 
provide a unified theory of cortex.



Levels of Modeling

Single cell

ion flow, membrane depolarization, neurotransmitter release, action 
potentials, neuromodulatory interactions

Network

neurophysiology and neuroanatomy of cortical regions, cell firing patterns, 
inhibitory interactions, mechanisms of learning

Functional

operation and interaction of cortical areas, transformation of representations

Computational

input-output behavior, mathematical characterization of computation



Overview

Computational modeling

Artificial neural networks

Modeling performance after brain damage





Key Features of Cortical Computation

• Neurons are slow (10–3 – 10–2 propagation time)

• Large number of neurons (1010 – 1011)

• No central controller (CPU)

• Neurons receive input from a large number of other neurons (104 fan-in and fan-
out of cortical pyramidal cells)

• Communication via excitation and inhibition

• Statistical decision making (neurons that single-handedly turn on/off other 
neurons are rare)

• Learning involves modifying coupling strengths (the tendency of one cell to 
excite/inhibit another)

• Neural hardware is dedicated to particular tasks (vs. conventional computer 
memory)

• Information is conveyed by mean firing rate of neuron, a.k.a. activation



Modeling Individual Neurons
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Modeling Individual Neurons
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Computation With a Binary Threshold Unit

“Or” gate
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Computation With a Binary Threshold Unit

“And” gate
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Computation With a Binary Threshold Unit
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Feedforward Architectures

Activation flows in one direction; no closed loops

Performs association from input pattern to output pattern

big, hairy, stinky � run away
small, round, orange � eat
big, round, soft � eat
small, orange, hairy � run away
stinky, yellow � eat

Learning: adjust connections to achieve input-output 
mapping
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Recurrent Architectures

Achieves best interpretation of partial or noisy patterns, e.g., 
MAR – – M – LLOW

State space dynamics Attractor dynamics

Learning: establishes new attractors and shifts attractor 
basin boundaries
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Necker Cube Example

Each vertex has two possible interpretations.

Interpretation of one vertex depends on interpretation of 
other vertices.

Constraint satisfaction problem (suitable for attractor net)

in back in front

in backin front



Necker Cube Demo

See http://www.cs.cf.ac.uk/Dave/JAVA/boltzman/Necker.html



Supervised Learning in Neural Networks

1. Assume a set of training examples, {xi, di}

e.g., MAR – – M – LLOW � MARSHMALLOW

e.g., big, hairy, stinky � run away

2. Define a measure of network performance, e.g.,

3. Make small incremental changes to weights to decrease 
error (gradient descent), i.e.,

For multilayered sigmoidal neural networks, gradient descent update has a 
simple local form (depends on activity of neuron i and error associated with 
neuron j)
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Modeling Neuropsychological 
Phenomena
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Optic Aphasia

• Neuropathology: unilateral left posterior lesions

• Deficit in naming visually presented objects, in the 
absence of visual agnosia and general anomia

Nonverbal indications of recognition: sorting, gesturing

Naming possible given verbal definition, tactile stimulation, object sounds



Modeling Naming and Gesturing

Each arrow represents a processing pathway (neural net)

Pathway act as associative memories
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Simple Lesion Cannot Explain Optic Aphasia
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More Complex Architectures Are Unparsimonious
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Alternative Explanation

Partial damage to two systems (Farah, 1990)

superadditive effect of damage

Simulation by Sitton, Mozer, and Farah (2000)
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Neural Network Implementation of Pathway

pathway output

pathway input

clean up: recurrent attractor network

mapping: multilayer feedforward network

mapping
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Model Dynamics

attractor unit update equation:

state unit update equation:
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Key Properties of Neural Network Pathway

Gradual convergence of pathway output on best 
interpretation over time

Continuous availability of information from other pathways



Simulation Methodology

Define neural activity patterns in visual, auditory, semantic, 
name, and gesture spaces

Pair patterns randomly

Train the four pathways to produce correct associations

Lesion model

Remove 30% of connections in V→S and S→N pathways

Evaluate lesioned model performance



Error Rates by Task

A→N: clean up compensates for S→N pathway damage

V→G: clean up compensates for V→S pathway damage

V→N: effects of damage to V→S and S→N pathways interact

noisy input + internal damage to S→N pathway

Interaction would not occur if
(a) pathways operated sequentially, or
(b) pathways showed no hysteresis
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Error Rates Based on Relative Damage
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Distribution of Errors for Visual Object Naming
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Interactivity in Brain Damage

Neuropsychological disorders have 
traditionally been explained by a focal 
lesion to a single processing pathway.

Farah (1990) argued that certain highly-
selective deficits might have a 
parsimonious account in terms of 
multiple lesions with interactive effects.

The model illustrates the viability of this account.



Value of the Model

Past accounts have claimed the cognitive architecture is 
complex and unparsimonious.

multiple semantics systems or multiple functional pathways to naming

Instead, model can explain optic aphasia via a simple 
cognitive architecture and multiple lesions (each with a 
single dimension of selectivity).

Model can explain other aspects of phenomenon

e.g., naming errors tend to be semantic or perseverative, not visual

Model might be useful for understanding severity of lesions.
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