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Abstract

This paper discusses the work-in-progress of a research
effort aiming at the design and implementation of a
qualitative simulation algorithm of the dynamics of
a specific class of ODE models of Gene-Regulatory
Networks (GRN). In such models, characterized by in-
complete knowledge of regulation mechanisms and ki-
netic parameters, regulation is assumed to be threshold-
dependent, i.e. only effective above or below a certain
threshold. Switch-like behaviors across variable thresh-
olds are properly modeled by steep sigmoid functions
the values of which continuously vary from zero to one
around the threshold. The ODE models that result from
the algebraic combination of such switch-like interac-
tion terms describe both linear and nonlinear GRN dy-
namics that occur at different time-scales. Qualitative
simulation of such kinds of models is a quite hard prob-
lem that requires the development of ad hoc tailored
algorithms. Unlike GNA, that considerably simplifies
the problem by approximating threshold-regulated re-
sponse functions by step functions, we propose a qual-
itative simulation algorithm that works for continuous
models, being the continuity assumption crucial in view
of more and more realistic models. The algorithm is
grounded on the integration of QR techniques with sin-
gular perturbation analysis methods that lay the mathe-
matical basis for dealing with both slow and fast non-
linear dynamics.

Introduction
Due to unprecedented amount of information at genomic
level made available, in recent years, by high-throughput
experimental technologies, it has become increasingly clear
that computational modeling and simulation frameworks are
needed to represent, understand and predict the complex dy-
namics of Gene-Regulatory Networks (GRN). Although, up
to now, there is no model that efficiently and accurately rep-
resents the gene interactions underlying regulatory mecha-
nisms in their whole complexity, a specific class of ODEs
has shown to be adequate to describe the essential features of
their dynamics. These models assume that the interactions
between variables are threshold-dependent, i.e. the effect of
a variable on another one is regulated by a threshold value.
Such an assumption is quite reasonable as switch-like be-
haviors across variable thresholds are well-suited to mathe-
matically represent the effects of the transcription factors on

the transcription rates of genes. Although such models allow
us to provide detailed description of gene regulatory mech-
anisms at the molecular level (Glass & Kauffman 1973;
Plahte, Mestl, & Omholt 1998), their applicability to predict
their quantitative dynamics is rather limited even when the
network at hand is very well studied. As a matter of fact,
making predictions of the dynamics of specific networks,
either from an initial state or in response to environmen-
tal stimuli, by exploiting classical numerical approaches is
mostly impracticable as precise and quantitative information
on (i) the biochemical reaction mechanisms underlying reg-
ulatory interactions, and (ii) kinetic parameters and thresh-
old concentrations are currently unknown and not identi-
fiable from data. However, at the current state of knowl-
edge, qualitative predictions of the dynamical properties are
not make-shift solutions but rather appropriate to get insight
into the functioning of systems not completely understood
as molecular interaction networks are.

To this end, the application of generic qualitative simu-
lation approaches (Kuipers 1994), at least in their original
form, is not the right solution. The mathematical tools they
are grounded on are too much simple to compensate for the
lack of complete knowledge. This results in a number of
drawbacks, e.g. their inability to upscalability, the exponen-
tial growth of the generated behaviors, and the generation of
spurious behaviors, that reveal to be particularly serious in
predicting nonlinear dynamics of regulatory networks even
in the case of networks with a small number of interact-
ing genes. A qualitative study of GRNs dynamics could,
in theory, be performed by more sophisticated analytical
methods based on the classical theory of qualitative analysis
of dynamical systems, and properly adapted to the specific
class of models (Glass & Kauffman 1973; de Jong 2002;
Plahte, Mestl, & Omholt 1998; Plahte & Kjøglum 2005).
But, in practice, given the complexity of the network struc-
tures due to the large number of both components and inter-
actions, such kind of analysis is quite hard or even unfeasi-
ble to be performed by hand. Thus, the need for the devel-
opment of qualitative simulation algorithms, based on more
sophisticated and adequate mathematical tools, and specif-
ically tailored to capture the network dynamical properties
that depend only on the model structure and are invariant for
ranges of values of kinetic parameters.

The work, herein presented, is an effort in this direction,



and aims at providing a qualitative simulation algorithm of
ODE models of GRN dynamics which works under the as-
sumptions that (i) threshold-dependent regulation mecha-
nisms are modeled by continuous steep sigmoid functions,
and (ii) any two genes are never regulated at the same thresh-
old by a certain variable. The sigmoidal-nonlinearities make
the simulation problem quite hard to be tackled. But, the
assumption that all sigmoids have very high steepness al-
lows us to apply a systematic way of analysis. Let us ob-
serve that, due to the switch-like character of the response
functions around the thresholds, the GRN dynamics occurs
at different time-scales. To be able to deal with both slow
and fast nonlinear dynamics we theoretically base our algo-
rithm on a classical singular perturbation analysis method
properly adapted to the assumed class of ODEs (Plahte &
Kjøglum 2005; Veflingstad & Plahte 2007). Such a method
suitably combined with QR key concepts computationally
drives, starting from an initial state and constraints that de-
fine the parameter space domain, the construction of all pos-
sible state transitions along with the sets of symbolic in-
equalities on parameter values that hold when specific tran-
sitions occur.

Related work
Since frameworks for phenomenological modeling of GRNs
by ODE equations have been proposed (de Jong 2002; Glass
& Kauffman 1973; Plahte, Mestl, & Omholt 1998), a rather
significant number of efforts in developing analytical meth-
ods for their qualitative study has been made (Glass 1977;
Hasty et al. 2001; Gouzè & Sari 2003; Plahte & Kjøglum
2005). But, due to the difficulty to perform by hand such
kind of analysis, the actual application of these methods has
been restricted to toy-examples of scarce biological inter-
est. Pioneering work towards automated qualitative analy-
sis and simulation of GRNs results in a computational tool,
called GNA (de Jong et al. 2004). GNA circumvents the
hard problem of dealing with sigmoidal nonlinear response
functions by approximating them with step functions, dis-
continuous in the threshold hyperplanes. Such an assump-
tion considerably simplifies the analysis as the model results
in piecewise-linear equations, but it raises the problem to
find a proper continuous solution across the threshold hyper-
planes, or, in other words, to seek for generalized solutions
of ODEs with discontinuous right-side terms. But, the solu-
tion to this problem is not straightforward as (i) there exists
in the literature several definitions of generalized solutions,
(ii) it is not yet completely understood what are the rela-
tionships between different definitions, and then, (iii) it is
not clear how to choose the “right” definition for a particu-
lar task (Bacciotti 2003). GNA adopts the Filippov approach
that results particularly popular and convenient to deal with
control problems but it may present drawbacks when ap-
plied to approximate the limit solutions of a continuous ODE
model: it might find “too many” solutions, and fail to reach
all stable solutions. As a consequence, GNA suffers from the
same disadvantages that together with a further approxima-
tion introduced in the algorithm for computational problems
might compromise its soundness and completeness (Dordan,
Ironi, & Panzeri ).

Therefore, the algorithm we propose aims at both over-
coming the limits of GNA and providing a framework that,
thanks to the continuity assumption, can be gradually ex-
tended to tackle wider and more and more realistic classes
of models.

Theoretical background
Singular perturbation analysis: basic ideas
Singular perturbation analysis is a classical approach to
study phenomena that occur at different time-scales (Holmes
1995). The dynamics of such phenomena are described by
ODEs in which a small parameter multiplies either one of
the derivatives or higher order derivative, that is by system
equations of the form:

εẋ = f(x,y, ε)

ẏ = g(x,y, ε)
(1)

where the dot denotes differentiation with respect to the or-
dinary time t, x(t) ∈ Rm,y(t) ∈ Rl, 0 < ε � 1, and f ,g
smooth functions of x,y, t.

Let us indicate Eq. (1) associated with appropriate initial
conditions byMε , and the same initial value problem where
ε = 0 by M0. The system modeled by Mε, called full sys-
tem, is singularly perturbed if, as ε → 0, the solution of Mε

identifies a “small” region, called boundary-layer region, of
non-uniform convergence to the solution of the reduced sys-
tem M0. The region of uniform-converge of Mε to M0 is
called outer region.

Singular perturbation methods aim at calculating an ap-
proximate solution of Mε for 0 < ε � 1, and differ
from each other for the way they calculate and combine the
boundary-layer solution and outer solution. In outline, the
fundamental idea underlying these methods is to calculate
local solutions in both boundary-layer and outer region, and
combine them to find the global approximate solution. The
fast dynamics in the boundary-layer is studied by suitably
scaling the time variable, namely τ = t/ε. Then, the full
initial value problem turns into the boundary-layer system:

x′ = f(x,y, ε)

y′ = ε g(x,y, ε)
(2)

where the prime denotes the derivative with respect to τ . In
the limit, the fast dynamics is obtained by solving:

x′ = f(x,y, 0)

y′ = 0
(3)

This system has a manifold of stationary points given by
f(x,y, 0) = 0, called slow-manifold. The reduced system
M0:

0 = f(x,y, 0)

ẏ = g(x,y, 0)
(4)

describes the motion in the original time t along those points
in the slow-manifold, x = x(y), that satisfy suitable hy-
potheses among those stability (Tikhonov-Levinson theo-
rem, 1952). Then, the outer solution is described by the
equation:

ẏ = g(x(y),y, 0) (5)



Taken together, the reduced equation and the boundary-
layer solution approximate the solution of Mε for small
nonzero values of ε.

A computational framework for the analysis of
GRN dynamics

Experimental and theoretical studies seem to confirm the ad-
equacy of the following specific class of ODEs to describe
the essential features of a wide range of regulatory systems,
and, in particular, of the complex dynamics of GRNs:

ẋi = fi(Z) − γixi i = 1, . . . , n (6)

where the dot denotes time derivative, xi is the concentration
of the i-th gene product, γi > 0 is the decay rate of xi, Z is a
vector with Zjk as components, and Zjk = S(xj , θjk, q) is a
sigmoid function with threshold θjk .The response, or regula-
tory, function S : R+ → [0, 1] is a continuous monotonic S–
shaped map depending on the parameter q (0 < q � 1), that
determines the steepness of S around the threshold value
θjk , such that for q → 0 we have S(xj , θjk, q) = 0 (respec-
tively 1) when the value of xj is smaller (greater) than θjk .

Each xi, defined in Ωi ⊂ R+, is associated with ni thresh-
olds ordered according to θij < θik if j < k. The state equa-
tions describe the balance between the production process
fi(Z) and the degradation one, herein supposed to be linear.
The functions fi are multilinear polynomials in the variables
Zjk, and are frequently composed by algebraic equivalents
of Boolean functions. More precisely,

fi(Z) =

Li
∑

l=1

κil

∏

j=1,n
k=1,nj

Z
αjkl

jk (7)

where κil are real values that denote kinetic rate parameters,
Li is the possibly empty number of interactions that synthe-
size xi, and, in accordance with the network structure, αjkl

assumes value either equal to 1 when Zjk takes part in the
l-th interaction or equal to 0 otherwise.

In the present paper we adopt a further assumption that
sounds quite realistic:
Assumption A. Every gene product only regulates one gene
at each of its thresholds.

Mathematically, this assumption implies that each Zjk

only occurs in one equation. This simplifies the calculation
of the slow–motion manifold that, otherwise, generally con-
sists in an heavy, nonlinear computational problem.

To exemplify the concepts and the definitions as they are
introduced, all through the paper we will consider the ODE
model:
ẋ1 = κ11(1 − Z11)(1 − Z22) + κ12(1 − Z21) − γ1x1

ẋ2 = κ21(1 − Z12) − γ2x2
(8)

where all parameters are strictly positive, and, the response
function Zjk is expressed by the standard Hill function

S(xj , θjk , q) =
x
1/q
j

x
1/q
j +θ

1/q
jk

, commonly used in the literature.
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Figure 1: Partition of the phase-plane into regular and
switching domains.

A - Regular and Switching Domains. Let us consider the
n-dimensional vector of the state variables x whose domain
Ω = Ω1 × . . . × Ωn is given by the product of the domains
Ωi ⊂ R+ of each of its component. The ordered set Θi of
the ni threshold values θij associated with each xi naturally
induces a partition of Ωi into qualitatively distinct domains.
As a matter of fact, instead of the sharp value θij we must
consider a range of values around it, whose width, δ > 0,
is a monotonic function of the steepness parameter q with
δ(q) → 0 for q → 0, and characterizes the domain where
the related response function takes values other than zero or
one. Let us denote by θij and θij the values θij − δ/2 and
θij +δ/2, respectively. Then, each Ωi results from the prod-
uct of open, (θik , θi(k+1)), and closed, [θi(k+1), θi(k+1)],
intervals Iik

1. The whole system domain Ω is then par-
titioned, as showed in Fig. 1, into hyper-rectangles D =
I1l1 × . . . Iili . . . × Inln , li ∈ {0, . . . , ni+1}.

In the set ∆ of all the domains identified by the partition,
we can distinguish the set ∆s ⊂ ∆ of switching domains
(SD) from the set ∆r ⊂ ∆ of regular domains (RD), such
that ∆ = ∆s ∪ ∆r.

A domain D belongs to ∆s if one, several, or all vari-
ables are at (one of) their thresholds or, equivalently, if it
results from the product of at least one closed interval, e.g.
D6, D14, D17. Let σ(D), D ∈ ∆s, be the switching order
of D, i.e.the number of switching state variables, then those
ones that assume values in a closed interval in D. A SD with
σ = n is called a center. In the example, the centers are D7,
D9, D17, and D19.

A domain D belongs to ∆r if it is an open set, e.g.
D1, D5, D13, and it is also called box.

The network dynamics in each domain D ∈ ∆ is de-
scribed by different models: the slow motion in Dr ∈ ∆r

is described by linear ODEs whereas the fast motion in
Ds ∈ ∆s, or equivalently around the thresholds, is described

1k = 0, . . . , ni, where θi0 and θni+1 denote 0 and xi =
max(xi), respectively.



by nonlinear equations. Thus, the need to adopt different
analysis strategies of the motion in regular and switching
domains.

B - Motion equations in regular domains. In each box
Dr, Zjk equals either 0 or 1 in the step function limit. This
simplifies Eq. (6) as they reduces to linear equations:

ẋi = µi − γixi, i = 1, . . . , n (9)

where µi depends on Dr, and is given by the sum of some
κil. From Eq. (9) we can easily find the focal point x∗ =
{x∗

j =
µj

γj
} the trajectories are heading towards. Herein,

we assume that focal points do not belong to switching do-
mains. If x∗ belongs to the initial domain Dr, there is a
stable point in it, called Regular Stable Point (RSP). Other-
wise, the trajectories move to a switching domain adjacent
to Dr.

For example, the motion equations (8) in the domain D11,
being Z21 = 1 and Z11 = Z12 = Z22 = 0, reduce to:

ẋ1 = κ11 − γ1x1

ẋ2 = κ21 − γ2x2
(10)

whose trajectories move towards the focal point x∗ =
(κ11

γ1
, κ21

γ2
). If x∗ ∈ D13 the trajectories starting in D11 point

to x∗. Thus, they escape from D11, and heading towards
D13, they first move to D12.

C - Motion equations in switching domains. In a switch-
ing domain Ds we distinguish σ(Ds) switching variables,
xs ∈ [θs, θs], from n − σ(Ds) regular ones xr. For exam-
ple, in the domain D12 (σ(D12) = 1), x1 is the switching
variable while x2 is the regular one.

Using singular perturbation analysis as properly adapted
to study the system (6) (Plahte & Kjøglum 2005), we can
capture the salient features of the nonlinear dynamics in a
switching domain Ds, and determine how the trajectories
cross it to move towards other domains. In outline, (i) Eq.
(6) related to the xs variables are rewritten into the form (1)
through a change of coordinate system, (ii) the boundary-
layer and outer solutions are calculated in the new coordi-
nates, and (iii) they are converted back into the usual frame
of reference.

Let Σ : Ω 7→ [0, 1]n be the coordinate transformation that
converts the xs coordinates into the Zs ones. As under our
assumptions, ∂Zs

∂xs
= 1

q
ds(Zs, xs), where ds is a continuous

and limited function, we can write the full system:

qŻs =ds(Zs, xs)(fs(ZR,ZS) − γsxs)

ẋr =fr(ZR,ZS) − γrxr

(11)

where ZS,ZR are the vectors of switching and regular vari-
ables Zs and Zr, respectively. For q → 0, Eq. (11) are
of the form (1), and then we study the fast dynamics in the
boundary-layer in the scaled time variable τ = t

q
:

Z ′

s = ds(Zs, θs)(fs(ZR,ZS) − γsθs)

x′

r = 0.
(12)

The solution of the system (12) associated with appropriate
initial conditions gives us the boundary-layer solution. As
ZR is constant in any Ds ∈ ∆s, we focus on the switching
variables Zs only, and calculate the slow-manifold of the
system (12) that is the set of solutions, for all s, of the sta-
tionary equations Z ′

s = 0. We call exit point set (EP) the set
of stable solutions satisfying the conditions of the Tikhonov-
Levinson theorem, and we call Z-cube Z(Ds) = [0, 1]σ(Ds)

the frame of reference where we search for an exit point.
Then, under the hypothesis that at least one exit point Z̃S

exists, the reduced equations are obtained by substituting it
in the motion equations of regular variables:

ẋr = fr(Z̃S,ZR) − γrxr . (13)
The problem (13) is linear, and then, given the initial condi-
tions, the outer solution, that determines how the trajectories
move along the xr directions, is easily calculated.
Remark 1. The location of each exit point is crucial in our
analysis as it indicates the next adjacent domains the trajec-
tories are moving towards along the xs directions.

Let A(Ds) be the set of domains adjacent to Ds, and
Ds = Ds ∪ A(Ds). In the limit q → 0, we define a
map ΣDs : Ds 7→ Z(Ds) such that the interior of Z(Ds),
int(Z(Ds)), and its boundary are the images of Ds, and
A(Ds), respectively. More precisely, the domains Dk ∈
A(Ds) are mapped into the faces of Z(Ds) when Dk ∈ ∆s

or into its vertices, otherwise. If an exit point exists in the
interior of Z(Ds), and the associated reduced system has a
critical point inside Ds then it exists a stable point in Ds,
also called Singular Stable Point (SSP).

As an example let us consider the boundary-layer system
in D12:

Z ′

11 =
Z11(1 − Z11)

θ11
(κ11(1 − Z11) − γ1θ11)

x′

2 = 0

(14)

Its candidate exit point set EP = {0, 1, 1 − γ1θ11

κ11
} includes

the vertices, and a point in the interior of Z(D12), being
Z(D12) the segment [0, 1], whose endpoints 0, 1, and its
interior are the images of D11, D13, and D12, respectively.
Then, D11 and D13 are possible next traversed domains and
D12 may contain a stable point.

D - Search for exit points. Let us observe that stationary
points always exist on the vertices of Z(Ds). Then, for a
vertex to be an exit point it should fulfill the stability condi-
tion. The computational cost of the search for all the other
exit points could be quite heavy, but it can be considerably
reduced by checking first a necessary condition for the exis-
tence of a stationary point on the other elements of Z(Ds).
Let F be a face or the interior of Z(Ds). In (Veflingstad &
Plahte 2007), it has been proved that necessary condition for
the existence of a stationary point in F is that the Jacobian
matrix JF = ( ∂fi

∂Zj
) restricted to the switching variables in

F has a complete loop. This holds if and only if there is a
non-zero loop involving all variables in JF , and it can be
checked by using concepts from graph theory.



Let be F̃ any elements of Z(Ds), face, vertex, or interior,
where a stationary point Z̃ is located, and LF̃ = {l : l ∈

{1, . . . , σ(Ds)}, Z̃l ∈ {0, 1}}. Z̃ is an exit point if: (i) it
is stable, and (ii), if F̃ is on the boundary of Z(Ds), Zl, ∀l ∈
LF̃ has to head towards F̃ . The stability of a candidate exit
point Z̃ is checked by analyzing the spectrum of the Jacobian
matrix, and the condition (ii) is verified when the sign of
Z ′

l(Z̃), given by fl(Z̃), ∀l ∈ LF̃ , is coherent with the value
of Z̃l, namely fl(Z̃) > 0 and Z̃l = 1 or fl(Z̃) < 0 and
Z̃l = 0.
Remark 2. Let us remind that singular perturbation analysis
works out in the limit q → 0, but the calculated solution
approximates the solution of Eq. (11) for sufficiently small
q (0 < q � 1). Moreover, it can be proved that the Jacobian
matrix is stable for 0 < q � 1. This means that the exit
points calculated in the limit also hold for sufficiently small
q (Ironi, Panzeri, & Simoncini ).
Remark 3. Let us observe that, under Assumption A, the
reduced equations are always independent of the Zs occur-
ring in the boundary-layer equations, and that the two sets of
equations are mutually independent. For this reason, the be-
havior of the switching variables in a Z-cube is completely
independent of the values of regular variables. Then, the
study of the motion in a switching domain may be performed
by first analyzing the switching variables, and then the reg-
ular ones.

A qualitative simulation algorithm
Among the generic qualitative approaches proposed in the
literature, QSIM results to be both the most suitable formal-
ism and algorithm to model and simulate models qualita-
tively abstracted from ODEs (Kuipers 1994). For this rea-
son, the description of the specialized qualitative algorithm
we are developing will be mostly given in accordance with
the QSIM jargon.
Qualitative value. The qualitative value of each state vari-
able xi with domain Ωi = [0, xi] is described in terms of
its quantity space. In our context, the quantity space of xi

is defined by the ordered set Θi of its ni threshold symbolic
values. The set Θi also contains the endpoints of the do-
main of xi, namely 0, and xi. The partition, induced by
the state variable quantity-spaces, of the whole system do-
main Ω identifies qualitatively distinct hyper-rectangles D
that define all possible system qualitative values.
Qualitative state. Let A(D) be the set of domains adjacent
to D ∈ ∆. The qualitative state of D, QS(D), is defined
by all of its adjacent domains Dk towards which a transition
from it is possible:

QS(D) = {Dk | Dk ∈ A(D), D → Dk}

Each transition from D identifies a domain next traversed
by a system trajectory. More precisely, if we number by i
the domain D traversed at time ti, each Dk ∈ QS(D) will
be traversed by different trajectories at time ti+1.
State transition. Qualitative simulation of network dynamics
is achieved by iteratively applying local transition strategies

from one domain to its adjacent domains. The possible tran-
sitions from any D are determined by different strategies
according to whether D ∈ ∆r or D ∈ ∆s.

In the case D ∈ ∆r, like in traditional QR methods and
in GNA (de Jong et al. 2004), transitions are determined
by the signs of ẋi. As ẋi are defined by linear expressions,
such signs are easily and uniquely determined by exploiting
the inequalities that define the parameter space domain, and
constrain the RSPs to belong to specific domains.

In the case D ∈ ∆s, a sign-based strategy is not practi-
cable as the expressions for ẋi are nonlinear. A convenient
way to proceed is given by singular perturbation analysis:
transitions from D towards adjacent Dk are determined by
the locations of the exit points in the associated Z(D) that
can be either on (i) the boundary of Z(D) or in (ii) its inte-
rior. Except in the case (ii), the number of exit points may
be greater than one, and especially in a qualitative context
where knowledge incompleteness on the parameter values
is expressed by coarse constraints. Then, in general, the
successors of D are not uniquely determined. But, through
symbolic computation procedures, it is possible to calculate
the set of inequalities, I i

j , on parameters that hold when a
transition from Di to Dj occurs. Then, each path from Di

to Dj is clearly identified by the 3-tuple 〈Di, Dj , I
i
j〉.

Qualitative behavior. A finite sequence of paths, where each
path is clearly both linked and consistent with its predeces-
sor and successor, defines a qualitative behavior:

QB = 〈D0, I0〉, 〈D0, D1, I
0
1 〉, . . . 〈Dk, Di, I

k

i 〉, . . . 〈DF , IF 〉,
where D0 is the initial domain, and DF either contains a
stable fixed point or identifies a cycle, i.e it is an already
visited domain. I0 is the initial set of inequalities that defines
the parameter space domain, and IF the set of inequalities
on parameter values associated with DF .
Qualitative simulation. Starting from an initial domain D0

and a set, I0, of symbolic inequalities on parameter val-
ues, qualitative simulation generates all possible state tran-
sitions, and represents them by a directed tree rooted in D0,
BT(D0), where the vertices correspond to Di, and the arcs,
labeled by the inequalities I i

j , to the transitions from Di to
Dj . Each branch in BT(D0) defines a qualitative trajectory
from D0, that occurs when the values of parameters satisfy
its related inequalities. Then, although, from a strictly com-
putational point of view, the tree representation is a little bit
less convenient than the graph one, it is much preferable as
it enables an easier, more direct, and less ambiguous inter-
pretability of the simulation outcomes.

Given as input, (i) n symbolic state equations of the form
(6); (ii) n quantity spaces Θi = {θij} of the state variable
xi; (iii) D0 ∈ ∆; (iv) a set of symbolic inequalities I0 on
parameters defining a parameter space domain PSD0, the
algorithm provides as output BT(D0). Its main steps are
outlined in the following:

1. Calculate the qualitative state QS(Di) of the current do-
main Di, or equivalently the possible transitions from Di.

2. Determine constraints I i
k on parameters for each path

ek = Di → Dk, where Dk ∈ QS(Di).
3. Append 〈Di, Dk, I i

k〉 to BT(D0) if I i
k are consistent with



the initial constraints I0, and mark Di as visited domain.

4. Repeat from step 1 for each not visited Dk.

Step 1 is the core of the overall algorithm, and it requires
two separate algorithms to implement the different strate-
gies adopted according to whether Di ∈ ∆r or Di ∈ ∆s.
Both algorithms calculate the conditions on parameters I i

k

that should hold for a possible transition from Di to Dk. A
transition from Di to Dk actually occurs, and then Dk ∈
QS(Di), only if the set I i

k is consistent with the set I0. Let
us define I i

k consistent with I0 when it defines a not empty
parameter space domain PSDi

k such that PSDi
k ⊆ PSD0.

Furthermore, as both the algorithms involve the calcula-
tion of the relative positions of two regions we define the
relative position of D1 with respect to D2, indicated by
V (D1, D2) = {vj}n

j=1 where vj ∈ {−1, 0, 1}, by the com-
parison of the intervals defining D1 and D2, where D1 and
D2 ∈ ∆.

Transition from a regular domain

The algorithm in charge of the construction of the possi-
ble paths from regular domains is, in principle, similar to
that one proposed by GNA, but it is more informative as
it calculates the I i

ks. As δ(q) → 0 for q → 0, for the
sake of simplicity, we indicate Di ∈ ∆r by the product
Di =

∏n
j=1(θji, θj(i+1)) where (θji, θj(i+1)) denotes the

interval of xj in Di. In outline, the algorithm performs the
following steps:

1- Calculate A(Di) and state equations in Di. The algorithm
calculates the set A(Di), the symbolic state equations in Di

(9), and its focal point x∗. As an example, let us consider
the domain D11: A(D11) = {D6, D7, D12, D16, D17},
the state equations (10) have a stationary solution x∗ =
(κ11

γ1

, κ21

γ2

).

2- Calculate I i
k and possible transitions. ∀Dk ∈ A(Di), the

algorithm calculates the set of inequalities on parameters I i
k

that need to be fulfilled to have a transition from Di to Dk.
As in Di all the equations (9) are linear, and all the trajecto-
ries head towards a focal point x∗ in a regular domain, such
inequalities are calculated by imposing that the signs of state
variable rates match the relative position of Dk with respect
to Di. Let V (Dk, Di) = {vj}n

j=1 be the relative position
of Dk with respect to Di. I i

k, initialized to I0, is updated,
∀j ∈ {1, . . . , n}, with either the inequality (

µj

γj
> θj(i+1))

if vj = 1 or (
µj

γj
< θji) if vj = −1. Thus, if the calculated

inequality set defines a not empty parameter space domain
PSDi

k ⊆ PSD0 then a transition towards Dk is possible
and the qualitative state QS(Di) is updated accordingly. As
an example, let us define I0 as follows:

I0 : (
κ11 + κ12

γ1
> θ11) ∧ (θ21 <

κ21

γ2
< θ22) (15)

Then, transitions from D11 in Fig. 1 are possible under the

following conditions on parameters:

I11
6 : ẋ2 < 0 ⇒ (κ21

γ2
< θ21) to go to D6

I11
12 : ẋ1 > 0 ⇒ (κ11

γ1

> θ11) to go to D12

I11
7 : ẋ1 > 0, ẋ2 < 0 ⇒ I11

6 ∧ I11
12 to go to D7

I11
16 : ẋ2 > 0 ⇒ (κ21

γ2
> θ22) to go to D16

I11
17 : ẋ1 > 0, ẋ2 > 0 ⇒ I11

12 ∧ I11
16 to go to D17

Among the inequalities given above, only I11
12 is not in

disagreement with I0. Thus, a possible transition from D11

towards D12 occurs when I11
12 ∧ I0 holds. In other words,

QS(D11) = {D12}.
3- Check the existence of a RSP in Di. A stable point
RSP exists in Di, i.e. Di ∈ QS(Di), if P̃ SD ⊆ PSD0

and P̃ SD 6= ∅, where P̃ SD is a parameter space domain
defined by the set of inequalities (θji <

µj

γj
< θj(i+1))

∀j ∈ {1, . . . , n}.

Transition from a switching domain
Let Di ∈ ∆s be defined by the σ(Di) switching variables
xs with their values around θs and by the n−σ(Di) regular
ones, xr. In a switching domain, the nonlinear dynamics is
characterized by fast and slow motions, respectively associ-
ated with xs and xr that are independently calculated. Let
us reindex the variables xj , Zj such that the switching vari-
ables come first, and proceed first with the construction of
the fast motion.

A - Fast motion. The study of the fast dynamics is per-
formed in Z(Di) in the scaled time, and aims at localizing
the set of exit points in Z(Di) rather than at detailing the
dynamics within it. Such points clearly identify the next ad-
jacent domains the trajectories are moving towards from Di

along the xs directions. To this end, the algorithm proceeds
as follows:
1- Calculate the boundary-layer equations in Di. The algo-
rithm symbolically calculates the boundary-layer equations
(12) in the Z variables, and defines the mapping ΣDi : Di →
Z(Di) that states a correspondence between Di and its ad-
jacent domains Dk with the interior and the elements on the
boundary of Z(Di). Let F be the set of both the faces and
the interior of Z(Di): its generic element F = ΣDi(D),
D ∈ ∆s is either a face of Z(Di) when D ∈ A(Di) or its
interior when D = Di.

To exemplify, let us consider the switching domain D7,
which is characterized by fast motion only as both variables
are switching in it. In D7 the boundary-layer system is given
by:

Z
′

11 =
Z11(1 − Z11)

θ11

(κ11(1 − Z11) + κ12(1 − Z21) − γ1θ11)

Z
′

21 =
Z21(1 − Z21)

θ21

(κ21 − γ2θ21)

(16)

The set F has five elements, the four faces Fk correspond-
ing to D2, D6, D8, D12, and the interior of Z(D7) that cor-
respond to D7. Moreover, the vertices of Z(D7) are the
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Figure 2: Correspondence between the domains in the
phase-plane and the elements of Z(D7). The candidate exit-
points are denoted by an empty circle.

images, through the mapping Σ, of the adjacent regular do-
mains D1, D11, D3, and D13.
2- Search for stationary points. Let us denote by EP the
set of stationary points, initially made up of the vertices
of Z(Di). The set of the candidate exit points EP is up-
dated by the possible stationary points on each element of
F , that under the Assumption A contains at most one sta-
tionary point. To this end, the algorithm symbolically calcu-
lates, ∀F ∈ F , the Jacobian matrix JF , obtained by remov-
ing, ∀i ∈ LF , the i-th rows and columns from the Jacobian
matrix of the system, and by computing its elements on F .

The Jacobian matrices associated with the elements of F
in the example above are:

JF7
=

(

−κ11 −κ12

0 0

)

; JF2
= (−κ11);

JF6
= (0); JF8

= (0); JF12
= (−κ12)

As the presence of a non-zero loop is a necessary condi-
tion for the existence of a stationary point, the algorithm first
searches for a non-zero loop involving all variables in JF :
in case, it symbolically calculates the stationary point on F ,
and updates accordingly the set of candidate exit points EP .

In the example, only JF2
and JF12

have a non-zero loop.
Then, the algorithm looks for the stationary state on F2 and
F12: Z̃2 = (1 + κ12

κ11
− γ1θ11

κ11
, 0) and Z̃12 = (1 − γ1θ11

κ11
, 1).

Finally, the exit point candidate set is updated with the points
Z̃2 and Z̃12 (Fig. 2).
3- Calculate I i

k and possible transitions by checking stability
of stationary points. The inequality set I i

k , initialized to I0, is
calculated for each candidate exit point Z̃k = {Z̃k

s } ∈ EP
by requiring that each point fulfills stability conditions. In
addition, for those Z̃k located on elements of F , I i

k is fur-
ther constrained by the inequalities on parameters that im-
pose 0 < Z̃k

s < 1 for each Z̃k
s /∈ {0, 1}. The algorithm

checks the stability conditions (i) by analyzing the spectrum
of the Jacobian matrix JF , and (ii) by imposing conditions
on the sign of Z ′

l(Z̃
k), given by fl(Z̃k), ∀l ∈ LF . The latter

condition is easily checked as it is of the form (fl(Z̃k) > 0)

if Z̃l = 1 and (fl(Z̃) < 0) if Z̃l = 0, while the former one is
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Figure 3: Z(D7) and the exit-points denoted by a filled cir-
cle. The empty circles denote unstable stationary points that
correspond to possible entrance points to the domain.

checked by using concepts from graph theory, and the usual
definition of stability based on the sign of the eigenvalues
of JF . Due to Assumption A, JF has just one element per
row and per column. Then, reordering the variables leads to
a matrix JF block-structured, where each block is a permu-
tation matrix associated with a sub-loop. It follows that the
characteristic equation |JF − λI | = 0 is:

m
∏

i=1

(λl(i) + Li) = 0 (17)

where the roots of the equation above, λi, are the eigenval-
ues, m is the number of sub–loops of JF , li is the i–th sub–
loop, l(i) is the length of li and Li is the loop product of li.
As stability is guaranteed when the eigenvalues of JF have
not positive real part, we exclude the case l(i) > 2. Then,
Z̃ is stable if: (i) JF has no blocks with dimension strictly
greater than 2; (ii) in blocks with l(i) = 1, Li = bi < 0; (iii)
in blocks with l(i) = 2, the product of the non-zero elements
is negative.

The stable points located on Z(Di) clearly identify the
set of all possible exit domains, i.e. those domains towards
which a transition from Di is possible. Such domains are
easily calculated by the algorithm by applying the map Σ−1

to each element of Z(Di) that contains an exit point. Let us
observe that the remaining unstable stationary points in EP
are possible entrance points to Di.

Going back to the example, both exit points Z̃2 and Z̃12

fulfill the stability condition (i) as −κ11 < 0 and −κ12 < 0.
The condition (ii) on variable Zl, l = 2 requires that :

Is,2 : f2(Z̃
2) < 0 ⇒ κ21 − γ2θ21 < 0 (18)

Is,12 : f2(Z̃
12) > 0 ⇒ κ21 − γ2θ21 > 0 (19)

The inequality Is,12 defined by (19) is compatible with (15),
but the inequality Is,2 is not. Then, Z̃2 is removed from
the exit point set. To be an exit point Z̃12 must satisfy the
condition:

I(0,1),12 : 0 < Z̃12
1 < 1 ⇒ (κ11 > γ1θ11)

Finally, Z̃12 is an exit point if I7
12, defined by I0 ∧ Is,12 ∧

I(0,1),12, holds.
As for vertices in the example, the stability condition is

fulfilled in the point Z̃11 = (0, 1) that corresponds to the
vertex defined as image of D11 by the map Σ.
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Figure 4: Behavior tree rooted in D1.

Finally, the only exit domains are D12, D11, and then
QS(D7) = {D12, D11} (Fig. 3).

B - Slow motion. The slow dynamics of regular variables
xr is studied in the normal time in the usual frame of ref-
erence, and it is reconstructed from the reduced system
through the same symbolic procedure given for regular do-
mains.

Locating SSPs in Di. Let us consider the general case
when the domain model is characterized by both switching
and regular variables. The motion towards a SSP, that occurs
in a sliding mode along a stable point in the slow-manifold
of the boundary-layer system, is described, in the normal
time, by the reduced system. A stable stationary point ex-
ists in Di, i.e. Di ∈ QS(Di), if a stable point exists in the
interior of Z(Di), and the regular variable rates are zero in
a point inside Di. The set Ir,i of inequalities that checks
the latter condition are defined by θji <

µj

γj
< θj(i+1)

∀j ∈ {σ(Di) + 1, . . . , n}. Let us observe that, due to As-
sumption A, any Z(Di) can at most contain one internal sta-
ble point. This occurs if all variables in Z(Di) are involved
in a loop.

As an example, let us consider again the domain D12,
and check if it contains one SSP. In D12 the boundary-
layer system is given by Eq. (14), and the stationary state
Z̃12 = 1 − γ1θ11

κ11

in the interior of Z(D12) fulfills the sta-
bility conditions when it holds I0 ∧ I(0,1),12, being I(0,1),12

the inequality set that constrains it to belong to the interval
(0,1).

Finally, the stability condition Ir,12 : (θ21 < κ21

γ2

< θ22)

on the regular variable x2 is provided by the reduced equa-
tion: ẋ2 = κ21 − γ2x2. Thus, a SSP exists in D12 when pa-
rameter values satisfy the set of inequalities I0 ∧ I(0,1),12 ∧
Ir,12.

Results
The algorithm is currently under implementation. To illus-
trate the type of output, let us consider the results of a sim-
ulation of the ODE model (8) starting from D1 with the pa-
rameter space defined by the inequalities I0. The algorithm

builds the behavior tree showed in Fig. 4, and calculates
the inequalities on parameters, listed in Fig. 5(b), that are
associated with each path in BT(D1). As n = 2, a represen-
tation in the phase plane of the trajectories described by the
tree, possibly filtered as explained below, is also given (Fig.
5(a)). Three reachable stable states, located in D11, D12 and
D5, are identified by the final leaf of each branch in BT.
As D12 ∈ ∆s, one of them is a SSP whereas the others are
RSPs. These stable states are reached by different predicted
qualitative behaviors, each of them occurring under specific
constraints on parameters. For example, the trajectory QB13
starting from D1, crossing D6, and reaching a RSP in D11

is allowed when the inequalities I1
6 , I6

11 and I11, consistent
with I0, hold.

The qualitative simulation outcomes are numerically con-
firmed. In Fig. 6 we report some of the numerical simula-
tions performed under different conditions. Fig. 6(a) shows
trajectories, abstracted by QB4 and QB8, and characterized
by a sliding motion along θ11 towards the SSP in D12. The
trajectories moving towards the RSP in D5 (Fig. 6(b)) are
abstracted by QB6, and those moving towards the RSP in
D11 (Fig. 6(c)) are abstracted by QB1 and QB13.
Soundness. The algorithm guarantees that the behavior tree
captures all of the sound behaviors for values of q suffi-
ciently small. The determination of a symbolic upper bound,
q, depending on parameters would better characterize the
terms of validity of the generated behaviors. However, for a
formal proof of soundness we need to prove that assuming
stability instead of asymptotic stability does not affect the
main results in singular perturbation analysis. Both prob-
lems are currently under study, and close to be solved.
Completeness. At present, the algorithm may generate spu-
rious behaviors. There is a twofold explanation for that.
First, we have not yet performed a thorough analysis with re-
spect to entrance-exit transition, or in other words, we have
not yet solved (i) the problem of identifying the only admis-
sible connections between entrance and exit points. More-
over, singular perturbation analysis is a “local” procedure
that works quite well in a quantitative context but that needs,
in a qualitative context, to be supported by a “global” cri-
terion when local paths are combined to produce a specific
trajectory. For example, the behavior QB2 is spurious as I7

12
is not consistent with I12

11 . Similarly, QB11 is spurious. We
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Figure 6: Phase space plots of the numerical simulations performed with different parameter sets and initial conditions taken on
an uniform grid of points in D1. Common parameter values are: θ11 = θ21 = 1, θ12 = θ22 = 2, q = 0.01, κ21 = 1.5, γ2 = 1.
Other parameters are: (a) κ11 = 2.5, κ12 = 2.5, γ1 = 1; (b) κ11 = 25, κ12 = 2.5, γ1 = 10; (c) κ11 = 0.7, κ12 = 0.7, γ1 = 1.
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Figure 5: (a) Phase space representation of trajectories de-
scribed by BT after filtering; • denotes a stable state. (b)
Inequalities calculated by the algorithm.

are quite confident that the automatic analysis of the consis-
tency of the whole sequence of inequalities that character-
izes a behavior together with the solution of problem (i) will
allow us to filter out all spurious solutions, and to prove the
completeness of the algorithm.

Conclusion and future work
The qualitative simulation algorithm we propose works for
models of GRNs with continuous sigmoid response func-
tions. The continuity assumption makes the simulation
problem hard to be tackled but it is crucial in view of the
realization of tools that can be gradually extended to tackle
more and more realistic models. The algorithm is grounded
on a set of symbolic computation algorithms that carry out
the integration of qualitative reasoning techniques with sin-
gular analysis perturbation methods: the former techniques
allow us to cope with uncertain and incomplete knowledge
whereas the latter ones lay the mathematical groundwork for
a sound and complete algorithm capable to deal with regu-
lation processes that occur at different time-scales.

As for symbolic calculus, the algorithm requires to tackle
complex tasks, such as: (i) update an inequality set with an
another one; (ii) check the consistency of two sets of in-
equalities I1 and I2; (iii) solve systems of equations; (iv)
find cycles in the Jacobian matrix. As for (iii), the original
equations are multilinear in Zs, but due to Assumption A
they assume a linear form in the boundary layer, and then
they can be straightforward solved and analyzed for stabil-
ity. Also the solution of problems (i) and (ii) benefits from
Assumption A as the inequalities are always linear. Then,
thanks to the Assumption A, and to algorithms proposed
both by the literature and common symbolic computation
package, such as Mathematica (Wolfram 2003), the tasks
(i)-(iii) are simplified and feasible. As for the task (iv), it is
performed by using cycle–detection algorithms and tools of
matrix graph theory (Gross & Yellen 2006).

The characterization of the paths from one domain to the
next ones by sets of inequalities constraining the model pa-
rameters is quite new in the field of qualitative simulation,
as for both general-purpose and specifically tailored algo-
rithms. Such a strategy may reveal quite useful in the def-
inition of a “global criterion” that allows us to distinguish



sound behaviors from spurious ones by requiring that the
sets of inequalities that label the local paths in a specific tra-
jectory are consistent with each other. Both the definition of
such a criterion and its implementation are not a trivial task,
especially from a computational point of view. As for algo-
rithm completeness, another essential methodological and
computational issue to be deepened deals with the definition
of the transition map that states the proper connection of the
entrance points to the exit points associated with a switching
domain. Moreover, the complex nonlinearities of the mod-
els we are interested in require to design methodological and
computational methods to deal with possible aspects of the
model dynamics that we have ignored herein, such as limit
cycles.
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