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5 BACTR: Hierarchical Bayesian ACT-R

There are some sound assumptions in the Pavlik & Anderson model: e.g., the power-law decaying influence of previous
trials and the fact that dk decreases over time. I therefore cleaned up the model further – beyond the already cleaned
up Equation 12 — and added hierarchical Bayesian priors.

I assume the likelihood
logit(psik) = αs − δi +

�

k�<k

(hr(k�)tk�)−dk� (13)

where
dk ≡ m exp(logit(psik)) + b (14)

with priors

αs ∼ Normal(µα,σ
2
α) (15)

(µα,σ
−2
α ) ∼ NG(µ(α)

0 ,κ(α)
0 , a(α)0 , b(α)0 ) (16)

δi ∼ Normal(µδ,σ
2
δ ) (17)

(µδ,σ
−2
δ ) ∼ NG(µ(δ)

0 ,κ(δ)
0 , a(δ)0 , b(δ)0 ) (18)

(19)

and improper priors over h0, h1, m, and b. Note that I split the ACT-R time-scaling parameter into two: one for when
the student responded correctly and one for when the student responded incorrectly. I also dropped the log operator; I
find empirically that doing so greatly helped the model.

6 Time-Augmented Item Response Theory

πn = σ

�
αs − δi +

�

w

�
φ(c)
w log n(c)

siw − φ·
w log n·

siw

��
(20)

I assume the likelihood
logit(psik) = αs − δi +

�

w

(φ(c)
w log n(c)

siw − φ(·)
w log n(·)

siw) (21)

where the summation is over overlapping time windows1 w, n(c)
siw is the number of times s has correctly recalled i in

the time window w, n(·)
siw is the total number of trials s undergone on i in the time window, and the φ’s are global

covariate weights. Each φ is given an improper prior. I assume the same priors over α and δ as in the other models,

αs ∼ Normal(µα, τα) (22)

(µα, τα) ∼ NG(µ(α)
0 ,κ(α)

0 , a(α)0 , b(α)0 ) (23)
δi ∼ Normal(µδ, τδ) (24)

(µδ, τδ) ∼ NG(µ(δ)
0 ,κ(δ)

0 , a(δ)0 , b(δ)0 ) (25)
(26)

This is the model I’m currently using in our expeirment.

7 Latent Feature Model

I have also tried a model where the ability αs and difficulty δi parameters are replaced by a weighted sum of latent
binary features. That is, I imagine that each student has certain latent boolean attributes (e.g., intelligent or not, good

1The “overlapping time windows” are, for example: the past 5 minutes, the past hour, the past day, the past week, the past
month, the past two months.
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2.2 Metric 2: Normalized Self-Information

Another way to think about the prediction problem is via surprisal. A perfect model would never be surprised (in an

information theoretic sense) by the recall events in the test set, hence each recall observation would convey 0 bits of

information. For models at chance, each recall observation would convey 1 bit of information.

For this metric, I calculate the average surprisal (self-information) in bits for each student s,

es = − 1

ns

�

i

�

k

[log2(p̂sik)]
rsik [log2(1− p̂sik)]

1−rsik
(6)

and then calculate the across-student mean es.

3 Hierarchical Bayesian Rasch Model

πn = σ(αs − δi) (7)

For thoroughness, I have implemented a hierarchical Bayesian version of the Rasch model. The Rasch model says that

the logit of recall probability is a subject s’s ability αs minus the vocabulary item i’s difficulty δi,

logit(psi) = αs − δi (8)

I have added the following distributional assumptions

αs ∼ Normal(µα,σ
2
α) (9)

(µα,σ
−2
α ) ∼ NG(µ(α)

0 ,κ(α)
0 , a(α)0 , b(α)0 ) (10)

δi ∼ Normal(µδ,σ
2
δ ) (11)

(µδ,σ
−2
δ ) ∼ NG(µ(δ)

0 ,κ(δ)
0 , a(δ)0 , b(δ)0 ) (12)

where NG is the normal gamma. I estimate the hyperparameters of the Normal-Gamma via Empirical Bayes and

perform inference via MCMC. Because the model doesn’t account for learning or for forgetting, we do not expect it

to make very good predictions.

4 Pavlik & Anderson 2008, ACT-R Declarative Memory Model

(I need to double check this section. I wrote the equation from memory.)

Our biggest “competitor” in the field has an overparameterized non-Bayesian model. It is a very underconstrained

model; it can fit most anything post-hoc but can’t make strong predictions. Recall probability at trial k is assumed to

be

logit(psik) = αs − δi + βsi + c log

�
�

k�<k

(htk�)−dk�

�
(13)

where dk ≡ m exp(logit(psik)) + b. Note that, for ease of presentation, I have removed several of the redundant

parameters of the model. The summation is over previous trials k�. The time elapsed between trial k� and k is tk� . The

contribution of the previous trials to the logit- recall probability decays according to a power-law with exponent dk� .

This power-law exponent depends on the retrieval probability at the time of that trial. βsi is a student-item specific

fudge factor, and h is a time-scaling parameter.

Pavlik & Anderson 2008 does not fully specify how they constrained the model. What little the paper does specify

is nonsense (e.g., adjusting αs by .2 (?) after each trial). In my simulations of this model, I chose to fit it via Monte

Carlo Maximum Likelihood.

Because it’s a non-Bayesian model, there’s no principled way to make predictions for new items or new students.

In our project, this is a major problem because new material is introduced weekly. Note that I find that this model

typically does worse at making predictions than a baseline model (one which assumes that retrieval probability for a

student on an item is the fraction of times it has been correctly recalled in the past by that student).
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This is the model I’m currently using in our expeirment.

7 Latent Feature Model

I have also tried a model where the ability αs and difficulty δi parameters are replaced by a weighted sum of latent
binary features. That is, I imagine that each student has certain latent boolean attributes (e.g., intelligent or not, good

1The “overlapping time windows” are, for example: the past 5 minutes, the past hour, the past day, the past week, the past
month, the past two months.
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2.2 Metric 2: Normalized Self-Information

Another way to think about the prediction problem is via surprisal. A perfect model would never be surprised (in an

information theoretic sense) by the recall events in the test set, hence each recall observation would convey 0 bits of

information. For models at chance, each recall observation would convey 1 bit of information.

For this metric, I calculate the average surprisal (self-information) in bits for each student s,

es = − 1

ns

�

i

�

k

[log2(p̂sik)]
rsik [log2(1− p̂sik)]

1−rsik
(6)

and then calculate the across-student mean es.

3 Hierarchical Bayesian Rasch Model

πn = σ(αs − δi) (7)

πn = σ(αs − δi + hsi) (8)

hsi ≡
�

k

wkfsik (9)

hsi ≡ c log(1 +
�

j

hpt
−d
sij) (10)

For thoroughness, I have implemented a hierarchical Bayesian version of the Rasch model. The Rasch model says that

the logit of recall probability is a subject s’s ability αs minus the vocabulary item i’s difficulty δi,

logit(psi) = αs − δi (11)

I have added the following distributional assumptions

αs ∼ Normal(µα,σ
2
α) (12)

(µα,σ
−2
α ) ∼ NG(µ(α)

0 ,κ(α)
0 , a(α)0 , b(α)0 ) (13)

δi ∼ Normal(µδ,σ
2
δ ) (14)

(µδ,σ
−2
δ ) ∼ NG(µ(δ)

0 ,κ(δ)
0 , a(δ)0 , b(δ)0 ) (15)

where NG is the normal gamma. I estimate the hyperparameters of the Normal-Gamma via Empirical Bayes and

perform inference via MCMC. Because the model doesn’t account for learning or for forgetting, we do not expect it

to make very good predictions.

4 Pavlik & Anderson 2008, ACT-R Declarative Memory Model

(I need to double check this section. I wrote the equation from memory.)

Our biggest “competitor” in the field has an overparameterized non-Bayesian model. It is a very underconstrained

model; it can fit most anything post-hoc but can’t make strong predictions. Recall probability at trial k is assumed to

be

logit(psik) = αs − δi + βsi + c log

�
�

k�<k

(htk�)−dk�

�
(16)

where dk ≡ m exp(logit(psik)) + b. Note that, for ease of presentation, I have removed several of the redundant

parameters of the model. The summation is over previous trials k�. The time elapsed between trial k� and k is tk� . The

contribution of the previous trials to the logit- recall probability decays according to a power-law with exponent dk� .
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contribution of the previous trials to the logit- recall probability decays according to a power-law with exponent dk� .
This power-law exponent depends on the retrieval probability at the time of that trial. βsi is a student-item specific
fudge factor, and h is a time-scaling parameter.

Pavlik & Anderson 2008 does not fully specify how they constrained the model. What little the paper does specify
is nonsense (e.g., adjusting αs by .2 (?) after each trial). In my simulations of this model, I chose to fit it via Monte
Carlo Maximum Likelihood.

Because it’s a non-Bayesian model, there’s no principled way to make predictions for new items or new students.
In our project, this is a major problem because new material is introduced weekly. Note that I find that this model
typically does worse at making predictions than a baseline model (one which assumes that retrieval probability for a
student on an item is the fraction of times it has been correctly recalled in the past by that student).

5 BACTR: Hierarchical Bayesian ACT-R

There are some sound assumptions in the Pavlik & Anderson model: e.g., the power-law decaying influence of previous
trials and the fact that dk decreases over time. I therefore cleaned up the model further – beyond the already cleaned
up Equation 17 — and added hierarchical Bayesian priors.

I assume the likelihood
logit(psik) = αs − δi +

�

k�<k

(hr(k�)tk�)−dk� (18)

where
dk ≡ m exp(logit(psik)) + b (19)

with priors

αs ∼ Normal(µα,σ
2
α) (20)

(µα,σ
−2
α ) ∼ NG(µ(α)

0 ,κ(α)
0 , a(α)0 , b(α)0 ) (21)

δi ∼ Normal(µδ,σ
2
δ ) (22)

(µδ,σ
−2
δ ) ∼ NG(µ(δ)

0 ,κ(δ)
0 , a(δ)0 , b(δ)0 ) (23)

(24)

and improper priors over h0, h1, m, and b. Note that I split the ACT-R time-scaling parameter into two: one for when
the student responded correctly and one for when the student responded incorrectly. I also dropped the log operator; I
find empirically that doing so greatly helped the model.

6 Time-Augmented Item Response Theory

πn = σ

�
αs − δi +

�

w

�
φ(c)
w log(1 + n(c)

siw)− φ·
w log(1 + n·

siw)
��

(25)

w1 log(1 + n(c)
si )− w2 log(1 + nsi) (26)

φ(c) log(1 + n(c)
si )− φ· log(1 + n·

si) (27)

p(φ) ∝ constant (28)

I assume the likelihood

logit(psik) = αs − δi +
�

w

(φ(c)
w log(n(c)

siw + 1)− φ(·)
w log(n(·)

siw + 1)) (29)
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There are some sound assumptions in the Pavlik & Anderson model: e.g., the power-law decaying influence of previous
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2.2 Metric 2: Normalized Self-Information

Another way to think about the prediction problem is via surprisal. A perfect model would never be surprised (in an

information theoretic sense) by the recall events in the test set, hence each recall observation would convey 0 bits of

information. For models at chance, each recall observation would convey 1 bit of information.

For this metric, I calculate the average surprisal (self-information) in bits for each student s,
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and then calculate the across-student mean es.

3 Hierarchical Bayesian Rasch Model

πn = σ(αs − δi) (7)

πn = σ(αs − δi + hsi) (8)

hsi ≡
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k

wkfsik (9)

hsi ≡ c log(1 +
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sij) (10)

For thoroughness, I have implemented a hierarchical Bayesian version of the Rasch model. The Rasch model says that

the logit of recall probability is a subject s’s ability αs minus the vocabulary item i’s difficulty δi,

logit(psi) = αs − δi (11)

I have added the following distributional assumptions

αs ∼ Normal(µα,σ
2
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(µα,σ
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δ ) ∼ NG(µ(δ)

0 ,κ(δ)
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where NG is the normal gamma. I estimate the hyperparameters of the Normal-Gamma via Empirical Bayes and

perform inference via MCMC. Because the model doesn’t account for learning or for forgetting, we do not expect it

to make very good predictions.

4 Pavlik & Anderson 2008, ACT-R Declarative Memory Model

(I need to double check this section. I wrote the equation from memory.)

Our biggest “competitor” in the field has an overparameterized non-Bayesian model. It is a very underconstrained
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where dk ≡ m exp(logit(psik)) + b. Note that, for ease of presentation, I have removed several of the redundant

parameters of the model. The summation is over previous trials k�. The time elapsed between trial k� and k is tk� . The

contribution of the previous trials to the logit- recall probability decays according to a power-law with exponent dk� .
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contribution of the previous trials to the logit- recall probability decays according to a power-law with exponent dk� .
This power-law exponent depends on the retrieval probability at the time of that trial. βsi is a student-item specific
fudge factor, and h is a time-scaling parameter.

Pavlik & Anderson 2008 does not fully specify how they constrained the model. What little the paper does specify
is nonsense (e.g., adjusting αs by .2 (?) after each trial). In my simulations of this model, I chose to fit it via Monte
Carlo Maximum Likelihood.

Because it’s a non-Bayesian model, there’s no principled way to make predictions for new items or new students.
In our project, this is a major problem because new material is introduced weekly. Note that I find that this model
typically does worse at making predictions than a baseline model (one which assumes that retrieval probability for a
student on an item is the fraction of times it has been correctly recalled in the past by that student).

5 BACTR: Hierarchical Bayesian ACT-R

There are some sound assumptions in the Pavlik & Anderson model: e.g., the power-law decaying influence of previous
trials and the fact that dk decreases over time. I therefore cleaned up the model further – beyond the already cleaned
up Equation 17 — and added hierarchical Bayesian priors.

I assume the likelihood
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and improper priors over h0, h1, m, and b. Note that I split the ACT-R time-scaling parameter into two: one for when
the student responded correctly and one for when the student responded incorrectly. I also dropped the log operator; I
find empirically that doing so greatly helped the model.

6 Time-Augmented Item Response Theory
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the student responded correctly and one for when the student responded incorrectly. I also dropped the log operator; I
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Pavlik & Anderson 2008 does not fully specify how they constrained the model. What little the paper does specify
is nonsense (e.g., adjusting αs by .2 (?) after each trial). In my simulations of this model, I chose to fit it via Monte
Carlo Maximum Likelihood.

Because it’s a non-Bayesian model, there’s no principled way to make predictions for new items or new students.
In our project, this is a major problem because new material is introduced weekly. Note that I find that this model
typically does worse at making predictions than a baseline model (one which assumes that retrieval probability for a
student on an item is the fraction of times it has been correctly recalled in the past by that student).
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AFM Factor Model: Trace Decay Approach

power law decay
of memory trace j

summation over 
previous 

presentations j

2.2 Metric 2: Normalized Self-Information

Another way to think about the prediction problem is via surprisal. A perfect model would never be surprised (in an

information theoretic sense) by the recall events in the test set, hence each recall observation would convey 0 bits of

information. For models at chance, each recall observation would convey 1 bit of information.

For this metric, I calculate the average surprisal (self-information) in bits for each student s,

es = − 1

ns

�

i

�

k

[log2(p̂sik)]
rsik [log2(1− p̂sik)]

1−rsik
(6)

and then calculate the across-student mean es.

3 Hierarchical Bayesian Rasch Model

πn = σ(αs − δi) (7)

πn = σ(αs − δi + hsi) (8)

hsi =
�

k

wkfsik (9)

hsi = c log(1 +
�

j

mj t
−d
sij) (10)

fsik = ? (11)

For thoroughness, I have implemented a hierarchical Bayesian version of the Rasch model. The Rasch model says that

the logit of recall probability is a subject s’s ability αs minus the vocabulary item i’s difficulty δi,

logit(psi) = αs − δi (12)

I have added the following distributional assumptions

αs ∼ Normal(µα,σ
2
α) (13)

(µα,σ
−2
α ) ∼ NG(µ(α)

0 ,κ(α)
0 , a(α)0 , b(α)0 ) (14)

δi ∼ Normal(µδ,σ
2
δ ) (15)

(µδ,σ
−2
δ ) ∼ NG(µ(δ)

0 ,κ(δ)
0 , a(δ)0 , b(δ)0 ) (16)

where NG is the normal gamma. I estimate the hyperparameters of the Normal-Gamma via Empirical Bayes and

perform inference via MCMC. Because the model doesn’t account for learning or for forgetting, we do not expect it

to make very good predictions.

4 Pavlik & Anderson 2008, ACT-R Declarative Memory Model

(I need to double check this section. I wrote the equation from memory.)

Our biggest “competitor” in the field has an overparameterized non-Bayesian model. It is a very underconstrained

model; it can fit most anything post-hoc but can’t make strong predictions. Recall probability at trial k is assumed to

be

logit(psik) = αs − δi + βsi + c log

�
�

k�<k

(htk�)−dk�

�
(17)

where dk ≡ m exp(logit(psik)) + b. Note that, for ease of presentation, I have removed several of the redundant

parameters of the model. The summation is over previous trials k�. The time elapsed between trial k� and k is tk� . The
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• Online vocabulary tutor

• 8th grade Spanish classes

• 180 students

• 409 study items

• 14 week study

• 600,000+ study trials

Dataset

Predict recall on day X given data from days 1 through X-1

Simulations
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Predictive Model Control Policy

To what extent can this scheme improve long term retention? 

individualized predictions

intelligently chosen material reviewed by student
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Predictive Model Control Policy

individualized predictions

intelligently chosen material reviewed by student

Experiment Timeline

14 weeks studying immediate test delayed test
5 weeks later

delayed test
9 week later
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Regardless of what’s being learned, forgetting occurs. 
Accounting  for it is important. 

m
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Collaborative filtering enables us to make strong inferences despite 
weak behavioral data

We can use the models to intelligently choose individual items to 
present to individual students

Saturday, December 8, 2012


