
1

This lecture illustrates hash tables, using open addressing.

Before this lecture, students should have seen other forms of a
Dictionary, where a collection of data is stored, and each data item has
a key associated with it.

❐ Chapter 12 discusses
several ways of storing
information in an array, and
later searching for the
information.

❐ Hash tables are a common
approach to the
storing/searching problem.

❐ This presentation introduces
hash tables.

Hash Tables

Data Structures
and Other Objects
Using C++

2

This lecture introduces hash tables, which are an array-based method
for implementing a Dictionary. You should recall that we have seen
dictionaries implemented in other ways, for example with a binary
search tree. The abstract properties of a dictionary remain the same:
We can insert items in the dictionary, and each item has a key
associated with it. When we want to retrieve an item, we specify only
the key, and the retrieval process finds the associated data.

What we do now is use an array to implement the dictionary. The array
is an array of records. In this example, we could store up to 701 records
in the array.

What is a Hash Table ?

❐ The simplest kind of hash
table is an array of records.

❐ This example has 701
records.

[0] [1] [2] [3] [4] [5]

An array of records

. . .

[700]

3

Each record in the array contains two parts. The first part is a number
that we'll use for the key of the item. We could use something else for
the keys, such as a string. But for a hash table, numbers make the most
convenient keys.

What is a Hash Table ?

❐ Each record has a special
field, called its key.

❐ In this example, the key is a
long integer field called
Number.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

4

The numbers might be identification numbers of some sort, and the rest
of the record contains information about a person. So the pattern that
you see here is the same pattern that you've seen in other dictionaries:
Each entry in the dictionary has a key (in this case an identifying
number) and some associated data.

What is a Hash Table ?

❐ The number might be a
person's identification
number, and the rest of the
record has information
about the person.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

5

When a hash table is being used as a dictionary, some of the array
locations are in use, and other spots are "empty", waiting for a new
entry to come along.

Oftentimes, the empty spots are identified by a special key. For
example, if all our identification numbers are positive, then we could
use 0 as the Number that indicates an empty spot.

With this drawing, locations [0], [4], [6], and maybe some others would
all have Number=0.

What is a Hash Table ?

❐ When a hash table is in use,
some spots contain valid
records, and other spots are
"empty".

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

6

In order to insert a new entry, the key of the entry must somehow be
converted to an index in the array. For our example, we must convert
the key number into an index between 0 and 700. The conversion
process is called hashing and the index is called the hash value of the
key.

Inserting a New Record

❐ In order to insert a new
record, the key must
somehow be converted to an
array index.

❐ The index is called the hash
value of the key.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

Number 580625685

7

There are many ways to create hash values. Here is a typical approach.

a. Take the key mod 701 (which could be anywhere from 0 to 700).

So, quick, what is (580,625,685 mod 701) ?

Inserting a New Record

❐ Typical way create a hash
value:

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

Number 580625685

(Number mod 701)

What is (580625685 mod 701) ?

8

Three.

Inserting a New Record

❐ Typical way to create a hash
value:

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

Number 580625685

(Number mod 701)

What is (580625685 mod 701) ?
3

9

So, this new item will be placed at location [3] of the array.

Inserting a New Record

❐ The hash value is used for
the location of the new
record.

Number 580625685

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .

[3]

10

The hash value is always used to find the location for the record.

Inserting a New Record

❐ The hash value is used for
the location of the new
record.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

11

Sometimes, two different records might end up with the same hash
value.

Collisions

❐ Here is another new record
to insert, with a hash value
of 2.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

My hash
value is [2].

12

This is called a collision.

When a collision occurs, the insertion process will move forward
through the array until an empty spot is found. Sometimes you will have
a second collision...

Collisions

❐ This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

When a collision occurs,
move forward until you

find an empty spot.

13

...and a third collision...

Collisions

❐ This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

When a collision occurs,
move forward until you

find an empty spot.

14

But if there are any empty spots, eventually you will reach an empty
spot, and the new item is inserted here.

Collisions

❐ This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685

Number 701466868

When a collision occurs,
move forward until you

find an empty spot.

15

The new record is always placed in the first available empty spot, after
the hash value.

Collisions

❐ This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

The new record goes
in the empty spot.

16

Time for another quiz . . . Did anyone end up with a hash value of 700?

Well, I did. My ID number is 155779023, which has a hash value of 700.
(No, not really, but I needed to illustrate another kind of collision.

There is a collision with the last location of the array. In this case, you
would circle back to the start of the array, and try location number 0,
then 1, until you find an empty spot. In this example, I would be
inserted at location 0, since that location is empty.

A Quiz

Where would you be placed
in this table, if there is no
collision? Use your social
security number or some
other favorite number.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322Number 580625685 Number 701466868

. . .

17

It is fairly easy to search for a particular item based on its key.

Searching for a Key

❐ The data that's attached to a
key can be found fairly
quickly.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

18

Start by computing the hash value, which is 2 in this case. Then check
location 2. If location 2 has a different key than the one you are looking
for, then move forward...

Searching for a Key

❐ Calculate the hash value.

❐ Check that location of the array
for the key.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Not me.

19

...if the next location is not the one we are looking for, then keep
moving forward...

Searching for a Key

❐ Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Not me.

20

Keep moving forward until you find the sought-after key...

Searching for a Key

❐ Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Not me.

21

In this case we find the key at location [5].

Searching for a Key

❐ Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Yes!

22

The data from location [5] can then be copied to to provide the result of
the search function.

What happens if a search reaches an empty spot? In that case, it can

halt and indicate that the key was not in the hash table.

Searching for a Key

❐ When the item is found, the
information can be copied to
the necessary location.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash
value is [2].

Yes!

23

Records can be deleted from a hash table...

Deleting a Record

❐ Records may also be deleted from a hash table.

[0] [1] [2] [3] [4] [5] [700]
Number 506643548Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

Please
delete me.

24

But the spot of the deleted record cannot be left as an ordinary empty
spot, since that would interfere with searches. (Remember that a
search can stop when it reaches an empty spot.)

Deleting a Record

❐ Records may also be deleted from a hash table.

❐ But the location must not be left as an ordinary
"empty spot" since that could interfere with searches.

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

25

Instead we must somehow mark the location as "a location that used to
have something here, but no longer does."

We might do this by using some other special value for the Number
field of the record.

In any case, a search can not stop when it reaches "a location that
used to have something here". A search can only stop when it reaches
a true empty spot.

Deleting a Record

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902 Number 155778322

. . .
Number 580625685 Number 701466868

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

❐ Records may also be deleted from a hash table.

❐ But the location must not be left as an ordinary
"empty spot" since that could interfere with searches.

❐ The location must be marked in some special way so
that a search can tell that the spot used to have
something in it.

26

A quick summary . . .

❐ Hash tables store a collection of records with keys.

❐ The location of a record depends on the hash value
of the record's key.

❐ When a collision occurs, the next available
location is used.

❐ Searching for a particular key is generally quick.

❐ When an item is deleted, the location must be
marked in a special way, so that the searches
know that the spot used to be used.

 Summary

27

To finish things off, I have hard copies of the next five slides. I tell the
students that these are some records of my past students and I want to
store them in a small hash table with size 5 (indexes 0 to 4). Of course,
this is an unrealistic size, but it makes sure that they know the insertion,
searching, and deletion algorithms. I then use five students from the
front row to be the hash table locations. I insert the five items, remove
Bill Clinton and do three searches (for Will Smith, Bill Clinton, and
Elizabeth).

Kathy Martin
817339024

Took Data Structures in Fall 1993.
Grade A.

Hard worker. Always gets things done
on time.

Currently working for Hewlett-Packard
in Fort Collins.

28
Will Smith
506643973

Took Data Structures in Fall 1995.
Grade A.

A bit of a goof-off, but he comes through
in a pinch.

Currently saving the world from alien
invasion.

29
William “Bill” Clinton
330220393

Took Data Structures in Fall 1995.
Grade B-.

Gets along with most
people well.

Currently working for federal government.

30
Elizabeth Windsor
092223340

Took Data Structures in Fall 1995.
Grade B-.

Prefers to be called “Elizabeth II” or “Her
Majesty.” Has some family problems.

Currently working in public relations
near London.

31
Al Einstein
699200102

Took CSCI 2270 in Fall 1995.
Grade F.

In spite of poor grade, I think there is
good academic ability in Al.

Currently a well-known advocate for
peace.

32

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

