
1

This lecture demonstrates an application of stacks: implementing
backtracking to solve the N-Queens problem. The presentation
includes a demonstration program which you can run at a couple points
during the presentation. The demonstation requires EGA or VGA
graphics on a PC.

The best time for this lecture is after the students have read Chapter 7
on stacks. If the students want additional information about the N-
queens problem, you can direct them to Programming Project 9 in
Chapter 7.

❐❐ Chapter 7 introduces theChapter 7 introduces the
stackstack data type.data type.

❐❐ Several exampleSeveral example
applications of stacks areapplications of stacks are
given in that chapter.given in that chapter.

❐❐ This presentation showsThis presentation shows
another use calledanother use called
backtracking to solve thebacktracking to solve the
N-Queens problemN-Queens problem..

Using a StackUsing a Stack

Data StructuresData Structures
and Other Objectsand Other Objects
Using C++Using C++

2

We'll start with a description of a problem which involves a bunch of
queens from a chess game, and a chess board.

The N-Queens ProblemThe N-Queens Problem

❐❐ Suppose you have 8Suppose you have 8
chess queens...chess queens...

❐❐ ...and a chess board...and a chess board

3

Some of you may have seen this problem before. The goal is to place
all the queens on the board so that none of the queens are attacking
each other.

The N-Queens ProblemThe N-Queens Problem

Can the queens be placed onCan the queens be placed on
the board so that no twothe board so that no two
queens are attacking eachqueens are attacking each
otherother ??

4

If you play chess, then you know that this forbids two queens from
being in the same row...

The N-Queens ProblemThe N-Queens Problem

Two queens are notTwo queens are not
allowed in the sameallowed in the same
row...row...

5

...or in the same column...

The N-Queens ProblemThe N-Queens Problem

Two queens are notTwo queens are not
allowed in the sameallowed in the same
row, or in the samerow, or in the same
column...column...

6

...or along the same diagonal.

As a quick survey, how many of you think that a solution will be
possible? In any case, we shall find out, because we will write a
program to try to find a solution.

As an aside, if the program does discover a solution, we can easily
check that the solution is correct. But suppose the program tells us that
there is no solution. In that case, there are actually two possibilies to
keep in mind:

1. Maybe the problem has no solution.

2. Maybe the problem does have a solution, and the program has a
bug!

Moral of the story: Always create an independent test to increase the
confidence in the correctness of your programs.

The N-Queens ProblemThe N-Queens Problem

Two queens are notTwo queens are not
allowed in the sameallowed in the same
row, or in the samerow, or in the same
column, or along thecolumn, or along the
same diagonal.same diagonal.

7

The program that we write will actually permit a varying number of
queens. The number of queens must always equal the size of the chess
board. For example, if I have six queens, then the board will be a six by
six chess board.

The N-Queens ProblemThe N-Queens Problem

The number of queens,The number of queens,
and the size of the boardand the size of the board
can vary.can vary.

N Queens

N ro
ws

N columns

8

At this point, I can give you a demonstration of the program at work.
The demonstration uses graphics to display the progress of the
program as it searches for a solution.

During the demonstration, a student can provide the value of N. With N
less than 4, the program is rather boring. But N=4 provides some
interest. N=10 takes a few minutes, but it is interesting to watch and
the students can try to figure out the algorithm used by the program.

The N-Queens ProblemThe N-Queens Problem

We will write a programWe will write a program
which tries to find a waywhich tries to find a way
to place N queens on anto place N queens on an
N N xx N chess board. N chess board.

If you can run ega or
vga graphics,
you can double click on
this icon with the left
mouse button:

9

I want to show you the algorithm that the program uses. The technique
is called backtracking. The key feature is that a stack is used to keep
track of each placement of a queen.

How the program worksHow the program works

The programThe program
uses a stack touses a stack to
keep track ofkeep track of
where eachwhere each
queen is placed.queen is placed.

10

For example, when we place the first queen in the first column of the
first row, we record this placement by pushing a record onto the stack.
This record contains both the row and column number of the newly-
placed queen.

How the program worksHow the program works

Each time theEach time the
program decidesprogram decides
to place a queento place a queen
on the board,on the board,
the position ofthe position of
the new queen isthe new queen is
stored in astored in a
record which isrecord which is
placed in theplaced in the
stack.stack.

ROW 1, COL 1

11

In addition to the stack, we also keep track of one other item: an integer
which tells us how many rows currently have a queen placed.

How the program worksHow the program works

We also have anWe also have an
integer variableinteger variable
to keep track ofto keep track of
how many rowshow many rows
have been filledhave been filled
so far.so far.

ROW 1, COL 1

1 filled

12

When we successfully place a queen in one row, we move to the next
row. We always start by trying to place the queen in the first column of
the new row.

How the program worksHow the program works

Each time we tryEach time we try
to place a newto place a new
queen in the nextqueen in the next
row, we start byrow, we start by
placing theplacing the
queen in the firstqueen in the first
column...column... ROW 1, COL 1

1 filled

ROW 2, COL 1

13

But each new placement must be checked for potential conflicts with
the previous queen. If there is a conflict, then the newly-placed queen
is shifted rightward.

How the program worksHow the program works

...if there is a...if there is a
conflict withconflict with
another queen,another queen,
then we shift thethen we shift the
new queen to thenew queen to the
next column.next column.

ROW 1, COL 1

1 filled

ROW 2, COL 2

14

Sometimes another conflict will occur, and the newly-placed queen
must continue shifting rightward.

How the program worksHow the program works

If anotherIf another
conflict occurs,conflict occurs,
the queen isthe queen is
shifted rightwardshifted rightward
again.again.

ROW 1, COL 1

1 filled

ROW 2, COL 3

15

When the new queen reaches a spot with no conflicts, then the
algorithm can move on. In order to move on, we add one to the value
of filled...

How the program worksHow the program works

When there areWhen there are
no conflicts, weno conflicts, we
stop and add onestop and add one
to the value ofto the value of
filled.filled.

ROW 1, COL 1

2 filled

ROW 2, COL 3

16

...and place a new queen in the first column of the next row.

How the program worksHow the program works

Let's look at theLet's look at the
third row. Thethird row. The
first position wefirst position we
try has atry has a
conflict...conflict...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 1

17

In this example, there is a conflict with the placement of the new queen,
so we move her rightward to the second column.

How the program worksHow the program works

...so we shift to...so we shift to
column 2. Butcolumn 2. But
another conflictanother conflict
arises...arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 2

18

Another conflict arises, so we move rightward to the third column.

How the program worksHow the program works

...and we shift to...and we shift to
the third column.the third column.

Yet anotherYet another
conflict arises...conflict arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 3

19

Yet another conflict arises, so we move to the fourth column. The key
idea is that each time we try a particular location for the new queen, we
need to check whether the new location causes conflicts with our
previous queens. If so, then we move the new queen to the next
possible location.

How the program worksHow the program works

...and we shift to...and we shift to
column 4.column 4.
There's still aThere's still a
conflict inconflict in
column 4, so wecolumn 4, so we
try to shifttry to shift
rightwardrightward
again...again...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4

20

Sometimes we run out of possible locations for the new queens. This is
where backtracking comes into play.

How the program worksHow the program works

...but there's...but there's
nowhere else tonowhere else to
go.go.

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4

21

To backtrack, we throw out the new queen altogether, popping the
stack, reducing filled by 1, and returning to the previous row. At the
previous row, we continue shifting the queen rightward.

How the program worksHow the program works

When we run out ofWhen we run out of

room in a row:room in a row:

❐❐ pop the stack,pop the stack,

❐❐ reduce reduce filled filled by 1by 1

❐❐ and continueand continue
working on theworking on the
previous row.previous row.

ROW 1, COL 1

1 filled

ROW 2, COL 3

22

Notice that we continue the previous row from the spot where we left
off. The queen shifts from column 3 to column 4. We don't return her
back to column 1.

It is the use of the stack that lets us easily continue where we left off.
The position of this previous queen is recorded in the stack, so we can
just move the queen rightward one more position.

How the program worksHow the program works

Now weNow we
continuecontinue
working on rowworking on row
2, shifting the2, shifting the
queen to thequeen to the
right.right.

ROW 1, COL 1

1 filled

ROW 2, COL 4

23

The new position for row 2 has no conflicts, so we can increase filled by
1, and move again to row 3.

How the program worksHow the program works

This position hasThis position has
no conflicts, sono conflicts, so
we can increasewe can increase
filled filled by 1, andby 1, and
move to row 3.move to row 3.

ROW 1, COL 1

2 filled

ROW 2, COL 4

24

At the new row, we again start at the first column. So the general rules
are:

When the algorithm moves forward, it always starts with the first
column.

But when the algorithm backtracks, it continues whereever it left off.

How the program worksHow the program works

In row 3, weIn row 3, we
start again at thestart again at the
first column.first column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 1

25

Here’s the pseudocode for implementing the backtrack algorithm. The
stack is initialized as an empty stack, and then we place the first queen.

After the initialization, we enter a loop with three possible actions at
each iteration. We'll look at each action in detail...

Pseudocode for N-QueensPseudocode for N-Queens

❶❶ Initialize a stack where we can keep track of ourInitialize a stack where we can keep track of our
decisions.decisions.

❷❷ Place the first queen, pushing its position onto thePlace the first queen, pushing its position onto the
stack and setting stack and setting filledfilled to 0 to 0..

❸❸ repeat these stepsrepeat these steps

❐❐ if there are no conflicts with the queens...if there are no conflicts with the queens...

❐❐ else if there is a conflict and there is room toelse if there is a conflict and there is room to
shift the current queen rightward...shift the current queen rightward...

❐❐ else if there is a conflict and there is no roomelse if there is a conflict and there is no room
to shift the current queen rightward...to shift the current queen rightward...

26

The nicest possibility is when none of the queens have any conflicts. In
this case, we can increase filled by 1.

 If filled is now N, then we are done!

But if filled is still less than N, then we can move to the next row and
place a queen in the first column. When this new queen is placed, we'll
record its position in the stack.

Another aside: How do you suppose the program "checks for conflicts"?

Hint: It helps if the stack is implemented in a way that permits the
program to peek inside and see all of the recorded positions. This "peek
inside" operation is often implemented with a stack, although the ability
to actually change entries is limited to the usual pushing and popping.

Pseudocode for N-QueensPseudocode for N-Queens

❸❸ repeat these stepsrepeat these steps

❐❐ if there are no conflicts with the queens...if there are no conflicts with the queens...

Increase filled by 1. If filled is now N, then
the algorithm is done. Otherwise, move to

the next row and place a queen in the
first column.

27

The second possiblity is that a conflict arises, and the new queen has
room to move rightward. In this case, we just move the new queen to
the right.

Pseudocode for N-QueensPseudocode for N-Queens

❸❸ repeat these stepsrepeat these steps

❐❐ if there are no conflicts with the queens...if there are no conflicts with the queens...

❐❐ else if there is a conflict and there is room toelse if there is a conflict and there is room to
shift the current queen rightward...shift the current queen rightward...

Move the current queen rightward,
adjusting the record on top of the stack

to indicate the new position.

28

The last possiblity is that a conflict exists, but the new queen has run
out of room. In this case we backtrack:

Pop the stack,

Reduce filled by 1.

We must keep doing these two steps until we find a row where the
queen can be shifted rightward. In other words, until we find a row
where the queen is not already at the end.

At that point, we shift the queen rightward, and continue the loop.

But there is one potential pitfall here!

Pseudocode for N-QueensPseudocode for N-Queens

❸❸ repeat these stepsrepeat these steps

❐❐ if there are no conflicts with the queens...if there are no conflicts with the queens...

❐❐ else if there is a conflict and there is room toelse if there is a conflict and there is room to
shift the current queen rightward...shift the current queen rightward...

❐❐ else if there is a conflict and there is no roomelse if there is a conflict and there is no room
to shift the current queen rightward...to shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled
 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.

29

The potential pitfall: Maybe the stack becomes empty during this
popping. What would that indicate?

Answer: It means that we backtracked right back to the beginning, and
ran out of possible places to place the first queen. In that case, the
problem has no solution.

Pseudocode for N-QueensPseudocode for N-Queens

❸❸ repeat these stepsrepeat these steps

❐❐ if there are no conflicts with the queens...if there are no conflicts with the queens...

❐❐ else if there is a conflict and there is room toelse if there is a conflict and there is room to
shift the current queen rightward...shift the current queen rightward...

❐❐ else if there is a conflict and there is no roomelse if there is a conflict and there is no room
to shift the current queen rightward...to shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen
 can be shifted rightward. Shift this queen right.

30

Just for fun, we can run the demonstration program again now. See if
you can follow the backtracking in action.

Watching the program workWatching the program work

You can doubleYou can double
click the left mouseclick the left mouse
button here to runbutton here to run
the demonstrationthe demonstration
program a secondprogram a second
time:time:

31

A quick summary . . .

❐❐ Stacks have many applications.Stacks have many applications.

❐❐ The application which we have shown is calledThe application which we have shown is called
backtrackingbacktracking ..

❐❐ The key to backtracking: Each choice is recordedThe key to backtracking: Each choice is recorded
in a stack.in a stack.

❐❐ When you run out of choices for the currentWhen you run out of choices for the current
decision, you pop the stack, and continue tryingdecision, you pop the stack, and continue trying
different choices for the previous decision.different choices for the previous decision.

 Summary Summary

32

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE ENDTHE END

Presentation copyright 1997, Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

