A Stochastic Optimal Control Perspective on Affect-Sensitive Teaching

Jacob Whitehill^{1,2} Javier Movellan^{1,2}

¹University of California, San Diego (UCSD) ²Machine Perception Technologies (www.mptec.com)

Automated teaching machines

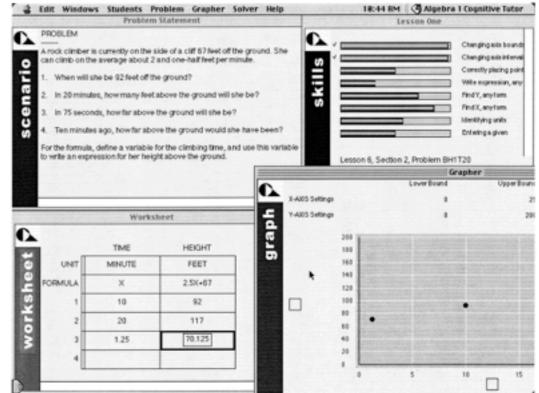
- Automated teaching machines, a.k.a. intelligent tutoring systems (ITS), offer the ability to personalize instruction to the individual student.
- ITS offer some of the benefits of I-on-I human tutoring at a fraction of the cost.

History of automated teaching

- Automated teaching has a 50+ year history:
 - I960s-70s: Stanford researchers (e.g., Atkinson) applied control theory to optimize the learning process for "flashcard"-style vocabulary learning.

History of automated teaching

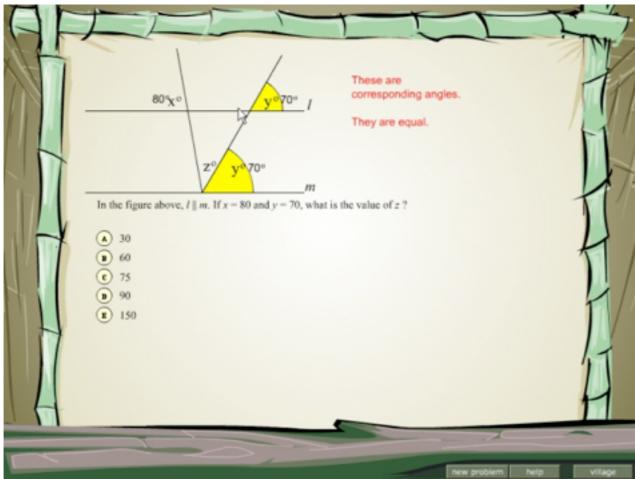
- Automated teaching has a 50+ year history:
 - I980s-90s: John Anderson at CMU started the "cognitive tutor" movement to teach complex skills, e.g.:
 - Algebra
 - Geometry
 - Computer programming



Algebra Cognitive Tutor

History of automated teaching

- Automated teaching has a 50+ year history:
 - 2000s-present: cognitive tutors were enhanced with more sophisticated graphics and sound.
 - Applications of reinforcement learning to ITS.



Wayang Outpost math tutor

Limited sensors

- Over their 50+ year history, one notable feature about ITS is the **limited sensors** they use, usually consisting of:
 - Keyboard
 - Mouse
 - Touch screen

Sensors

- In contrast, human tutors consider the student's:
 - Speech
 - Body posture
 - Facial expression

Sensors

- In contrast, human tutors consider the student's:
 - Speech
 - Body posture
 - Facial expression
- It is possible that automated tutors could become more effective if they used richer sensory information.

Affect-sensitive automated teachers

- A hot topic in the ITS community is affectsensitive automated teaching systems.
- "Affect-sensitive": use rich sensors to sense and respond to the student's affective state.
- "Affective state":
 - Student's motivation, engagement, frustration, confusion, boredom, etc.

Affect-sensitive automated teachers

- Developing an affect-sensitive ITS can be divided into 2 computational problems:
 - **Perception**: how to recognize affective states automatically using affective sensors.
 - E.g., how to map image pixels from a webcam into a estimate of the student's engagement.

Affect-sensitive automated teachers

- Developing an affect-sensitive ITS can be divided into 2 computational problems:
 - **Perception**: how to recognize affective states automatically using affective sensors.
 - E.g., how to map image pixels from a webcam into a estimate of the student's engagement.
 - **Control**: how to use affective state estimates to teach more effectively.

Perception problem

- Tremendous progress has been made in machine learning & vision during last 15 years.
 - Real-time automatic face detectors are commonplace.
 - Facial expression recognition is starting to become practical.

 Much less research has addressed how students' affective state estimates should influence the teacher's decisions.

- Much less research has addressed how students' affective state estimates should influence the teacher's decisions.
- Thus far, the approaches have been **rule-based**:
 - If student looks frustrated, then: Say: "That was frustrating. Let's move to something easier."

(Wayang Outpost Tutor -- Woolf, et al. 2009)

- So far there is little empirical evidence that affectsensitivity is beneficial.
- Comparison of affect-sensitive to affect-blind computer literacy tutor ("AutoTutor"):

	Learning gains	
	AffSens.	AffBlind
Day I	0.249	0.389
Day 2	0.407	0.377

Affect-sensitive tutor was less effective on day 1.

D'Mello, et al. 2010

- Even if rules can be devised for a few scenarios, it is unlikely that this approach will scale up:
 - Multiple sensors, high bandwidth, varying timescales, etc.

- Even if rules can be devised for a few scenarios, it is unlikely that this approach will scale up:
 - Multiple sensors, high bandwidth, varying timescales, etc.
- Instead, a formal computational framework for decision-making may be useful.

Stochastic optimal control

- Stochastic optimal control (SOC) theory may provide such a framework.
- SOC provides:
 - Mathematics to define teaching as an optimization problem.
 - Computational tools to solve the optimization problem.

Stochastic optimal control

- SOC has well-known computational difficulties:
 - Finding exact solutions to SOC problems is usually intractable.
 - More research is needed on how to find approximately optimal control policies for automated teaching problems.
 - Since the 1960s, a variety of machine learning and reinforcement learning methods have been developed for finding approximately optimal solutions.

SOC-based ITS

- In this talk, I will describe one approach to building an ITS for language acquisition using approximate methods from SOC.
 - Our work draws inspiration from Rafferty, Brunskill, Griffiths, and Shafto (2011).
- I also describe how an SOC-based automated teacher naturally uses affective observations when they are available.
 - No ad-hoc rules are necessary.

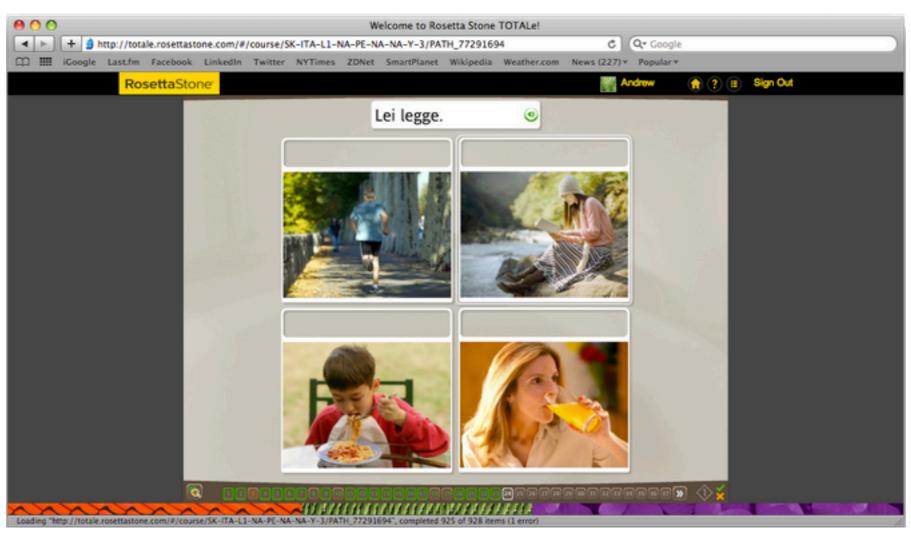
ontbyt

ontbyt

ontbyt

ontbyt (breakfast)

• This is the learning approach used in Rosetta Stone language software.



Teaching task

- We wish to teach the meanings of a set of words.
- Each word can mean any one of a set of concepts.
- We have a set of example images.
- At each timestep *t*, the automated teacher can:
 - Teach word j using image k
 - Ask student a question about word j
 - Give the student a test on all the words in the set
- Teacher's goal: help student pass the test as quickly as possible.

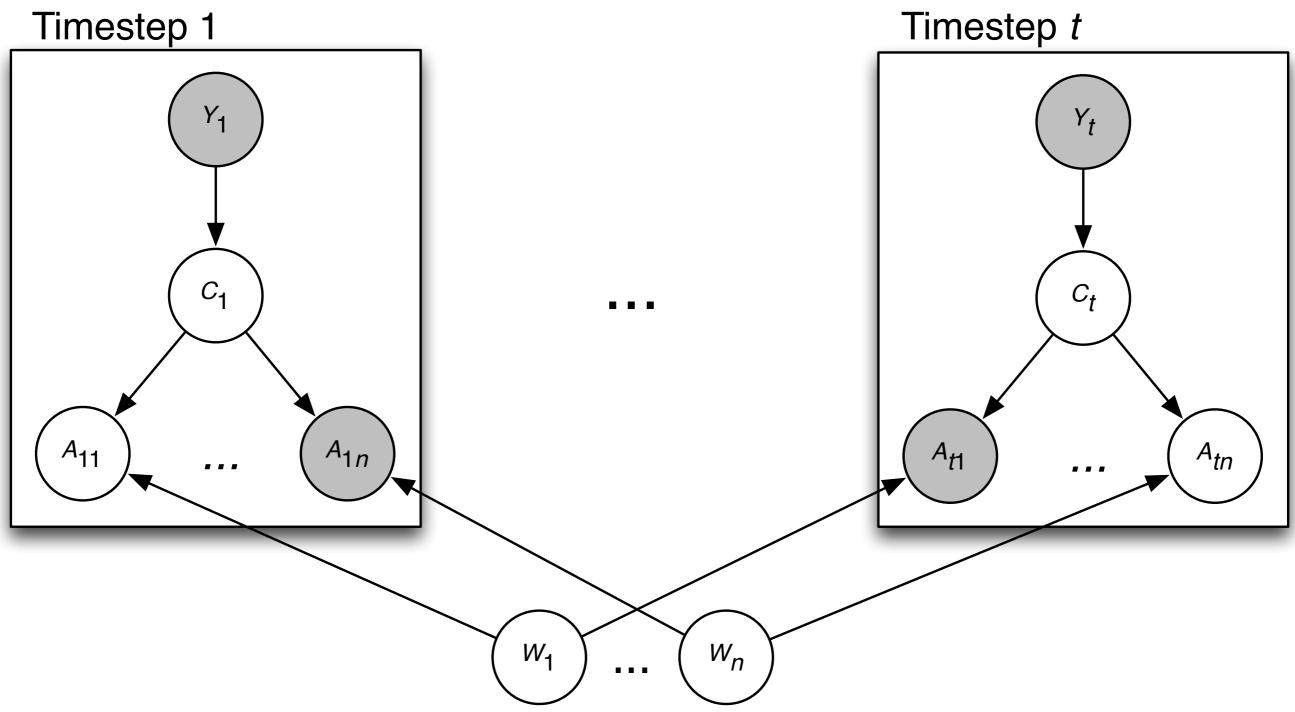
Teaching task as SOC problem

- We pose this teaching task as a SOC problem.
- We use **model-based control**:
 - We develop probabilistic models of how the student *learns*, and how she *responds* to questions asked by the teacher.
 - We collect data of human students to estimate model parameters.
 - Once model is learned, we can optimize the automated teacher using simulation.

Student model

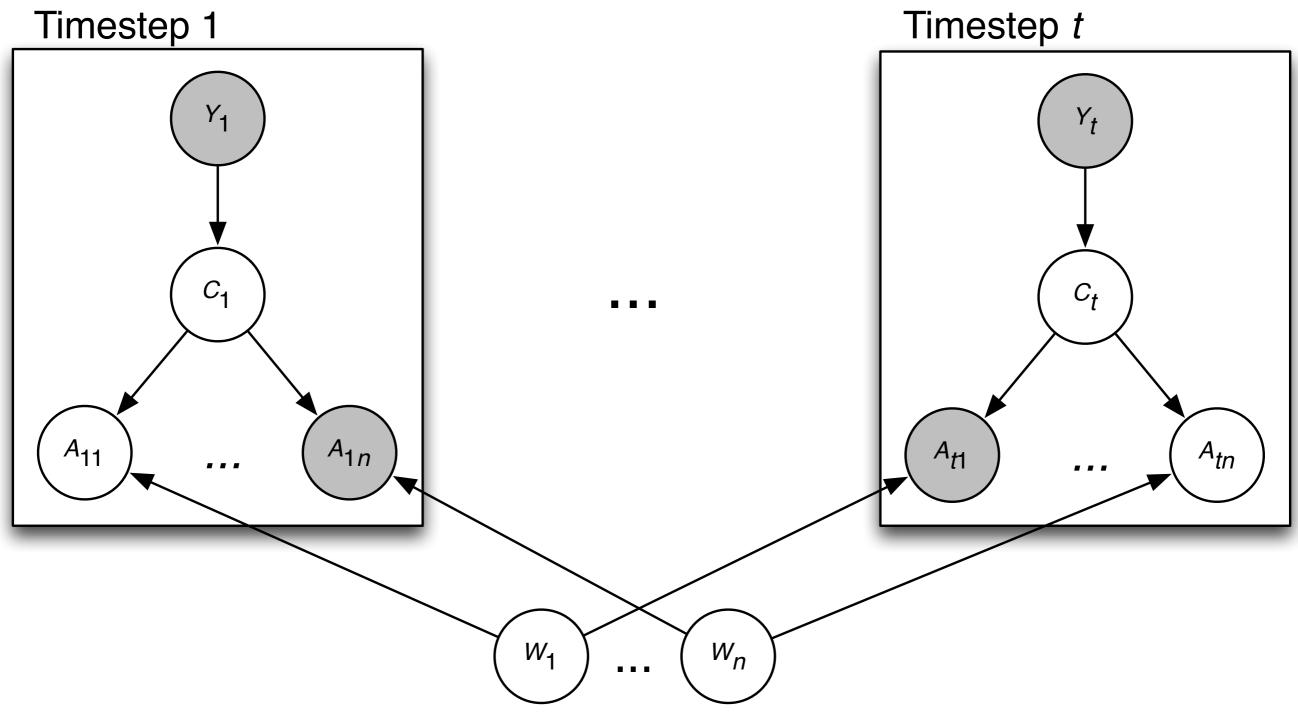
- We model the student as a **Bayesian learner**, in the manner of Nelson, Tenenbaum and Movellan (2007) for concept learning and Rafferty, et al. (2011) for concept teaching.
 - Reduces amount of data needed to fit the model.

Student model



Student has a belief P(c | y) about what concept the teacher was trying to convey with the image.

Student model



After t timesteps the student updates her belief:

$$m_{tj} \doteq P(w_j \mid y_{1:t}, a_{1q_1}, \dots, a_{tq_t})$$

Student inference

- Since a perfectly Bayesian learner is unrealistic (Nelson and Cottrell 2007), we "soften" the model by introducing a "belief update strength" variable $\beta_t \in (0, 1]$:
- β_t specifies how much the student updates her belief at time t.
- β_t may be related to the student's level of "engagement" in the learning task.

Student responses

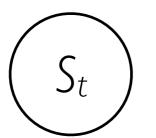
- For ask and test actions:
 - If student is asked to define the meaning of word j, she responds using probability matching according to m_{tj}.
 - Probability matching is a popular response model in psychology (e.g., Movellan and McClelland, 2000).

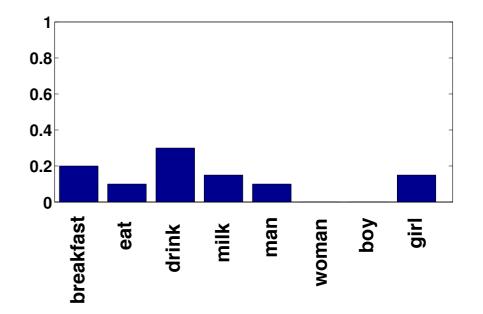
Teacher model

• Let us now consider the problem from the automated teacher's perspective...

Problem formulation using SOC

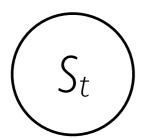
- State S_t:
 - Student's knowledge m_t of the words' meanings as well as the belief update strength β_t .

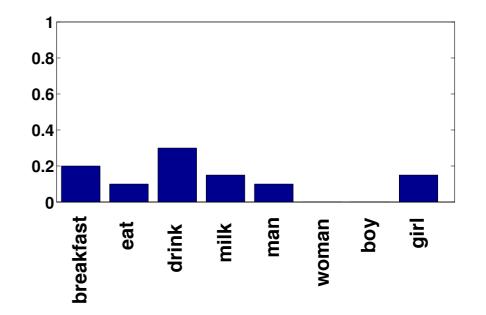




Problem formulation using SOC

- State S_t:
 - The state is assumed to be "hidden" from the teacher because the state is inside the student's brain.



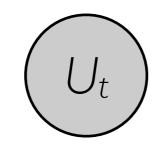


Problem formulation using SOC

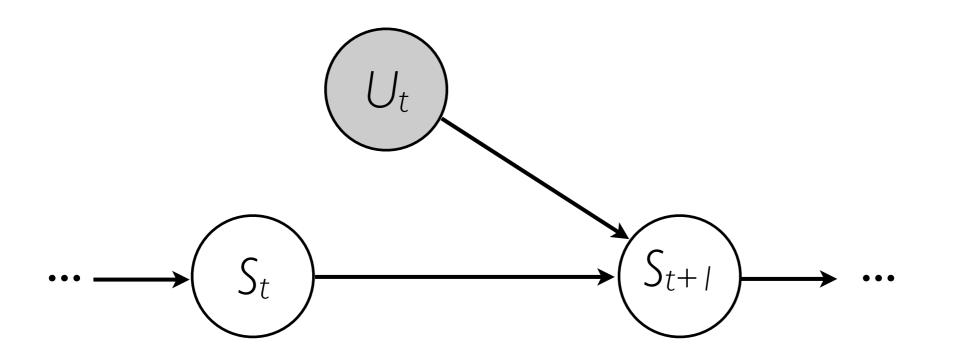
- Action U_t :
 - Teach word *j* with image *k*
 - Ask word j

St

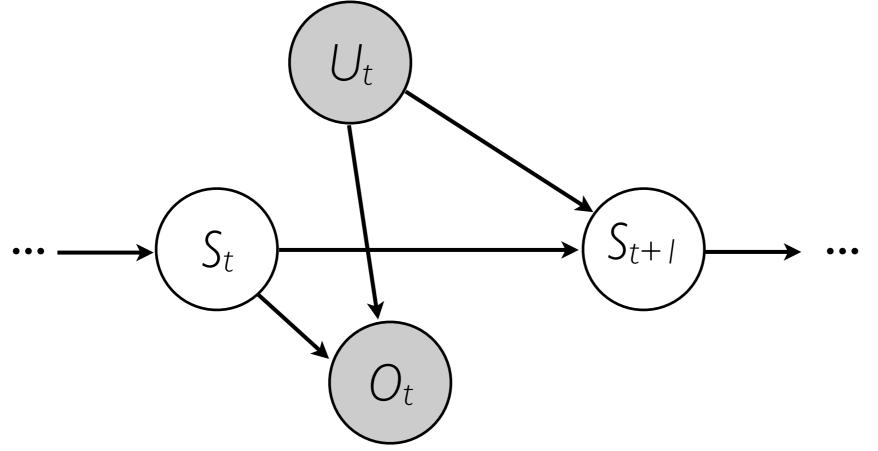
• Test



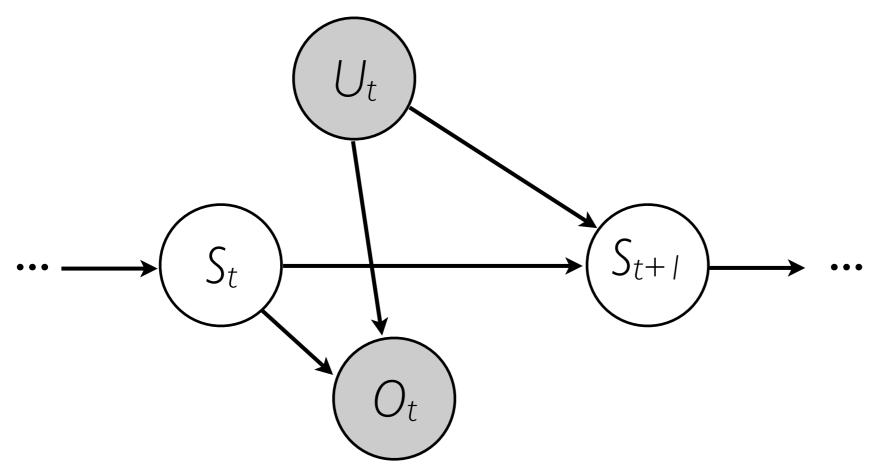
- Action U_t :
 - U_t and S_t jointly determine the student's next state S_{t+1} according to the transition dynamics given by the student learning model.



- **Observation** O_t :
 - When the teacher asks a question, it receives a response ("observation") from the student.
 - O_t is determined by S_t and U_t according to the student response model.

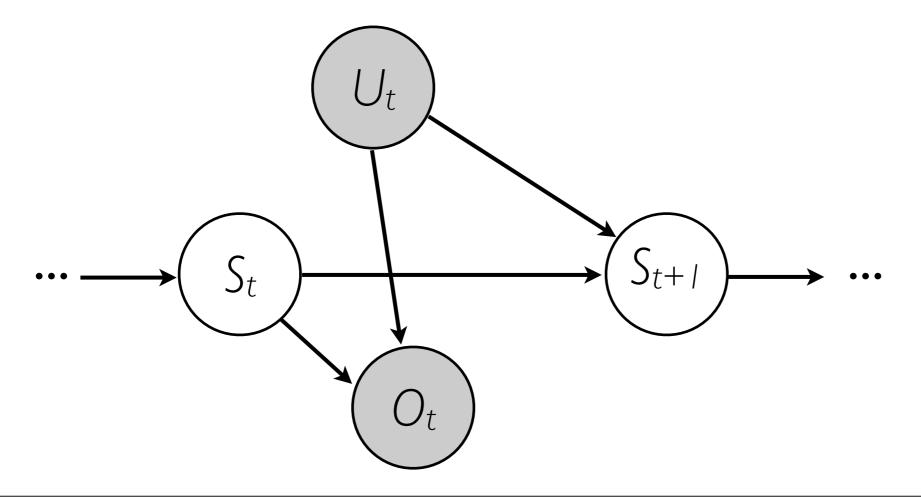


- **Belief** B_t :
 - The teacher maintains a belief $b_t \doteq P(s_t \mid o_{1:t-1}, u_{1:t-1})$ over the student's state given the history of actions and observations up to time t.



• **Belief** B_t : update from time t to time t+1:

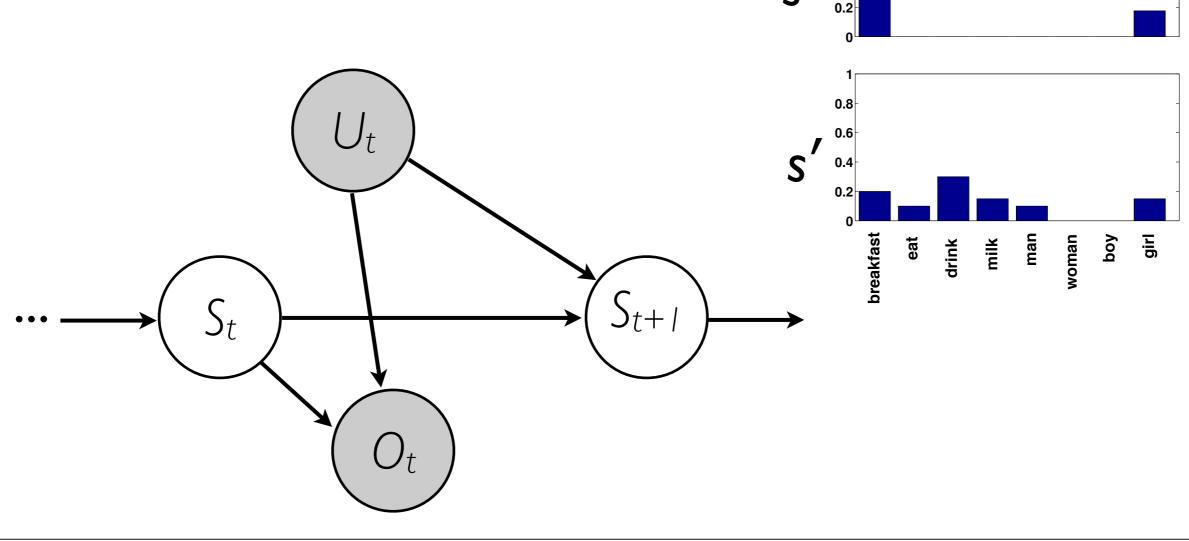
$P(s_{t+1} \mid o_{1:t}, u_{1:t}) \\ \propto \int P(s_{t+1} \mid s_t, u_t) P(o_t \mid s_t, u_t) P(s_t \mid o_{1:t-1}, u_{1:t-1}) ds_t$



Problem formulation using SOC • **Belief** B_t : update from time t to time t+1: $P(s_{t+1} \mid o_{1:t}, u_{1:t})$ Posterior belief $\propto \int P(s_{t+1} \mid s_t, u_t) P(o_t \mid s_t, u_t) P(s_t \mid o_{1:t-1}, u_{1:t-1}) ds_t$ Student learning Student Prior belief response **dynamics** likelihood S_{t+1} St

- **Belief** B_t :
 - Since S_t itself is a probability distribution, B_t is a probability distribution over probability distributions.
 - We approximate B_t using a finite set of particles. ... O_t S_t O_t

- **Reward function** r(s,u):
 - Teacher may prefer certain states, or certain states, or certain state or certain states, or ce



- Control policy π:
 - The teacher chooses its action at time t according to the control policy π.
 - π maps the teacher's belief b_t about what the student knows, into an action u_t .

- Control policy π:
 - Different policies are better than others, as expressed by their value V:

$$V(\pi) \doteq E\left[\sum_{t=1}^{\tau} r(S_t, U_t) \mid \pi\right]$$

where τ is the length of the teaching session, measured in # of teacher's actions.

- Control policy π:
 - Different policies are better than others, as expressed by their value V:

$$V(\pi) \doteq E\left[\sum_{t=1}^{\tau} r(S_t, U_t) \mid \pi\right]$$

• An optimal policy π^* is a policy that maximizes V:

$$\pi^* \doteq \arg\max_{\pi} V(\pi)$$

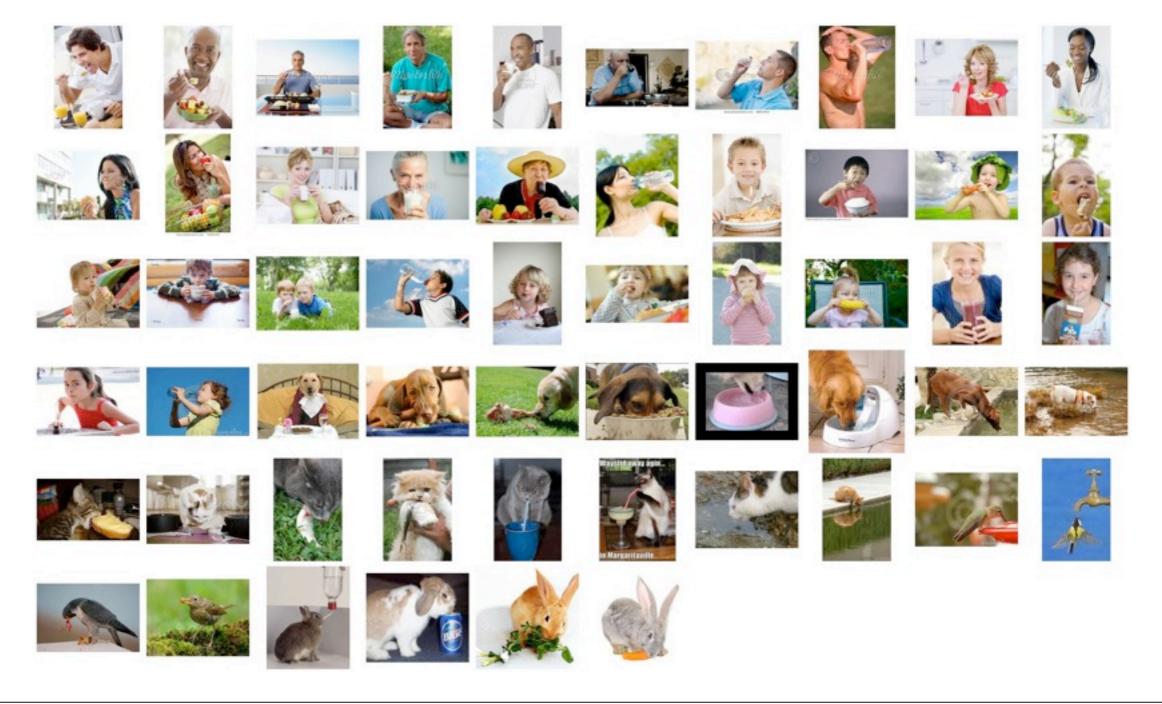
Computing policies

- Finding π^* exactly is intractable.
- Instead, we find an *approximately* optimal policy using *policy gradient* to maximize V(π) in simulation using the student model.

 We created a vocabulary of 10 words from an artificial language:

Word	Meaning
duzetuzi	man
fota	woman
nokidono	boy
mininami	girl
pipesu	dog
mekizo	cat
x is a xepe	bird
botazi	rabbit
koto	eat
notes abi	drink

• We collected a set of images from Google Image Search:



- To estimate student model parameters as well as time costs of each action (*teach*, *ask*, *test*), we collected data from human subjects.
- Given the student model and time costs, we used policy gradient to compute π so as to minimize the expected time the student needs to pass the test.
 - This control policy constitutes the "SOCTeacher".

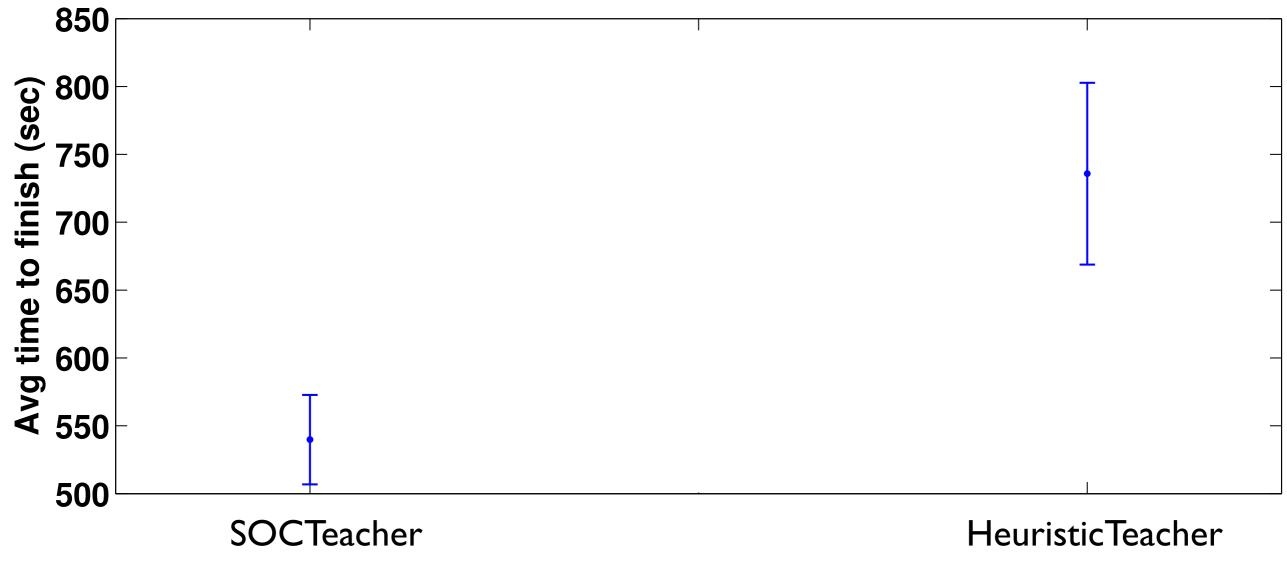
- We conducted an experiment on 90 subjects from the Amazon Mechanical Turk.
- Dependent variable: time to pass the test.

Experimental conditions

- I. SOCTeacher
- 2. HeuristicTeacher
 - Select a word randomly at each round, and teach it using an image sampled according to P(c | y).
 - Test every p rounds (p was optimized in simulation).

Results

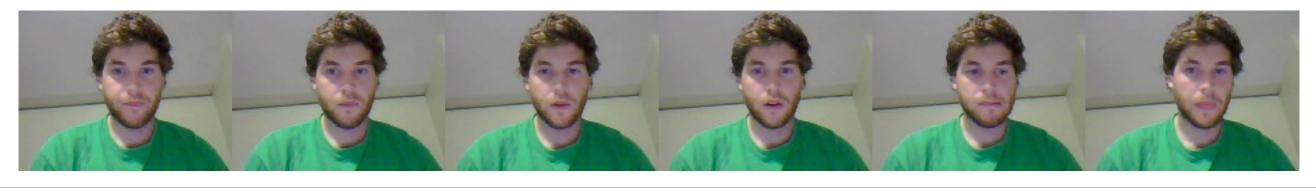
Avg time to finish v. teaching strategy



TimeCost(SOCTeacher) is 24% less than TimeCost(HeuristicTeacher) (p < 0.01).

Affect while learning

• In pilot exploration of students' affect, we found that students were usually engaged in the task.



Saturday, December 8, 12

Affect while learning

• There were, however, occasional moments of nonengagement.

How affect could be used

- Suppose that the student's face image z_t is correlated with the student's belief update strength β_t according to $P(z_t | \beta_t)$:
- How can this "affective sensor" measurement be used to teach better?

How affect could be used

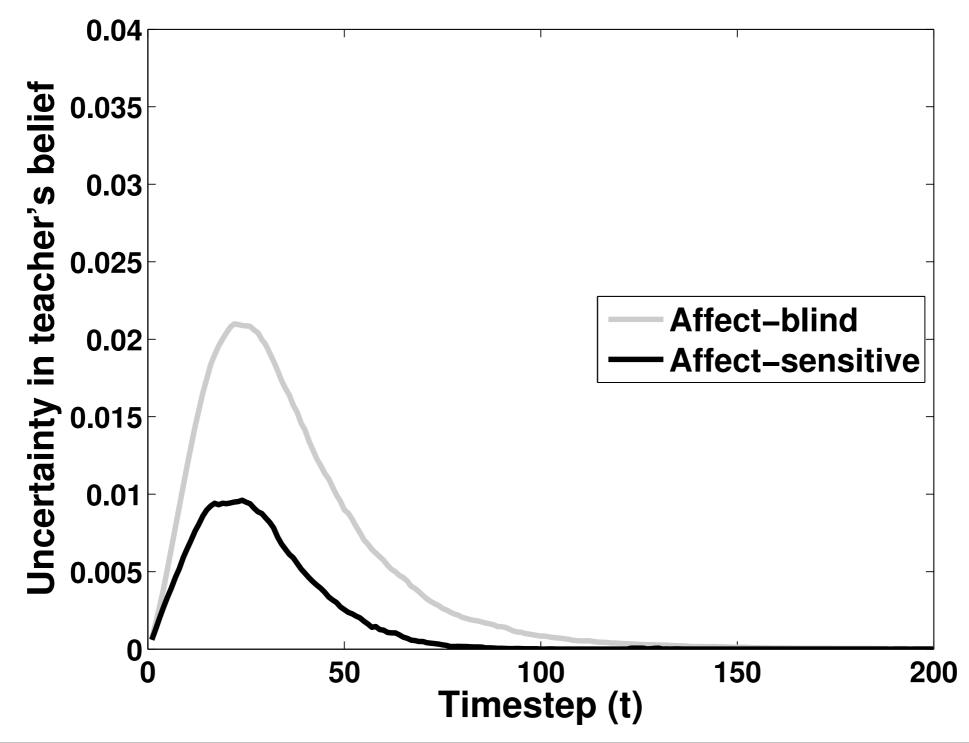
 In an SOC-based automated teacher, the teacher's belief update simply gains an additional term: P(s_{t+1} | o_{1:t}, u_{1:t})

$$\propto \int P(s_{t+1} \mid s_t, u_t) P(o_t \mid s_t, u_t) \underline{P(z_t \mid \beta_t)} P(s_t \mid o_{1:t-1}, u_{1:t-1}) ds_t$$

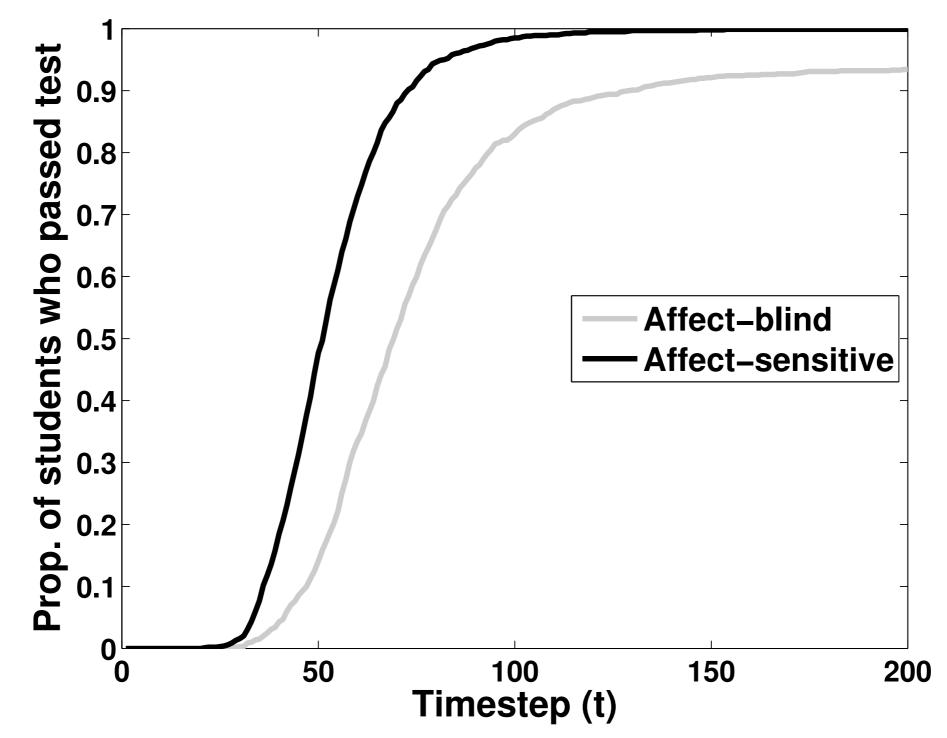
Affective observation

- The "affective observation" greatly constrains the teacher's belief of the student's knowledge.
- Amended belief update emerges naturally from probability theory -- no need for ad-hoc rules.

Incorporating affect: simulation



Incorporating affect: simulation



Summary

- While stochastic optimal control brings with it significant computational challenges, approximate solution methods can be used to create practical ITS.
- SOC provides a principled method of incorporating affective sensor readings into the teaching process.

Thank you