
1

This lecture shows a common application of binary trees: Binary Search
Trees used to implement a Dictionary data type.

Before this lecture, students should have a good understanding of
binary trees, and should have seen some basic container data types
similar to a dictionary (for example, a bag or a set).

❐ One of the tree applications in
Chapter 10 is binary search trees.

❐ In Chapter 10, binary search trees
are used to implement bags and
sets.

❐ This presentation illustrates how
another data type called a
dictionary is implemented with
binary search trees.

Binary Search Trees

2

This lecture shows how to use a binary tree to implement an abstract
data structure called a Dictionary. We'll start by explaining what a
Dictionary is, without any reference to trees. Then we will show how the
trees can be used to actually implement a Dictionary. It's important to
realize that trees are but one possible way to implement a Dictionary,
and the actual explanation of "What is a Dictionary?" will not refer to
trees at all. In other words, a Dictionary is an abstract data type, and
the trees are one of the mechanisms that can be used to implement the
Dictionary.

So, what is a Dictionary? In many ways it is like other ADTs that you
have seen, such as a bag which contains a collection of items. The
difference is that each item in a Dictionary is attached to a string called
the item's key.

The Dictionary Data Type

❐ A dictionary is a collection
of items, similar to a bag.

❐ But unlike a bag, each item
has a string attached to it,
called the item's key.

3

For this example, each item that I'm putting in the Dictionary is a record
which contain a bunch of geographical information about a state.

The Dictionary Data Type

❐ A dictionary is a collection
of items, similar to a bag.

❐ But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
 The items I am
 storing are records
 containing data
 about a state.

4

The key for each record is the name of the state. In general, the keys
could be some other sort of value such as social security numbers. The
keys must have the property that they form a total order under some
comparison operation such as “less than”.

The Dictionary Data Type

❐ A dictionary is a collection
of items, similar to a bag.

❐ But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
 The key for each
 record is the name
 of the state. Washington

5

When an item is placed into the Dictionary, we must specify both the
record of information and the key that is attached to that information.
For example, if the Dictionary is implemented as an object type, then
there will be an Insert method. The Insert method will have two
parameters: a string (which is the key) and a record (which is the item
being inserted).

The Dictionary Data Type

❐ The insertion procedure for a
dictionary has two
parameters.

void Dictionary::insert(The key for the new item, The new item);

Washington

6

When you want to retrieve information from the Dictionary, you call a
retrieval method, and specify the key of the item that you are looking
for. This key is the parameter of the retrieval procedure.

The Dictionary Data Type

❐ When you want to retrieve
an item, you specify the
key...

Item Dictionary::retrieve("Washington");

7

The Dictionary finds the information, and returns it.

Item Dictionary::retrieve("Washington");

The Dictionary Data Type

❐ When you want to retrieve
an item, you specify the
key... ... and the retrieval
procedure returns the item.

8

That's enough about the abstract workings of a Dictionary. Now we are
going to look at how a binary tree can be used to store the information
of a Dictionary in a way that makes it fairly easy to add new items, to
retrieve existing items, and to remove items. (You never know when a
state might want to secede from the union.)

The Dictionary Data Type

❐ We'll look at how a binary
tree can be used as the
internal storage mechanism
for the dictionary.

9

As you might have guessed, the data in the dictionary will be stored in a
binary tree, with each node containing both a record of information and
the key that's attached to that information. In this example, the
Dictionary currently has only 9 of the 50 states, but that's enough to
illustrate the idea.

Arizona

Arkansas

Colorado

A Binary Search Tree of States

The data in the
dictionary will
be stored in a
binary tree,
with each node
containing an
item and a key.

Washington

Oklahoma
Florida

Mass.

N
ew

H
am

ps
hi

re

W
es

t
V

irg
in

ia

10

The nodes cannot appear in just any order. The nodes must follow the
special storage rules of a binary search tree. There are two such rules:

1. Every key to the left of a node is alphabetically before the key of the
node.

Colorado

Arizona

Arkansas

A Binary Search Tree of States

Washington

OklahomaColorado
Florida

Mass.

N
ew

H
am

ps
hi

re

W
es

t
V

irg
in

ia

Storage rules:

❶ Every key to the left
of a node is
alphabetically before
the key of the node.

11

Notice that this rule applies to every which can be reached by starting
down the left branch of a node. For example, if I start at Oklahoma, and
head down the left branch, I can reach Massachusetts and New
Hampshire.

So, both Massachusetts and New Hampshire must be alphabetically
before Oklahoma.

Arizona

Colorado

Arkansas

A Binary Search Tree of States

Storage rules:

❶ Every key to the left
of a node is
alphabetically before
the key of the node.

Washington

Oklahoma

Florida

Mass.

N
ew

H
am

ps
hi

re

W
es

t
V

irg
in

ia

Example:
 ' Massachusetts' and
 ' New Hampshire'
 are alphabetically
 before 'Oklahoma'

12

The second rule is the mirror image of the first rule:

2. Every key to the right of a node is alphabetically after the key of the
node.

Arizona

Arkansas

A Binary Search Tree of States

Storage rules:

❶ Every key to the left
of a node is
alphabetically before
the key of the node.

❷ Every key to the
right of a node is
alphabetically after
the key of the node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

13

Here's an example: Arkansas is alphabetically after Arizona.

Arizona

Arkansas

A Binary Search Tree of States

Storage rules:

❶ Every key to the left
of a node is
alphabetically before
the key of the node.

❷ Every key to the
right of a node is
alphabetically after
the key of the node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

14

Once a tree is organized according to the storage rule of a binary
search tree, it is easy to find any particular key, following this algorithm.

The algorithm starts at the root and repeatedly executes these steps.

1. First check to see if we found the key we were looking for. If so, then
we can stop and return the associated information.

2. On the other hand, if the key at the current node is larger than the
key that we're searching for, then we'll continue our search by moving
leftward.

3. And if the key at the current node is smaller than the key that we're
searching for, then we'll continue our search by moving rightward.

Arizona

Arkansas

Retrieving Data

Start at the root.

❶ If the current node has
the key, then stop and
retrieve the data.

❷ If the current node's
key is too large, move
left and repeat 1-3.

➌ If the current node's
key is too small, move
right and repeat 1-3.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

15

As an example, suppose we are searching for New Hampshire. We
start at Florida, and since this is not the node we are after we must
move down. Do we move left or right?

Arizona

Arkansas

Retrieve ' New Hampshire'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Start at the root.

❶ If the current node has
the key, then stop and
retrieve the data.

❷ If the current node's
key is too large, move
left and repeat 1-3.

➌ If the current node's
key is too small, move
right and repeat 1-3.

16

We have moved right from Florida, because Florida is smaller than New
Hampshire. Or to be more specific: The name "Florida" is
alphabetically before the name "New Hampshire". That's what we
mean by "smaller".

Now we have arrived at Oklahoma. Which way next?

Arizona

Arkansas

Retrieve 'New Hampshire'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Start at the root.

❶ If the current node has
the key, then stop and
retrieve the data.

❷ If the current node's
key is too large, move
left and repeat 1-3.

➌ If the current node's
key is too small, move
right and repeat 1-3.

17

We move left from Oklahoma to Massachusetts. The leftward step was
because Oklahoma is larger than the key we are looking for.

Arizona

Arkansas

Retrieve 'New Hampshire'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Start at the root.

❶ If the current node has
the key, then stop and
retrieve the data.

❷ If the current node's
key is too large, move
left and repeat 1-3.

➌ If the current node's
key is too small, move
right and repeat 1-3.

18

From Massachusetts we continue searching, and take a right step. Now
we have found New Hampshire, so we can return the data from this
node.

Arizona

Arkansas

Retrieve 'New Hampshire'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Start at the root.

❶ If the current node has
the key, then stop and
retrieve the data.

❷ If the current node's
key is too large, move
left and repeat 1-3.

➌ If the current node's
key is too small, move
right and repeat 1-3.

19

Adding a new node requires two steps, the first of which is similar to
searching. In this first step we pretend that we are trying to find the key.
Of course, we won't find the key, because it is not yet in the tree. So
eventually we will reach a spot where there is no "next node" to step
onto. At this point we stop and add the new node.

Arizona

Arkansas

Adding a New Item with a
Given Key

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

20

For example, suppose that Iowa wants to join our dictionary. We start
by pretending to search for Iowa, beginning at the root...

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

21

Which way will we move from the root if we are searching for Iowa?

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

22

From the root we have moved right because Florida was smaller than
Iowa.

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

23

From Oklahoma we move left, onto Massachusetts,...

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

24

...and from Massachusetts we would move left again, if we could. But
there is no node here. So we stop...

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

25

...and this is the location for Iowa.

Later, when we are searching for Iowa, we will follow the same path
down to Massachusetts. We will step left from Massachusetts, and
there we find our goal of Iowa.

Important note: New nodes are always added at the leaves.

Arizona

Arkansas

Adding

❶ Pretend that you are
trying to find the key,
but stop when there is
no node to move to.

❷ Add the new node at
the spot where you
would have moved to
if there had been a
node.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

26

One more example: Where would you add the new state of
Kazakhstan?...

Arizona

Arkansas

Adding

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Where would you
add this state?

Kazakhstan

27

If you followed the algorithm, then you saw that Kazakhstan is added as
the right child of Iowa.

Arizona

Arkansas

Adding

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan is the
new right child

of Iowa?

Kazakhstan

28

Removing an item requires three steps. We can look at the steps in
detail in a moment, but first let's go through this outline so that you
know roughly what to expect.

1. Find the item that you want to remove.

2. Some items are harder to remove than others. In particular, an item
with two children is particularly hard to remove. So, in this second step
we sometimes take an item that is hard to remove, and exchange it with
an item that is easier to remove.

3. Finally, once the item is in a spot that is easy to remove, we remove
it.

Let's look at the three steps in detail.

Arizona

Arkansas

Removing an Item with a
Given Key

❶ Find the item.

❷ If necessary, swap the
item with one that is
easier to remove.

❸ Remove the item.
Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

29

As an example, let's remove Florida. (It's way too hot to be part of the
union anyway). First we find it, which is easy enough by using the usual
method to search for a key.

Arizona

Arkansas

Removing 'Florida'

❶ Find the item.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

30

In the second step we need to swap Florida with another item that is
easier to remove. The reason that we need to do this swap is because
of a problem that occurs if we just try to remove Florida...

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

Florida cannot be
removed at the

moment...

31

We end up breaking the tree into two separate parts.

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

... because removing
Florida would

break the tree into
two pieces.

32

In general it is hard to recombine these two parts into a single tree. So,
our goal is to find another item that is easier to remove, and copy that
other item spot that we are trying to remove.

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

The problem of
breaking the tree
happens because

Florida has 2 children.

❷ If necessary, do some
rearranging.

33

In general, there are two items that we could copy on top of Florida. In
the book you'll see that one of these items is in the left subtree. In this
lecture I'll use the other one, from the right subtree. In an actual
program you can follow either approach.

Anyway, the approach we'll take here is to copy the smallest item in the
right subtree onto Florida. To find that smallest item, step onto the right
subtree (Oklahoma), and then race as far left as you can -- onto Iowa.

Arizona

Arkansas

Removing 'Florida'

❷ If necessary, do some
rearranging.

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan

For the rearranging,
take the smallest item
in the right subtree...

34

Copy Iowa on top of the item that we are removing.

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Kazakhstan

Iowa

...copy that smallest
item onto the item

that we're removing...

❷ If necessary, do some
rearranging.

35

We have eliminated Florida, but now we have two copies of Iowa. If
you've ever been to Iowa, you know that one Iowa is more than
enough, so next we must remove the extra Iowa...

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Kazakhstan

... and then remove
the extra copy of the

item we copied...

❷ If necessary, do some
rearranging.

36

Note that the extra Iowa had one child (Kazakhstan), so that child is
reconnected to the parent.

Here's a good question for you: Remember that it's hard to remove
nodes with two children. How do you know that the smallest item in the
right subtree does not have two children?

Answer: Since it is the smallest item, it can't have a left child because
that left child would be even smaller.

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Kazakhstan
... and reconnect

the tree

❷ If necessary, do some
rearranging.

37

In fact, the guarantee that the smallest item has at most one child is
one of the reasons why I selected the smallest item. There's a second
reason, can you think of it?

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado
Florida

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Kazakhstan

Why did I choose
the smallestsmallest item

in the right subtree?

38

The second reason is that I am take this smallest item and place it in
Florida's location. In order to maintain the binary search tree storage
rules, this item must be smaller than anything that remains in the right
subtree--therefore I must choose the smallest item in the right subtree.

Arizona

Arkansas

Removing 'Florida'

Washington

OklahomaColorado

W
es

t
V

irg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Kazakhstan

Because every key
must be smaller than

the keys in its
right subtree

39

Here's a summary of the removal steps. Note that if the item that we
want to remove does not have a right child, then we can just remove it
(and reconnect its left child if there is one).

In the text book, the process is done in a symmetrical way--using the
largest item in the left subtree. Either approach works fine.

Also, the textbook implements a Bag rather than a Dictionary. One of
the resultant differences is that the Bag may have several copies of the
same item, so that items in the left subtree can be less than or equal to
the item in a node.

Removing an Item with a
Given Key

❶ Find the item.

❷ If the item has a right child, rearrange the tree:
❐ Find smallest item in the right subtree

❐ Copy that smallest item onto the one that you
want to remove

❐ Remove the extra copy of the smallest item
(making sure that you keep the tree connected)

 else just remove the item.

40

A quick summary . . .

❐ Binary search trees are a good implementation of
data types such as sets, bags, and dictionaries.

❐ Searching for an item is generally quick since you
move from the root to the item, without looking at
many other items.

❐ Adding and deleting items is also quick.

❐ But as you'll see later, it is possible for the
quickness to fail in some cases -- can you see
why?

 Summary

41

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

