
1

This lecture introduces heaps, which are used in the Priority Queue
project of Chapter 11. The lecture includes the algorithms for adding to
a heap (including reheapification upward), removing the top of a heap
(including reheapification downward), and implementing a heap in a
partially-filled array.

Prior to this lecture, the students need a good understanding of
complete binary trees. It would also help if they have seen binary
search trees and the priority queue class.

❐ Chapter 11 has several
programming projects, including a
project that uses heaps.

❐ This presentation shows you what
a heap is, and demonstrates two of
the important heap algorithms.

Heaps

Data Structures
and Other Objects
Using C++

2

A heap is a data structure with several applications, including a way to
implement Priority Queues, as shown in Chapter 11. The definition of a
heap is a special kind of complete binary tree.

You probably recall that a complete binary tree requires that its nodes
are added in a particular order...

Heaps

A heap is a
certain kind of
complete
binary tree.

3

The first node of a complete binary tree is always the root...

Heaps

A heap is a
certain kind of
complete
binary tree.

When a complete
binary tree is built,

its first node must be
the root.

Root

4

...the second node is always the left child of the root...

Heaps

Complete
binary tree.

Left child
of the
root

The second node is
always the left child

of the root.

5

...then the right child of the root...

Heaps

Complete
binary tree.

Right child
of the

root

The third node is
always the right child

of the root.

6

...and so on. The nodes always fill each level from left-to-right...

Heaps

Complete
binary tree.

The next nodes
always fill the next

level from left-to-right.

7

...from left-to-right...

Heaps

Complete
binary tree.

The next nodes
always fill the next

level from left-to-right.

8

...from left-to-right...

Heaps

Complete
binary tree.

The next nodes
always fill the next

level from left-to-right.

9

...from left-to-right...

Heaps

Complete
binary tree.

The next nodes
always fill the next

level from left-to-right.

10

...and when a level is filled you start the next level at the left.

Heaps

Complete
binary tree.

11

So, a heap is a complete binary tree. Each node in a heap contains a
key, and these keys must be organized in a particular manner. Notice
that this is not a binary search tree, but the keys do follow some
semblance of order.

Can you see what rule is being enforced here?

Heaps

A heap is a
certain kind
of complete
binary tree.

Each node in a heap
contains a key that
can be compared to
other nodes' keys.

19

4222127

23

45

35

12

The heap property requires that each node's key is >= to the keys of its
children.

This is a handy property because the biggest node is always at the top.
Because of this, a heap can easily implement a priority queue (where
we need quick access to the highest priority item).

Heaps

A heap is a
certain kind
of complete
binary tree.

The "heap property"
requires that each

node's key is >= the
keys of its children

19

4222127

23

45

35

13

We can add new elements to a heap whenever we like. Because the
heap is a complete binary search tree, we must add the new element at
the next available location, filling in the levels from left-to-right.

In this example, I have just added the new element with a key of 42.

Of course, we now have a problem: The heap property is no longer
valid. The 42 is bigger than its parent 27.

To fix the problem, we will push the new node upwards until it reaches
an acceptable location.

Adding a Node to a Heap

❶ Put the new node in the
next available spot.

❷ Push the new node
upward, swapping with
its parent until the new
node reaches an
acceptable location. 19

4222127

23

45

35

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

42

14

Here we have pushed the 42 upward one level, swapping it with its
smaller parent 27.

We can't stop here though, because the parent 35 is still smaller than
the new node 42.

Adding a Node to a Heap

❶ Put the new node in the
next available spot.

❷ Push the new node
upward, swapping with
its parent until the new
node reaches an
acceptable location. 19

42221
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

42

23

45

35

27

15

Can we stop now? Yes, because the 42 is less than or equal to its
parent.

Adding a Node to a Heap

❶ Put the new node in the
next available spot.

❷ Push the new node
upward, swapping with
its parent until the new
node reaches an
acceptable location. 19

4222135

23

45

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

42

27

16

In general, there are two conditions that can stop the pushing upward:

1. We reach a spot where the parent is >= the new node, or

2. We reach the root.

This process is called reheapification upward (I didn't just make up that
name, really).

Adding a Node to a Heap

✔The parent has a key
that is >= new node, or

✔The node reaches the
root.

➚ The process of pushing
the new node upward
is called
reheapif ication
upward.

19

4222135

23

45

42

27

17

We can also remove the top node from a heap. The first step of the
removal is to move the last node of the tree onto the root. In this
example we move the 27 onto the root.

Removing the Top of a Heap

❶ Move the last node onto
the root.

19

4222135

23

45

42

27

18

Now the 27 is on top of the heap, and the original root (45) is no longer
around. But the heap property is once again violated.

Removing the Top of a Heap

❶ Move the last node onto
the root.

19

4222135

23

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

27

42

19

We'll fix the problem by pushing the out-of-place node downward.
Perhaps you can guess what the downward pushing is
called....reheapification downward.

Removing the Top of a Heap

❶ Move the last node onto
the root.

❷ Push the out-of-place
node downward,
swapping with its larger
child until the new node
reaches an acceptable
location.

19

4222135

23

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

27

42

20

When we push a node downward it is important to swap it with its
largest child. (Otherwise we are creating extra problems by placing the
smaller child on top of the larger child.) This is what the tree looks like
after one swap.

Should I continue with the reheapification downward?

Removing the Top of a Heap

❶ Move the last node onto
the root.

❷ Push the out-of-place
node downward,
swapping with its larger
child until the new node
reaches an acceptable
location.

19

4222135

23

42

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

27

21

Yes, I swap again, and now the 27 is in an acceptable location.

Removing the Top of a Heap

❶ Move the last node onto
the root.

❷ Push the out-of-place
node downward,
swapping with its larger
child until the new node
reaches an acceptable
location.

19

42221
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

27

23

42

35

22

Reheapification downward can stop under two circumstances:

1. The children all have keys that are <= the out-of-place node.

2. The out-of-place node reaches a leaf.

Removing the Top of a Heap

✔The children all have
keys <= the out-of-place
node, or

✔The node reaches the
leaf.

➘ The process of pushing
the new node
downward is called
reheapif ication
downward.

19

4222127

23

42

35

23

This slide shows the typical way that a heap is implemented. For the
most part, there is nothing new here, because you already know how to
implement a complete binary tree using a partially-filled array. That is
what we are doing with the heap.

Implementing a Heap

❐ We will store the
data from the
nodes in a
partially-filled
array.

An array of data

2127

23

42

35

24

Following the usual technique for implementing a complete binary tree,
the data from the root is stored in the first entry of the array.

Implementing a Heap

❐ Data from the root
goes in the
first
location
of the
array.

An array of data

2127

23

42

35

42

25

The next two nodes go in the next two locations of the array.

Implementing a Heap

❐ Data from the next
row goes in the
next two array
locations.

An array of data

2127

23

42

35

42 35 23

26

and so on.

Implementing a Heap

❐ Data from the next
row goes in the
next two array
locations.

An array of data

2127

23

42

35

42 35 23 27 21

27

As with any partially-filled array, we are only concerned with the front
part of the array. If the tree has five nodes, then we are only concerned
with the entries in the first five components of the array.

Implementing a Heap

❐ Data from the next
row goes in the
next two array
locations.

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in
this part of the array.

28

With this implementation of a heap, there are no pointers. The only way
that we know that the array is a heap is the manner in which we
manipulate it.

Important Points about the
Implementation

❐ The links between the tree's
nodes are not actually stored as
pointers, or in any other way.

❐ The only way we "know" that
"the array is a tree" is from the
way we manipulate the data.

An array of data

2127

23

42

35

42 35 23 27 21

29

The manipulations are the same manipulations that you've used for a
complete binary tree, making it easy to compute the index where
various nodes are stored.

Important Points about the
Implementation

❐ If you know the index of a
node, then it is easy to figure
out the indexes of that node's
parent and children. Formulas
are given in the book.

[1] [2] [3] [4] [5]

2127

23

42

35

42 35 23 27 21

30

A quick summary . . .

❐ A heap is a complete binary tree, where the entry
at each node is greater than or equal to the entries
in its children.

❐ To add an entry to a heap, place the new entry at
the next available spot, and perform a
reheapification upward.

❐ To remove the biggest entry, move the last node
onto the root, and perform a reheapification
downward.

 Summary

31

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

