
1

This lecture is an introduction to classes, telling what classes are and
how they are implemented in C++. The introduction is basic, not
covering constructors or operators that are covered in the text. The best
time for this lecture is just before students read Chapter 2--perhaps as
early as the second day of class.

Before this lecture, students should have a some understanding of

1. How an array of characters can be used as a string in C++
programming, and

2. The meaning of the strlen and strcpy functions from string.h.

❐ Chapter 2 introduces Object
Oriented Programming.

❐ OOP is a relatively new
approach to programming
which supports the creation
of new data types and
operations to manipulate
those types.

❐ This presentation introduces
OOP.

Object Oriented
Programming

Data Structures
and Other Objects
Using C++

2

This lecture will introduce you to object-oriented programming by using
one example, which we'll call a "thinking cap".

What is this Object ?

❐ There is no real
answer to the question,
but we’ll call it a
“thinking cap”.

❐ The plan is to describe
a thinking cap by
telling you what
actions can be done to
it.

3

The important thing about this thinking cap is that there are three
actions which may happen to it. The three actions are described here.

Using the Object’s Slots

❐ You may put a piece of
paper in each of the two
slots (green and red), with a
sentence written on each.

❐ You may push the green
button and the thinking cap
will speak the sentence
from the green slot’s paper.

❐ And same for the red
button.

4

Here's an example of how the first action works. Messages are written
on two slips of paper, and the messages are inserted in the two slots.

Example

5

Once the messages have been inserted, either of the buttons may be
pressed. When the green button is pressed, the message from the
green slip of paper is spoken.

Example

That test was
 a breeze !

6

When the red button is pressed, the message from the red slip of paper
is spoken.

By the way, what would be an appropriate precondition for pressing the
red button? Answer: Before the button is pressed, the slips of paper
should be inserted in the slots.

Example

I should
study harder !

7

We will implement the thinking cap in C++ using a feature called a
class.

Thinking Cap Implementation

❐ We can implement the
thinking cap using a
data type called a
class.

class ThinkingCap
{

 . . .

 };

8

The particular class we have in mind has two components that store the
two sentences that are inserted in those slots. These components can
be declared arrays of characters in C++. As you may know, an array of
character can be used in C++ to store a string. In this case, the string
may be up to 49 characters (because we must save at least one spot
for the “end of string” marker).

Some of you may have used classes before in your programming.
Others might have used “structs”, which are similar to classes. But a
C++ class has two new features that are not available in ordinary struct
types...

Thinking Cap Implementation

❐ The class will have
two components called
green_string and
red_string. These
compnents are strings
which hold the
information that is
placed in the two slots.

❐ Using a class permits
two new features . . .

class ThinkingCap
{
 . . .
 char green_string[50];
 char red_string[50];

};

9

The first class feature is that class components are allowed to be
private components. The advantage of private components is that they
prevent certain programmers from accessing the components directly.
Instead, programmers are forced to use only through the operations
that we provide.

Thinking Cap Implementation

➊ The two components
will be private
member variables.
This ensures that
nobody can directly
access this
information. The
only access is through
functions that we
provide for the class.

class ThinkingCap
{
 . . .
private:
 char green_string[50];
 char red_string[50];
};

10

In a class, the operations to manipulate the data are actually part of the
class itself. A prototype for each function is placed as part of the class
definition.

Thinking Cap Implementation

➋ In a class, the
functions which
manipulate the class
are also listed.

class ThinkingCap
{
public:
 . . .
private:
 char green_string[50];
 char red_string[50];
};Prototypes for the

thinking cap
functions go here,
after the word
public:

11

In the jargon of OOP programmers, the class’s functions are called it’s
member functions, to distinguish them from ordinary functions that are
not part of a class.

Thinking Cap Implementation

➋ In a class, the
functions which
manipulate the class
are also listed.

class ThinkingCap
{
public:
 . . .
private:
 char green_string[50];
 char red_string[50];
};Prototypes for the

thinking cap
member functions
go here

12

The implementations of member functions do not normally appear
withing the class definition. We’ll see where they do appear later, but for
now, let's just concentrate on this part of the class, which is called the
class definition.

Thinking Cap Implementation

class ThinkingCap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

Our thinking cap has at least three member functions:

Fun
cti

on
 bo

die
s

will
be

 e
lse

whe
re

.

13

One thing that you might have noticed in the definition is a keyword,
const, which appears after two of my prototypes. This keyword means
that these two functions will not change the data stored in a
ThinkingCap. In other words, when you do use these two functions, a
ThinkingCap remains “constant”.

Thinking Cap Implementation

class ThinkingCap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

The keyword const appears after two prototypes:

This means that thesefunctions will not changethe data stored in aThinkingCap.

14

Typically, a class definition is placed in a separate header file along
with documentation that tells how to use the new class. The
implementations of the member functions are placed in a separate file
called the implementation file.

At this point, I still haven't shown you exactly what those three
implementations of member functions look like -- and I want to continue
to postpone that. Instead, I will next show you an example program
which uses this ThinkerCap class.

Files for the Thinking Cap

❐ The ThinkingCap class
definition, which we have
just seen, is placed with
documentation in a file called
thinker.h, outlined here.

❐ The implementations of the
three member functions will
be placed in a separate file
called thinker.cxx, which we
will examine in a few
minutes.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Documentation

Class definition:
• ThinkingCap class
 definition which we
 have already seen

15

Any program that uses a class requires an include statement indicating
the name of the header file that has the class definition. Note that we
include only thinker.h, which is the header file, and do not include the
implmentation file.

Using the Thinking Cap

❐ A program that
wants to use the
thinking cap
must include the
thinker header
file (along with
its other header
inclusions).

#include <iostream.h>
#include <stdlib.h>
#include "thinker.h"

...

16

After the include statement, we may declare and use variables of the
ThinkingCap data type.

This example actually has two ThinkingCap variables, named student
and fan.

Using the Thinking Cap

❐ Just for fun, the
example program
will declare two
ThinkingCap
variables named
student and fan.

#include <iostream.h>
#include <stdlib.h>
#include "thinker.h"

int main()
{
 ThinkingCap student:
 ThinkingCap fan;

17

In object-oriented terminology, we would call these two variables
objects of the ThinkingCap class.

Using the Thinking Cap

❐ Just for fun, the
example program
will declare two
ThinkingCap
objects named
student and fan.

#include <iostream.h>
#include <stdlib.h>
#include "thinker.h"

int main()
{
 ThinkingCap student;
 ThinkingCap fan;

18

This illustrates how we call one of the ThinkingCap functions for the
student object.

Using the Thinking Cap

❐ The program
starts by
calling the
slots member
function for
student.

#include <iostream.h>
#include <stdlib.h>
#include "thinker.h"

int main()
{
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

19

But, again, let's use the usual OOP terminology, so that instead of
saying that we are calling a function we say that we are activating a
member function. In particular, we are activating the slots member
function of the student object. (If you go to a cocktail party and tell your
OOP friends that today you called a function for an object, they will
laugh behind your back. It is better to impress them by saying that you
activated a member function, even though it’s just jargon.)

Using the Thinking Cap

❐ The program
starts by
activating the
slots member
function for
student.

#include <iostream.h>
#include <stdlib.h>
#include "thinker.h"

int main()
{
 ThinkingCap student:
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

20

The complete activation consists of four parts, beginning with the object
name.

Using the Thinking Cap

➊ The member
function
activation
consists of four
parts, starting
with the object
name.

int main()
 {
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

Name of th
e object

21

The object name is followed by a period.

Using the Thinking Cap

➋ The instance
name is followed
by a period. int main()

{
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

A
Pe

rio
d

22

After the period is the name of the member function that you are
activating.

Using the Thinking Cap

➌ After the period
is the name of
the member
function that you
are activating.

int main() {
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

Name of the Function

23

And finally there is the argument list. In the case of the slots member
function, there are two string arguments: new_green (which is given the
actual value "Hello" in this example) and new_red (which is given the
actual value "Goodbye" in this example).

Using the Thinking Cap

➍ Finally, the
arguments for
the member
function. In this
example the first
argument
(new_green) is
"Hello" and the
second argument
(new_red) is
"Goodbye".

#include "thinker.h"

int main() {
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

Ar
gu

m
en

ts

24

Go ahead and write your answers before I move to the next slide.

A Quiz

How would you
activate student's
push_green
member function ?

What would be the
output of student's
push_green
member function
at this point in the
program ?

int main()
{
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

25

Remember that the push_green member function does not have any
arguments, so the argument list is just a pair of parentheses.

A Quiz

Notice that the
push_green member
function has no
arguments.

At this point,
activating
student.push_green
will print the string

Hello .

int main() {
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

 student .push_green();

26

Here's a longer program. What is the complete output? Again, write
your answers before I move to the next slide.

A Quiz

Trace through this
program, and tell
me the complete
output.

int main()
{
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

 fan.slots("Go Cougars!", "Boo!");

 student .push_green();

 fan.push_green();

 student .push_red();
 . . .

27

The important thing to notice is that student and fan are separate
objects of the ThinkingCap class. Each has its own green_string and
red_string data. Or to throw one more piece of jargon at you: Each has
its own green_string and red_string member variables. Member
variables are the data portion of a class. The activation of student.slots
fills in the green_string and red_string data for student, and the
activation of fan.slots fills in the green_string and red_string data for
fan.

Once these member variables are filled in, we can activate the
push_green and push_red member functions. For example,
student.push_green accesses the green_string member variable of
student, whereas fan.push_green accesses the green_string member
variable of fan.

A Quiz

Hello
Go Cougars!
Goodbye

int main()
 {
 ThinkingCap student;
 ThinkingCap fan;

 student .slots("Hello", "Goodbye");

 fan.slots("Go Cougars!", "Boo!");

 student .push_green();

 fan.push_green();

 student .push_red();
 . . .

28

You now know quite a bit about OOP -- but the key missing piece is
how to implement a class’s member functions.

What you know about Objects

✔Class = Data + Member Functions.

✔You know how to define a new class type, and
place the definition in a header file.

✔You know how to use the header file in a
program which declares instances of the class
type.

✔You know how to activate member functions.

✖ But you still need to learn how to write the
bodies of a class’s member functions.

29

You already know the location of these implementations: in a separate
“implementation file” called thinker.cxx.

Thinking Cap Implementation

class ThinkingCap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green();
 void push_red();
private:
 char green_string[50];
 char red_string[50];
};

Remember that the member function’s bodies
generally appear in a separate .cxx file.

Fun
cti

on
 bo

die
s

will
be

 in
 .c

xx
 fi

le.

30

We'll start by looking at the implementation of the slots member
function. The work which the function must accomplish is small: Copy
the two arguments (new_green and new_red) to the two private
member variables of the object (green_string and red_string).

Thinking Cap Implementation

class ThinkingCap
{
public:
 void slots(char new_green[], char new_red[]);
 void push_green();
 void push_red();
private:
 char green_string[50];
 char red_string[50];
};

We will look at the body of slots, which must copy its
two arguments to the two private member variables.

31

For the most part, all that's needed is a pair of calls to strcpy to copy
the two arguments (new_green and new_red) to the two member
variables (green_string and red_string). By the way, how many of you
have seen this use of strcpy before? If you haven’t seen it, don’t worry--
it will be covered in Chapter 4. For now all you need to know is that the
strcpy statements work like assignment statements, copying from the
right to the left. Also, you might notice that we have checked to make
sure that the new_green and new_red have fewer than 50 characters
(using strlen, which returns the number of characters in a string).

But the more interesting parts of this implementation are two special
features that you need to know about.

Thinking Cap Implementation

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

For the most part, the function’s body is no different
than any other function body.

But there are two special features about a
member function’s body . . .

32

First of all, in the member function’s heading you must include the
name of the class followed by two colons, as shown here. Otherwise,
the C++ compiler will think that this is an ordinary function called slots,
rather than a member function of the ThinkingCap class.

Thinking Cap Implementation

➊ In the heading, the function's name is preceded by the
class name and :: - otherwise C++ won't realize this
is a class’s member function.

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

33

Within the body of the member function, we may access any of the
members of the object. In this example, we are accessing both the
green_string and the red_string member variables, by assigning values
to these member variables.

Thinking Cap Implementation

➋ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

34

The use of these member variables is a bit confusing. Which member
variables are we talking about? student.green_string and
student.red_string? Or are we referring to fan.green_string and
fan.red_string? Or member variables of some other object?

Thinking Cap Implementation

➋ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

But, whose member
variables are
these? Are they
 student.green_string
 student.red_string
 fan.green_string
 fan.red_string

?

35

The answer depends on which object has activated its member
function. If student.slots is activated, then these two member variables
will refer to student.green_string and student.red_string.

Thinking Cap Implementation

➋ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

If we activate
student.slots:
 student.green_string
 student.red_string

36

But if fan.slots is activated, then the two member variables refer to
fan.green_string and fan.red_string.

Thinking Cap Implementation

➋ Within the body of the function, the class’s member
variables and other member functions may all be
accessed.

void ThinkingCap::slots(char new_green[], char new_red[])
{
 assert(strlen(new_green) < 50);
 assert(strlen(new_red) < 50);
 strcpy(green_string, new_green);
 strcpy(red_string, new_red);
}

If we activate
fan.slots:
 fan.green_string
 fan.red_string

37

Here's the implementation of the push_green member function.

Thinking Cap Implementation

void ThinkingCap::push_green
{

 cout << green_string << endl;

}

Here is the implementation of the push_green
member function, which prints the green message:

38

The important thing to notice is how the member function’s
implementation uses the green_string member variable of the object. If
we activate student.push_green, then the member function will use
student.green_string. And if we activate fan.push_green, then the
member function will use fan.green_string.

Thinking Cap Implementation

void ThinkingCap::push_green
{

 cout << green_string << endl;

}

Here is the implementation of the push_green
member function, which prints the green message:

Notice how this member function implementation
uses the green_string member variable of the object.

39

The member functions of the ThinkingCap are all simple, but they do
illustrate a common pattern: Often a member function (such as slots)
will place information in the private member variables, so that other
const member functions (such as push_green and push_red) may
access the information in those member variables.

A Common Pattern

❐ Often, one or more member functions will
place data in the member variables...

class ThinkingCap {
public:
 void slots(char new_green[], char new_red[]);
 void push_green() const;
 void push_red() const;
private:
 char green_string[50];
 char red_string[50];
};

❐ ...so that other member functions may use that
data.

slots push_green & push_red

40

A quick summary . . . This presentation has only introduced classes.
You should read all of Chapter 2 to get a better understanding of
classes. Pay particular attention to the notion of a constructor, which is
a special member function that can automatically initialize the member
variables of an object. Also pay attention to the more advanced
features such as operator overloading with the Point class given in
Chapter 2.

❐ Classes have member variables and member
functions. An object is a variable where the data
type is a class.

❐ You should know how to declare a new class type,
how to implement its member functions, how to
use the class type.

❐ Frequently, the member functions of an class type
place information in the member variables, or use
information that's already in the member variables.

❐ In the future we will see more features of OOP.

 Summary

41

THE END

Presentation copyright 1997, Addison Wesley Longman
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club
Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are
welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.

