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Introduction Personalized education based on machine learning has the potential to revolutionize ed-
ucation and to improve learning for students of diverse backgrounds, abilities, and interests, at a large,
global scale. We have previously developed a statistical framework for discovering and representing domain
knowledge based on sparse latent factor analysis (SPARFA, for short) [1]. The framework assumes that N
students answer a subset of P questions involving K � P,N underlying (latent) concepts. Let the column
vector cj ∈ RK , j ∈ {1, . . . , N}, represent the latent concept understanding of the jth student, let wi ∈ RK ,
i ∈ {1, . . . , P}, represent the concept associations of question i, and let the scalar µi ∈ R model the intrinsic
difficulty of question i. Then, we model the student–response relationships as [1]:

Zi,j = wT
i cj + µi, ∀i, j, and Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs. (1)

Here, Yi,j ∈ {0, 1} corresponds to the observed binary-valued response variable of the jth student to the ith
question, where 0 and 1 indicate a incorrect and correct response, respectively. Ber(z) designates a Bernoulli
distribution with success probability z, and Φ denotes an inverse link function (e.g. logit or probit), which
maps a real value to the success probability in [0, 1]. The set Ωobs contains the indices of the observed entries.
To address the inevitable identifiability issue in factor analysis, we impose additional constraints on the model
(1), namely that W should be sparse and non-negative. Sparsity dictates that we expect each question to
be related to only a few concepts, which is typical in most education scenarios; non-negativity dictates that
knowledge of a particular concept does not hurt one’s chances of answering a question correctly. In [1], We
developed two algorithms, SPARFA-M and SPARFA-B to solve (1), which provide us a question–concept
association graph, student concept mastery profile, and the intrinsic difficulty of the questions.

Incorporating topic models We have demonstrated the capabilities of the SPARFA framework (1) to
provide a question–concept association graph and student masteries of concepts in [1] using real educational
datasets. However, the concepts we learn are mathematical constructs and not necessarily interpretable by
humans. Therefore, in [2] we developed a post-processing method that exploits pre-defined question tags to
improve intelligibility of the extracted concepts [1]. We now consider the joint analysis of student–response
information and textual information (e.g., available from the question or solution text) to further improve
the identifiability and intelligibility of the decomposed factors. Text information provides a rich source of
information and has been extensively studied in the topic model literature [3]. Specifically, assume that we
additionally observe the matrix B ∈ NP×V , where V corresponds to the number of total words that have
occurred among the P questions. Each entry Bi,v represents how many times the vth word occurs in the ith
question. To model the word frequencies contained in B, we propose the following statistical topic model:

Ai,v = wT
i tv, and Bi,v ∼ Pois(Ai,v), ∀i, v, (2)

where tv ∈ RK+ is a column vector that characterizes how strongly the vth word is expressed in every concept.
Inspired by the topic model proposed in [4], we model the entries of the word-occurrence matrix Bi,v in (2)
as Poisson distributed, with the rate parameters determined by Ai,v.

In order to jointly estimate W, C, µ, and T = [t1, . . . , tV ] from the observed student–response matrix Y
and the word-frequency matrix B, we solve the following optimization problem:

minimize
W,C,T :W≥0,T>0

α
∑

(i,j)∈Ωobs

− log p(Yi,j |wi, cj)+(1−α)
∑
i,v

− log p(Bi,j |wi, tv)+λ
∑
i

‖wi‖1+ γ
2

∑
j

‖cj‖22+ η
2

∑
v‖tv‖22,

(3)
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Figure 1: Question–concept association graph recov-
ered by SPARFA-TOP. Circles and rectangles repre-
sent concepts and questions, respectively; the values
in the rectangles represent question difficulties.

Concept 1 Concept 2 Concept 3

Water Water Energy
Soil Rock Light
Container Sand Thermal
Sample Moon Temperature
Cans Form Bulb
Plants Heat Grams
Substances Canyon Noise

Concept 4 Concept 5

Water Water
Objects Sand
Dense Earth
Resources Percentage
Energy Wagon
Glass Buffalo
River High

Table 1: Seven most important
words for the five concepts recov-
ered by SPARFA-TOP for an 8th

grade Earth-science curriculum.

where the probabilities p(Yi,j |wi, cj) and p(Bi,j |wi, tv) follow the statistical models in (1) and (2), respec-
tively. The `1-norm penalty term λ

∑
i ‖wi‖1 induces sparsity on W, while the `2-norm penalty terms

γ
2

∑
j ‖cj‖22 and η

2

∑
v ‖tv‖22 gauge the norms of C and T. The parameter 0 ≤ α ≤ 1 controls the relative

importance of the question–answer model (1) vs. the Poisson topic model (2); smaller values of α favor
the topic model, while larger values favor the question–answer model. We solve (3) using an efficient block-
coordinate-descent algorithm relying on the fast iterative shrinkage-thresholding algorithm [5], which we dub
SPARFA-TOP (SPARse Factor Analysis and TOPic Modeling).

Results We demonstrate the validity of SPARFA-TOP on a real educational dataset consisting of an
8th grade Earth-science curriculum maintained by STEMscopes [6]. The dataset consists of 145 students
answering 80 questions, with only 13.5% of the total question/answer pairs being observed. Excluding
common stop-words, the question and answer text vocabulary consists of 326 words. Figure 1 and Table 1
show the question–concept associations along with the recovered intrinsic difficulties and the top 7 words
characterizing each concept extracted by SPARFA-TOP, respectively. Compared to the approach in [1], we
see that SPARFA-TOP is able to relate all questions to concepts, including those that were found in [1]
to be ill-posed or off-topic, by taking advantage of topic models. Furthermore, Table 1 demonstrates that
SPARFA-TOP can automatically provide an interpretable summary of the true meaning of each concept.

Conclusions The SPARFA-TOP method proposed here extends our SPARFA framework to automatically
decompose an educational domain into its constituent knowledge concepts by jointly considering binary-
valued student response data to a set of questions as well as the actual question and answer text. The
framework enables the easy interpretation of the concepts, which enables SPARFA-TOP to automate a
number of vital tasks for personalized learning, including automating personalized feedback to students,
recommending new questions for remediation or enrichment, and refining the course content.
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