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Study | Study 2 Test
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Item response theory is focused on measuring
a fixed memory state at an instant in time

Effective teaching requires predicting
the dynamic properties of memory

memory strength
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Inference Problem
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Naive Approach: Ignore Study History
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Additive Factor Model: Binning Approach

Likelihood

T — O'(CES — 5@ _l_hsz)

summarization of
study history

Hierarchical Priors

as ~ Normal(pug, 7o)
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,fgik =

Simple ldea:

count the number of correct responses made and the total number of trials
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(time)
past
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counts in a particular time window
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AFM Factor Model: Trace Decay Approach
T — O'(Oés — 57, -+ hsz)
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Dataset

to receive ® Online vocabulary tutor

® 8th grade Spanish classes

® |80 students

Accent ‘ ’ I don't know ] ‘ Submit

Time Speat Cards Completed Correct Answers . 409 StU dy itemS
0:04 0 0

® |4 week study

e 600,000+ study trials

Back | Logout

Simulations

Predict recall on day X given data from days | through X-|
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individualized predictions

Predictive Model Control Policy

intelligently chosen material reviewed by student

To what extent can this scheme improve long term retention!?

Saturday, December 8, 2012



individualized predictions

Predictive Model Control Policy

intelligently chosen material reviewed by student

Experiment Timeline

|4 weeks studying immediate test delayed test delayed test
5 weeks later 9 week later

Saturday, December 8, 2012



Regardless of what’s being learned, forgetting occurs.
Accounting for it is important.

memory strength

Collaborative filtering enables us to make strong inferences despite
weak behavioral data

We can use the models to intelligently choose individual items to
present to individual students
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