
1

This lecture demonstrates a typical pattern that arises in recursive
functions. The lecture can be given shortly before or shortly after the
students have read Section 9.1.

By the way, the book delays the introduction of recursion until just
before trees. Our reasoning here is that recursive functions with linked
lists can sometimes be bad programming practice because the run-time
stack must grow to the length of the linked list (and iterative algorithms
are usually just as easy). On the other hand, the depth of recursive tree
algorithms is merely the depth of the tree (and equivalent iterative
algorithms can be harder to program).

❐ Chapter 9 introduces the technique
of recursive programming.

❐ As you have seen, recursive
programming involves spotting
smaller occurrences of a problem
within the problem itself.

❐ This presentation gives an
additional example, which is not
in the book.

Recursive Thinking

Data Structures
and Other Objects
Using C++

2

In this lecture, we're going to design a recursive function which
manipulates a new object called a Car. In order to explain the Car that I
have in mind, think about your favorite family car...

NOTE: In Powerpoint, the next few slides will automatically appear
every few seconds...

A Car Object

❐ To start the example,
think about your favorite
family car

3

...let's try for something a bit more modern that this...

A Car Object

❐ To start the example,
think about your favorite
family car

4

...no, that's too conservative...

A Car Object

❐ To start the example,
think about your favorite
family car

5

...that's better!

A Car Object

❐ To start the example,
think about your favorite
family car

6

I want you to imagine that this family car is being controlled by a radio
signal coming from your computer.

A Car Object

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer

7

The radio signals themselves are generated by writing a program which
uses a new object type called a Car. Each time one of the car methods
is activated, the computer sends a radio signal to control the car.

This may seem a bit far-fetched, but such radio-controlled hardware
really does exist, and the hardware is controlled by programs which
could have objects such as these. A similar example is an automatic
baggage system at an airport, which is controlled by a computer.

Also, remember that in order to understand this example, you don't
need to know all the details of how the Car's methods work. All you
need to know is what each of the Car's methods accomplishes. I have
four particular methods in mind, and I'll describe what each method
does.

A Car Class

class Car
{
public:
 . . .
};

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer

❐ The radio signals are
generated by activating
member functions of a
Car object

8

Here are the prototypes of the four member functions. Let's look at
each method in turn...

class Car
{
public:
 Car(int car_number);
 void move();
 void turn_around();
 bool is_blocked;
private:
 { We don't need to know the private fields! }
 . . .
};

Member Functions for the Car Class

9

This example demonstrates the usage of the constructor. In this
example, we have declared a Car called racer and the activated the
constructor with the argument 7.

The argument 7 just indicates which of several cars we want to control.
Each car needs to have a unique number. In this example, we are
making a radio connection to "Car Number 7". Any future radio signals
generated by activating racer's methods will control "Car Number 7".

int main()
{
 Car racer(7);

 . . .

The Constructor

When we declare a Car

and activate the
constructor, the computer
makes a radio link with a
car that has a particular
number.

10

After the connection is made, we can activate other member functions
of racer. In this example, we are activating

racer.turn_around();

The function sends a radio signal to the car, telling it to turn 180
degrees. (In case you hadn't noticed, the car has a very small turning
radius!)

int main()
{
 Car racer(7);

 racer.turn_around();
 . . .

The turn_around Function

When we activate
turn_around, the computer
signals the car to turn 180
degrees.

11

Here's an example of the third Car member function in action. When
we activate

racer.move();

the result is a radio signal which tells the car to move forward one foot.

NOTE: In Powerpoint, the next slide automatically appears, moving the
car forward "one foot".

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.

12

As you can see, the car has moved forward by a foot.

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.

13

The last Car member function is a boolean function called is_blocked.
The function returns true if there is some barrier in front of the car,
making it impossible to move. The function returns false if the front of
the car is unblocked, making a move possible.

A question: What will racer.is_blocked return in this example?

Answer: True, because there is a definite barrier in front of the car.

Another question: Can you state a good precondition for the move
member function?

Answer: is_blocked must return false.

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 if (racer.is_blocked())
 cout << "Cannot move!";
 . . .

The is_blocked() Function

The is_blocked member
function detects barriers.

14

Now we can examine the problem that I have in mind. I want to write a
function which will move a Car forward until it reaches a barrier...

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

15

...as shown here.

NOTE: In Powerpoint, this slide automatically appears after six
seconds. Each of the next few slides automatically appears after a few
more seconds.

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

16

Here, you can see that the barrier has been reached. But that is not
the end of the function’s work. The function must next...

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

17

...turn the car around...

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

18

...and move the car back to its original position, facing the opposite
direction.

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

19

This is the end of the function’s work.

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

20

The function, called ricochet, has the heading shown here. There is one
parameter, called moving_car, which is the Car that the function
manipulates. We will assume that the radio connection has already
been made for this car, so all the function has to do is issue the
necessary move and turn_around commands.

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

void ricochet(Car& moving_car);

21

The first action the function takes is to check for a very simple case: the
case where the car is already blocked.

In this case, no movement is needed. All that the function needs to do
is turn the car around, and leave it in the same place.

NOTE: The lecturer can pretend to be the car, blocked at a wall, to
demonstrate this simple case.

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

void ricochet(Car& moving_car);

22

On the other hand, if the car is not blocked, then some movement is
needed. The function begins the movement by moving the car forward
just one foot.

Notice that the move activation is not in a loop. We're just moving one
foot, with the primary goal being to make a smaller version of the
original problem. In fact, once the car has moved just a single foot
forward, we do have a smaller version of the original problem...

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

moving_car.move();
. . .

23

...as shown in this example.

In this example, the car starts 100 feet from a barrier.

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier...

100 ft.

24

After moving just one foot, the car is 99 feet from the barrier.

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier... then after activating
move once, the distance is
only 99 feet.

99 ft.

25

Since 99 feet is less than 100 feet, we have a smaller version of the
original problem.

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
We now have a
smaller version of
the same problem
that we started with.

99 ft.

26

Once a smaller problem has been created, we can make the key step
of any recursive function:

The ricochet function calls itself to solve the smaller problem!

The act of a function calling itself is recursion, or in other words a
recursive call. In order for recursion to succeed, the recursive call must
be asked to solve a problem which is somehow smaller than the original
problem. The precise meaning of "smaller" is given in Section 9.3, but
for now you can use your intuition about what a "smaller" problem is.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
Make a recursive
call to solve the
smaller problem.

99 ft.

27

The key idea to remember is this: When you make a recursive call to
solve a smaller problem, the recursive call will successfully solve that
smaller problem.

In this case, that means that the recursive call will move the car 99 feet
to the barrier...

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.

28

...as shown here and in the next few slides.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

29

This is still work being done in the recursive call.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

30

Still in that recursive call!

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

31

The work of the recursive call has taken the car to the barrier...

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

32

...and turned the car around.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

33

The recursive call is still working to solve the smaller problem...

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

34

...eventually the recursive call will bring the car back...

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

35

...to the position where the recursive call was made.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

36

At last! The recursive call has finished its work, solving the smaller
problem. In the solution of the smaller problem, the recursive call
moved the car forward to the barrier, turned the car around, and moved
the car back to the starting position of the smaller problem, but facing
the opposite direction

Another key point: You don't need to know all the details of how that
recursive call worked. Just have confidence that the recursive call will
solve the smaller problem. You can safely have this confidence
provided that:

 1. When the problem gets small enough, there won't be more
recursive calls, and

 2. Each recursive call makes the problem "smaller".

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.

37

After the recursive call solves the smaller problem, there is one more
step that must be taken to solve the original problem.

Question: What is that remaining step?

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

99 ft.

38

Answer: The car must be moved one more step to bring it back to its
original position.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

100 ft.

39

The pattern followed by this recursive function is a common one that
you should be able to recognize and implement for similar problems.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

This recursive
function follows a
common pattern that
you should recognize.

40

The start of the pattern is called the base case. This is the case where
the problem is so simple that it can be solved with no recursion.

Question: What do you suppose would happen if we forgot to include a
base case?

Answer: In theory, the recursion would never end. Each recursive call
would make another recursive call which would make another recursive
call, and so on forever. In practice, each recursive call uses some of
the computer's memory, and eventually you will run out of memory. At
that point, a run-time error occurs stating "Run-time stack overflow" or
perhaps "Stack-Heap collision." Both messages mean that you have
run out of memory to make function calls.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
simple, solve it with
no recursive call.
This is the base case.

41

If the base case does not apply, then the algorithm will work by creating
a smaller version of the original problem.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
more complex, start by
doing work to create a
smaller version of the
same problem...

42

The smaller problem is solved with a recursive call.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...use a recursive call to
completely solve the
smaller problem...

43

Generally a bit of extra work is done before the recursive call, in order
to create the smaller problem. Work is often needed after the recursive
call too, to finish solving the larger problem.

Programmer's Hint: If you find that no work is needed after the
recursive call, then you have a simple kind of recursion called "tail
recursion". The word "tail" refers to the fact that the recursive call is the
final thing the algorithm does. Tail recursion is nearly always a bad
idea. The reason is that tail recursive algorithms can generally be
written much simpler with a loop and no recursive call.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...and finally do any
work that's needed to
complete the solution
of the original
problem..

44

You'll find this same pattern in other problems of Chapter 9, such as the
recursive functions to write the digits of a number vertically.

Implementation of ricochet

void ricochet(Car& moving_car)
{
 if (moving_car.is_blocked())
 moving_car.turn_around(); // Base case
 else
 { // Recursive pattern
 moving_car.move();
 ricochet(moving_car);
 moving_car.move();
 }
}

Look for this
pattern in the other
examples of
Chapter 9.

45

Time for another quiz . . .

An Exercise

Can you write ricochet as a
new member function of the
Car class, instead of a
separate function?

You have 2 minutes to
write the implementation.

void Car::ricochet()
{
 . . .

46

Two key points:

1. The recursive member function does not need a parameter, since it
must be activated by a particular car. For example, if you have a car
named racer, then you can activate racer's ricochet function with:

 racer.ricochet();

2. The recursive member function activates itself. Do you see where
this happens?

An Exercise

void Car::ricochet()
{
 if (is_blocked())
 turn_around(); // Base case
 else
 { // Recursive pattern
 move();
 ricochet();
 move();
 }
}

One solution:

47

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

