
1

This lecture introduces container classes from Chapter 3. Before this
lecture, students should know about these items:

1. How to implement simple classes, such as those in Chapter 2.

2. How to separate the class into a header file and an implementation
file.

This lecture presents container classes using an example: the Bag
class. After this lecture, it would be a good idea to give further
coverage of some issues from Section 3.1. In particular, you should
cover the use of the typedef in the Bag implementation, and the += and
+ operators, which are not covered in this presentation.

❐ A container class is a data
type that is capable of
holding a collection of
items.

❐ In C++, container classes
can be implemented as a
class, along with member
functions to add, remove,
and examine items.

Container Classes

Data Structures
and Other Objects
Using C++

2

Start by thinking about a bag -- a gym bag, a grocery bag, whatever
your favorite bag is.

Bags

❐ For the first example,
think about a bag.

3

Inside the bag, is a collection of numbers, such as the collection of two
fours and an eight shown here.

Bags

❐ For the first example,
think about a bag.

❐ Inside the bag are
some numbers.

4

This bag will be our first example of a container class, which is a class
where each object can contain a collection of items (such as numbers).
One of the important facets of a container class is that each object
begins in a known configuration. In the case of a bag, we will count on
each bag being initially empty. This is called the initial state of a bag.

Initial State of a Bag

❐ When you first begin
to use a bag, the bag
will be empty.

❐ We count on this to be
the initial state of any
bag that we use.

THIS BAG
IS

EMPTY.

5

We will use a fixed collection of operations to manipulate bags. One of
the simplest operations that we permit is the action of inserting a new
number into a bag.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

I AM
PUTTING THE

NUMBER 4
INTO THE

BAG.

6

In this example, we have inserted the first number -- a four -- into a bag
that was previously empty.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

THE 4 IS
IN THE
BAG.

7

We can continue inserting new numbers into the bag.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

❐ The bag can hold
many numbers.

NOW I'M
PUTTING
ANOTHER

NUMBER IN
THE BAG --

AN 8.

8

Now we have a four and an eight in the bag.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

❐ The bag can hold
many numbers.

THE 8 IS
ALSO IN

THE BAG.

9

We can even insert a second four into the same bag, as shown here.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

❐ The bag can hold
many numbers.

❐ We can even insert
the same number
more than once. NOW I'M

PUTTING A
SECOND 4

IN THE
BAG.

10

At this point we have two fours and one eight in the bag of numbers.

I want to make a small point on the side: A bag’s behavior is a bit
different than a set of numbers. A set is not allowed to have two copies
of the same number. But a bag can have many copies of the same
number.

Inserting Numbers into a Bag

❐ Numbers may be
inserted into a bag.

❐ The bag can hold
many numbers.

❐ We can even insert
the same number
more than once.

NOW THE
BAG HAS
TWO 4'S

AND AN 8..

11

At this point, we know the initial state of a bag (it is empty) and we also
have one operation (inserting a number). Here is our second bag
operation: an ability to query a bag about its contents. In particular, we
can ask the bag how many copies does it contain of a given number.

In this example, what would the bag respond if I asked for eights
instead of fours. (“Yes, I have one eight.”) What if I ask for tens
instead of fours. (“No, I have no tens.”).

Examining a Bag

❐ We may ask about
the contents of the
bag.

HAVE
YOU GOT
ANY 4's

?

YES,
I HAVE
TWO OF
THEM.

12

Here is our third bag operation: removing a number from a bag.

Removing a Number from a Bag

❐ We may remove a
number from a bag.

THIS
4 IS

OUTTA
HERE!

13

In this example, I removed one of the fours, but the other four remains
intact. Numbers are removed one at a time, so that if there are many
fours, and I remove one of them, other fours can remain in the bag.

Removing a Number from a Bag

❐ We may remove a
number from a bag.

❐ But we remove only
one number at a
time.

ONE 4 IS
GONE, BUT
THE OTHER
4 REMAINS.

14

Another operation allows us to find out how many numbers are in the
bag at the moment.

How Many Numbers

❐ Another operation is
to determine how
many numbers are in a
bag.

IN MY OPINION,
THERE ARE
TOO MANY
NUMBERS.

15

We have talked about four bag operations, but we actually have five
since the process of putting a bag into its initial state counts as an
operation. This slide just summarizes the five bag operations. By the
way, which of these five operations is likely to be implemented via the
bag constructor?

...

At this point, the bag is truly abstract, since we haven’t decided how the
bag will be implemented. Nevertheless, we still have a good idea of
how a bag might be used to solve various problems.

Note: At this point, you might pause the lecture to demonstrate how a
paper bag can be used to remember the ages of several students in the
class. Start by initializing the bag, then insert several students’ ages,
make a few queries about the bag, and finally remove the ages. This is
a good place to point out that additional bag operations might be useful,
such as an operation of combining two bags. The example bag in
Section 3.1 does have some additional operations.

Summary of the Bag Operations

➊A bag can be put in its initial state,
which is an empty bag.

➋Numbers can be inserted into the bag.

➌You may check how many occurrences
of a certain number are in the bag.

❹Numbers can be removed from the bag.

❺You can check how many numbers are
in the bag.

16

Let’s start to look at the implementation of a bag as a C++ class. The
class definition begins as shown in this slide.

A question: Suppose this class definition has been completed. How
would a program declare variables for three different bags that the
program uses? Answer:

Bag a, b, c;

The Bag Class

❐ C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a Bag.

❐ The class definition includes:

class Bag

✔ The heading of the definition

17

In the public part of the Bag class definition, we begin by listing the
constructor prototype...

The Bag Class

❐ C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a Bag.

❐ The class definition includes:

class Bag
{
public:
 Bag();

✔ The heading of the definition
✔ A constructor prototype

18

In the public part of the Bag class definition, we begin by listing the
constructor prototype... and then we list the prototypes for the other
member functions.

In our example, we have at least four member functions to list. As a
general rule, querying operations (which don’t change the contents of
the ADT) should be implemented as const member functions. Other
operations (which do change the contents) must be implemented as
ordinary member functions. Question: Will either insert or remove be a
const member function?

The Bag Class

❐ C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a Bag.

❐ The class definition includes:

class Bag
{
public:
 Bag();
 void insert(...
 void remove(...
 ...and so on✔ The heading of the definition

✔ A constructor prototype
✔ Prototypes for public
 member functions

19

Important note: The intention with a class is that the only way that an
object is manipulated is through its public operations. Even if we have
“inside information” about the private member variables, we don’t want
our programs to use that information. Instead, the only ways that our
programs will manipulate a bag is through the public functions.

This approach is called information hiding. What advantages do you
see to the approach? 1. The programmer who uses the class does not
need to clutter his or her thinking with details of the implementation.
2. At a later point, we can decide to implement the class in a different
way, and programs which use the class will still work.

This should sound familiar: They are the same reasons that we use
preconditions and postconditions to specify what a function does
without indicating how the function does its work.

The Bag Class

❐ C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a Bag.

❐ The class definition includes:

class Bag
{
public:
 Bag();
 void insert(...
 void remove(...
 ...and so on
private:

};

✔ The heading of the definition
✔ A constructor prototype
✔ Prototypes for public
 member functions
✔ Private member variables

We’ll look at private
members later.

20

In fact, its a good idea to provide a precondition/postcondition
specification with each of the class’s operations. Here’s an example of
what the specification looks like for the bag’s constructor. Note that
there is no precondition, so we have omitted it from the listing.

The Bag’s Default Constructor

❐ Places a bag in the initial state (an empty
bag)

Bag::Bag()
// Postcondition: The Bag has been initialized
// and it is now empty.
{
 . . .

}

21

The specification for the bag’s insert function is shown here.

The Insert Function

❐ Inserts a new number in the bag

void Bag::insert(int new_entry)
// Precondition: The Bag is not full.
// Postcondition: A new copy of new_entry has
// been added to the Bag.
{

 . . .
}

22

The specification for the bag’s size function is shown here. Notice that
the function returns an integer telling how many items are in the bag.
Also, this is a const member function because it does not change the
contents of a bag.

There’s actually a better data type to use for the return value, as shown
here...

The Size Function

❐ Counts how many integers are in the bag.

int Bag::size() const
// Postcondition: The return value is the number
// of integers in the Bag.
{

 . . .
}

23

I have changed the return type to size_t, which is a data type that is
defined in stdlib.h. This data type can be used for any non-negative
integer values. Also, every C++ implementation guarantees that the
size_t values are large enough to hold the size of any object that can
be declared on the current machine. Therefore, it’s a good idea to use
the size_t type when you are describing the size of an object (such as
the size of a bag).

The Size Function

❐ Counts how many integers are in the bag.

size_t Bag::size() const
// Postcondition: The return value is the number
// of integers in the Bag.
{

 . . .
}

24

The specification for the bag’s occurrences function is shown here.
Notice that the return value is once again a size_t value, and this is also
a const member function.

The Occurrences Function

❐ Counts how many copies of a number occur

size_t Bag::occurrences(int target) const
// Postcondition: The return value is the number
// of copies of target in the Bag.
{

 . . .
}

25

The specification for the bag’s remove function is shown here.

The Remove Function

❐ Removes one copy of a number

void Bag::remove(int target)
// Postcondition: If target was in the Bag, then
// one copy of target has been removed from the
// Bag; otherwise the Bag is unchanged.
{

 . . .
}

26

Let’s take a quick look at how a program might declare and use a bag.
In this example, the program declares a bag called ages, and inserts
the three numbers 4, 8, and 4 into the ages bag.

Question: What include statement would be needed for this program to
declare and use a bag?

...

Answer: The new Bag class should be implemented in two separate
files: A header file and an implementation file. In order to use the Bag
class, a program must include the bag’s header file.

Using the Bag in a Program

❐ Here is typical code from a
program that uses the new
Bag class:

Bag ages;

// Record the ages of three children:
ages.insert(4);
ages.insert(8);
ages.insert(4);

27

Let’s look at some details of the bag’s header file and implementation
file.

The header file has two parts: Documentation telling how to use the
Bag class, and the actual Bag class definition. In this example, we have
called the header file bag1.h (because we intend to have further
implementations that will be bag2, bag3, and so on).

The implementation file, called bag1.cxx, contains the implementations
of the Bag member functions.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

The Header File and
Implementation File

❐ The programmer who writes
the new Bag class must write
two files:

❐ bag1.h, a header file that
contains documentation and
the class definition

❐ bag1.cxx, an implementation
file that contains the
implementations of the Bag’s
member functions

Bag’s documentation

Bag’s class definition

Implementations of the
Bag’s member functions

28

Keep in mind that the bag’s documentation should list the prototypes
and specifications for all of the bag’s functions.

Documentation for the Bag Class

❐ The documentation gives
prototypes and
specifications for the bag
member functions.

❐ Specifications are written as
precondition/postcondition
contracts.

❐ Everything needed to use the
Bag class is included in this
comment.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Bag’s documentation

Bag’s class definition

Implementations of the
Bag’s member functions

29

The Bag’s class definition is the definition that we have already seen (or
at least seen most of). It lists the prototypes of the bag member
functions in the public section, and will list private member variables in
the private section.

The Bag’s Class Definition

❐ After the documentation,
the header file has the class
definition that we’ve seen
before:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Bag’s documentation

Bag’s class definition

Implementations of the
Bag’s member functions

class Bag
{
public:
 Bag();
 void insert(...
 void remove(...

30

The bodies for the bag’s functions appear in the separate
implementation file.

The Implementation File

❐ As with any class, the
actual definitions of the
member functions are
placed in a separate
implementation file.

❐ The definitions of the
Bag’s member functions
are in bag1.cxx.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Bag’s documentation

Bag’s class definition

Implementations of the
Bag’s member functions

31

Time for a quiz . . .

A Quiz

Suppose that a Mysterious
Benefactor provides you
with the Bag class, but you
are only permitted to read
the documentation in the
header file. You cannot
read the class definition or
implementation file. Can
you write a program that
uses the Bag data type ?

① Yes I can.

② No. Not unless I see the
class declaration for the
Bag.

③ No. I need to see the
class declaration for the
Bag , and also see the
implementation file.

32

We’ll see this concept over and over again. In order to use something,
you don’t need to know implementation details -- and, in fact, your
thinking is usually clearer if implementation details remain hidden.

By the way, a sample program using a bag is given in Section 3.1 of the
text, and this program actually appears before the implementation
details of the Bag class.

A Quiz

Suppose that a Mysterious
Benefactor provides you
with the Bag class, but you
are only permitted to read
the documentation in the
header file. You cannot
read the class definition or
implementation file. Can
you write a program that
uses the Bag data type ?

① Yes I can.

 You know the name of the
new data type, which is
enough for you to declare
Bag variables. You also
know the headings and
specifications of each of
the operations.

33

Just to finish things off, let’s look at some details of how the Bag class
could be implemented. This isn’t the only way to implement the class,
but it is a simple approach.

The plan is to store the entries of a bag in the front part of an array,
sometimes called a partially-filled array.

For example, if we have an array that contains two fours and an eight,
then we would place those three numbers in the first three components
of an array. We don’t care what appears beyond those first three
components.

Implementation Details

❐ The entries of a bag
will be stored in the
front part of an array,
as shown in this
example.

[0] [1] [2] [3] [4] [5] . . .

An array of integers

4 8 4

We don't care what's in
this part of the array.

34

We also don’t care what order the entries appear in. We might have
both fours first . . .

Implementation Details

❐ The entries may
appear in any order.
This represents the
same bag as the
previous one. . .

An array of integers

4 4 8

We don't care what's in
this part of the array.

[0] [1] [2] [3] [4] [5] . . .

35

. . . or we might have the eight first.

Implementation Details

❐ . . . and this also
represents the same
bag.

An array of integers
We don't care what's in
this part of the array.

[0] [1] [2] [3] [4] [5] . . .

4 4 8

36

There is one more item that we do need to keep track of, and that’s the
total number of entries in the bag. For this example, the total number of
entries in the bag is three.

What would go wrong if we didn’t keep track of this number? Answer:
We wouldn’t know what part of the array was being used, and what part
of the array was just garbage.

Another question: How would an empty bag be represented? Answer:
The bag’s size is zero, and the entire array may be garbage since we
are not using any of the array.

Implementation Details

❐ We also need to keep track of how
many numbers are in the bag.

An array of integers

8 4 4

We don't care what's in
this part of the array.

An integer to keep
track of the bag's size

3

[0] [1] [2] [3] [4] [5] . . .

37

Time for another quiz . . .

An Exercise

Use these ideas to write a
list of private member
variables could implement
the Bag class. You should
have two member
variables. Make the bag
capable of holding up to
20 integers.

You have 60 seconds
to write the declaration.

38

This is not the only solution. You might have used different names for
the two private member variables. The important idea is that a private
member variable can be an array.

There’s at least one other facet that we should improve. The number 20
is somewhat arbitrary. I might want a bag with a capacity of 200 or 2000
or even 20000. In order to make it clear that the capacity can be easily
changed, we should declare the capacity as a constant in the public
portion of the bag, like this...

An Exercise

class Bag
{
public:
 ...
private:
 int data[20];
 size_t count;
};

One solution:

39

The definition “static const size_t CAPACITY = 20” defines a number
called CAPACITY that can be used anywhere within the bag
implementation.

The keyword static means that all bags have the same CAPACITY.

The keyword const means that this number cannot change while a
program is running (although we could change it and recompile).

The constant is declared with all capital letters; this isn’t a requirement
in C++, but most C++ programmers follow the practice of using capitals
for constants’ names.

Within a program, you can declare a bag b, and refer to the constant as
b.CAPACITY.

An Exercise

A more flexible solution:

class Bag
{
public:
 static const size_t CAPACITY = 20;
 ...
private:
 int data[CAPACITY];
 size_t count;
};

40

Now that we know about the implementation details of the bag member
variables, let’s look at an example of calling Bag::insert. In the
example, we start with the bag shown here . . .

An Example of Calling Insert

void Bag::insert(int new_entry)

Before calling insert, we
might have this bag b:

2

[0] [1] [2] . . .

8 4
b.data

b.count

41

. . . and we call Bag::insert to insert the number 17.

What will be the values of b.data and b.count after the insertion?

An Example of Calling Insert

void Bag::insert(int new_entry)

b.data

b.count

We make a function call
b.insert(17)

What values will be in
b.data and b.count
after the member
function finishes ?

2

[0] [1] [2] . . .

8 4

void Bag::insert(int new_entry)

42

We have added the new number, 17, to the next spot in the array; and
we have incremented b.count by one to indicate that we are now using
one more spot in the array.

An Example of Calling Insert

void Bag::insert(int new_entry)

After calling b.insert(17),
we will have this bag b:

3

[0] [1] [2] . . .

8 4 17

void Bag::insert(int new_entry)

b.data

b.count
2

[0] [1] [2] . . .

8 4

43

Here’s the pseudocode for implementing Bag::insert. We start by
checking that the precondition is valid -- in other words that the bag has
room for another entry. An important note: These assertions should be
carried out using public members (such as size and CAPACITY) rather
than private members (such as count). The use of public members
makes the potential error messages more meaningful.

Next we place the new_entry in the array.

Finally we add one to the count.

What would the C++ code look like for Steps 2 and 3?

Pseudocode for Bag::insert

➊ assert(size() < CAPACITY);

➋ Place new_entry in the appropriate location
of the data array.

➌ Add one to the member variable count.

What is the “appropriate
location” of the data array ?

44

Here is one solution for Steps 2 and 3. In our example, this would
cause the new_entry (17) to be placed at index [2] of the array b.data,
and then count is incremented to 3.

Pseudocode for Bag::insert

➊ assert(size() < CAPACITY);

➋ Place new_entry in the appropriate location
of the data array.

➌ Add one to the member variable count.

data[count] = new_entry;
count++;

45

Here is an alternative that combines Steps 2 and 3. In this alternative,
the index [count++] is evaluated and used before count is incremented.
If we wanted the incrementing to occur before evaluation, we would
write ++count instead.

Pseudocode for Bag::insert

➊ assert(size() < CAPACITY);

➋ Place new_entry in the appropriate location
of the data array.

➌ Add one to the member variable count.

data[count++] = new_entry;

46

You can read Section 3.1 for the complete bag implementation.
However, the bag class itself is not particularly important; the important
point is the concept of a container class, and the advantages that
classes provide.

Later we will reimplement this same bag in more efficient ways.

The Other Bag Operations

❐ Read Section 3.1 for the implementations of
the other bag member functions.

❐ Remember: If you are just using the Bag
class, then you don’t need to know how the
operations are implemented.

❐ Later we will reimplement the bag using
more efficient algorithms.

❐ We’ll also have a few other operations to
manipulate bags.

47

Here’s one last question for you to think about. Of course, the answer
is that there is very little difference between a bag of integers and a bag
of any other type.

For more on this issue, you should read about typedef statements in
Section 3.1. Typedef statements are the first simple way to write a
container class where the underlying data type can be easily changed.
Later (in Chapter 6) we will see a more powerful alternative to typedef
statements.

Other Kinds of Bags

❐ In this example, we have implemented a bag
containing integers.

❐ But we could have had a bag of float
numbers, a bag of characters, a bag of
strings . . .

Suppose you wanted one of these other
bags. How much would you need to change
in the implementation ?
Section 3.1 gives a simple solution using
the C++ typedef statement.

48

A quick summary . . .

❐ A container class is a class that can hold a
collection of items.

❐ Container classes can be implemented with a C++
class.

❐ The class is implemented with a header file
(containing documentation and the class
definition) and an implementation file (containing
the implementations of the member functions).

❐ Other details are given in Section 3.1, which you
should read.

 Summary

49

THE END

Presentation copyright 1997, Addison Wesley Longman
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club
Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are
welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.

