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Abstract

In offering personalized education, one should be wary of the effects that an educational intervention may have on
a student. Much like in medical ethics, we posit that the principle of non-maleficence should be a cornerstone in the
design of educational systems. We provide a high-level and rather non-technical overview of ongoing work, in which
a learning-theoretic framework that can be used to investigate and address the issue of interest herein, is proposed.

The dream of offering personalized education is steadily becoming a concrete reality. Beyond the technological
issues that need to be addressed before this goal is fully met, there are also certain conceptual or ethical issues that merit
careful examination. One such issue relates to a principal and widely-familiar maxim from medical ethics — “primum
non nocere” — positing that the physicians’ primary concern should be to do no harm through their intervention. The
same stance towards this non-maleficence principle should be adopted by any system offering personalized education.

Beyond the ethical considerations surrounding this principle, its adoption is especially pertinent on account of the
very tangible ramifications it may have: Presenting a student with personalized educational material raises the distinct
possibility of discouraging the student from studying, leading, in turn, the student to achieve performance that is worse
than what the student would have achieved had the personalization been absent. Phenomena like this one are closely
related to what scholars have called “self-defeating prophecies”. In the particular context of personalized education,
the “prophecy” amounts to the prediction that a student will perform in a certain manner (according to a pre-specified
standard) at the end of the course. The personalization that is, thus, triggered risks making the predicted outcome false.

A solution to the problem of avoiding such self-defeating prophecies should be sought in the design of the system
that makes the aforementioned predictions. A typical architecture for such a system features a central learning module,
so that the system makes predictions on the future performance of a student by induction from the monitoring of the
performance of numerous other students in courses offered in the past. The problem becomes, then, one of adapting the
learning module so that it takes into account the effects of its own predictions (through the triggered personalization).

To our knowledge this question has not been formally addressed in a learning-theoretic context. Typical approaches
that seek to predict a future state of affairs (see, e.g., [Box and Jenkins, 1990; Murphy, 2002; Michael, 2011]) proceed
on the basis that the predictions remain outside the state of affairs of the object-level world. We suggest that a solution
to the issue at hand may come by making explicit the process of recording these predictions in the current state of
affairs, before the latter evolves to a future state of affairs. We provide, in the sequel, the basic ideas of ongoing work
that seeks to address this issue [Michael, 2012], appropriately presented for the domain of personalized education.

Denote by S the set of all possible student profiles, which we take to incorporate any course information available
to students, and the state of their knowledge as measured by predetermined tests. Denote by P the set of all outcomes
that the educational system wishes to predict. Denote by T a set of functions from S to P , so that each function t ∈ T
represents a way in which student profiles may be mapped to outcomes, with an unknown such function t∗ ∈ T being
the actual one. We shall assume that class T is learnable by some algorithm A (e.g., under the PAC semantics [Valiant,
1984] and extensions that account for a causal setting [Michael, 2011]), in the following sense: If a system passively
observes student profiles and actual outcomes ⟨s, t∗(s)⟩ at two check points during the course (say, the student profile
after the first homework grading, and the outcome being the final course grade of that student), it eventually identifies a
hypothesis h that given the profile s ∈ S of a student at the first check point predicts with high probability the outcome
t∗(s) for that student at the second check point. The question, then, is this: How can algorithm A be transformed to
algorithm B so that its predictions are still reliable despite their announcement (through the triggered personalization)?
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The process of announcing a prediction p ∈ P corresponds to a recording process ▹ that maps any student profile
s ∈ S to the profile s ▹ p that is the result of the personalization for student s on the basis of prediction p. We assume
only that the process ▹ is fixed and efficiently computable. The goal, now, becomes that of identifying a hypothesis h
that given the profile s ∈ S of any student at the first check point, predicts with high probability the actual outcome
t∗(s ▹ h(s)) for that student at the second check point, taking into account that, due to personalization, the actual
outcome is a function of the affected profile s ▹ h(s). Thus, unlike algorithm A, which seeks to learn a hypothesis h
such that h(s) = t∗(s) with high probability, algorithm B seeks to learn a hypothesis h such that h(s) = t∗(s ▹ h(s))
with high probability. Also unlike the former setting where the training instances comprise pairs ⟨s, t∗(s)⟩, now the
learning algorithm observes a student profile s ∈ S , chooses a prediction p, and then observes the outcome t∗(s ▹ p).

The presence of h(s) on both sides of the equation h(s) = t∗(s▹h(s)) makes it unclear whether such a hypothesis
h even exists. Indeed, depending on t∗ ∈ T and the probability distribution that determines the relative frequency with
which student profiles in S are observed, with some unknown probability α the chosen student profile s ∈ S will be
such that no predicted outcome p satisfies the equation p = t∗(s ▹ p); these profiles could correspond, for instance, to
students that actively seek to falsify the prediction p. For such cases, nothing can be done, and any returned hypothesis
h will make an incorrect prediction. With probability 1 − α, however, a student profile s ∈ S will be chosen so that
there exists a prediction p satisfying the equation p = t∗(s▹p). For such cases, the returned hypothesis h is expected to
be such that h(s) = p. How can such a hypothesis be efficiently and reliably learned (e.g., under the PAC semantics)?

The answer is surprisingly simple. During the training phase, algorithm B makes uniformly random predictions p,
and triggers the corresponding personalization, so that it observes student profiles s ∈ S and actual outcomes t∗(s ▹p)
for the chosen predictions p. Omitting the details of the proof, this strategy ensures that algorithm B can construct a
hypothesis h that will satisfy the equation h(s) = t∗(s ▹ h(s)) with probability arbitrarily close to the optimal 1− α.
In terms of computational efficiency, algorithm B requires time polynomial in log |S|, |P|, 1/(1− α), indicating that
large numbers of students and long student profiles are possible without compromising the efficiency of the process.

Returning to the issue of non-maleficence, having constructed hypotheses h1 and h2 by executing algorithms A
and B as described above, and given a student profile s ∈ S at the first check point, an educational system may predict
the outcome h1(s) and h2(s) for that student at the second check point, according to the two hypotheses at hand. The
first prediction corresponds to how the student will fare without intervention, while the second one to how the student
will fare with — and because of — the particular intervention suggested by the prediction h2(s) itself. The educational
system may then trigger the prescribed personalization if indeed its consequences h2(s) do no harm over h1(s). The
case of multiple competing personalization strategies for each student profile corresponds to having multiple recording
processes ▹i. A hypothesis hi

2 can be constructed for each ▹i, and its predictions checked against those of h1 and the
remaining hj

2, so that both harm is prevented, and the best personalization strategy is applied for each student profile.
The ethical dilemma is not, however, entirely addressed, since random interventions will be required during the

training phase, until the effects of the interventions can be reliably established. One could attempt to argue that these
interventions should not count as maleficence on the grounds that the educational system is still not able to anticipate
the effects of its interventions. A more pragmatic point of view is that, as in the early steps of every medical discipline,
some harm is inescapably inflicted on certain individuals so that others may benefit from it. Fortunately, the harm to
the students during the training of the educational system is simply a bit of extra, randomly assigned, homework!
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