
Time Series AnalysisElizabeth BradleyDepartment of Computer SieneUniversity of ColoradoBoulder, Colorado, USA 80309-0430 lizb�s.olorado.eduChapter 5 of Intelligent Data Analysis: An IntrodutionD. Hand and M. Berthold, eds.2nd edition, Springer-Verlag, 2002.Intelligent data analysis often requires one to extrat meaningful onlusions about a ompliatedsystem using time-series data from a single sensor. If the system is linear, a wealth of well-established,powerful tehniques is available to the analyst. If it is not, the problem is muh harder and one must resortto nonlinear dynamis theory in order to infer useful information from the data. Either way, the problemis often ompliated by a simultaneous overabundane and lak of data: megabytes of time-series dataabout the voltage output of a power substation, for instane, but no information about other importantquantities, suh as the temperatures inside the transformers. Data-mining tehniques[16℄ provide someuseful ways to deal suessfully with the sheer volume of information that onstitutes one part of thisproblem. The seond part of the problem is muh harder. If the target system is highly omplex|say, aneletromehanial devie whose dynamis is governed by three metal bloks, two springs, a pulley, severalmagnets, and a battery|but only one of its important properties (e.g., the position of one of the masses)is sensor-aessible, the data analysis proedure would appear to be fundamentally limited.Fig. 1 shows a simple example of the kind of problem that this hapter addresses: a mehanialspring/mass system and two time-series data sets gathered by sensors that measure the position andveloity of the mass. This system is linear: it responds in proportion to hanges. Pulling the mass twieas far down, for instane, will eliit an osillation that is twie as large, not one that is 21:5 as large orlog 2 times as large. A pendulum, in ontrast, reats nonlinearly: if it is hanging straight down, a smallhange in its angle will have little e�et, but if it is balaned at the inverted point, small hanges havelarge e�ets. This distintion is extremely important to siene in general and data analysis in partiular.If the system under examination is linear, data analysis is omparatively straightforward and the tools|the topi of setion 1 of this hapter|are well developed. One an haraterize the data using statistis(mean, standard deviation, et.), �t urves to them (funtional approximation), and plot various kinds ofgraphs to aid one's understanding of the behavior. If a more-detailed analysis is required, one typiallyrepresents the system in an \input + transfer funtion ! output" manner using any of a wide variety oftime- or frequeny-domain models. This kind of formalism admits a large olletion of powerful reasoningtehniques, suh as superposition and the notion of transforming bak and forth between the time andfrequeny domains. The latter is partiularly powerful, as many signal proessing operations are muheasier in one domain than the other. _xx tk m xFigure 1: A simple example: A spring/mass system and a time series of the vertial position and veloityof the mass, measured by two sensors 1



Nonlinear systems pose an important hallenge to intelligent data analysis. Not only are they ubiquitousin siene and engineering, but their mathematis is also vastly harder, and many standard time-seriesanalysis tehniques simply do not apply to nonlinear problems. Chaoti systems, for instane, exhibitbroad-band behavior, whih makes many traditional signal proessing operations useless. One annotdeompose haoti problems in the standard \input + transfer funtion ! output" manner, nor an onesimply low-pass �lter the data to remove noise, as the high-frequeny omponents are essential elementsof the signal. The onept of a disrete set of spetral omponents does not make sense in many nonlinearproblems, so using transforms to move between time and frequeny domains|a standard tehnique thatlets one transform di�erential equations into algebrai ones and vie versa, making the former muh easierto work with|does not work. For these and related reasons, nonlinear dynamiists eshew most formsof spetral analysis. Beause they are soundly based in nonlinear dynamis theory and rest �rmly on theformal de�nition of invariants, however, the analysis methods desribed in setion 2 of this hapter do notsu�er from the kinds of limitations that apply to traditional linear analysis methods.Another ommon ompliation in data analysis is observability: whether or not one has aess to enoughinformation to fully desribe the system. The spring/mass system in Fig. 1, for instane, has two statevariables|the position and veloity of the mass|and one must measure both of them in order to knowthe state of the system. (One an, to be sure, reonstrut veloity data from the position time series in theFigure using divided di�erenes1, but that kind of operation magni�es noise and numerial error, and thusis impratial.) Delay-oordinate embedding is one way to get around this problem; it lets one reonstrutthe internal dynamis of a ompliated nonlinear system from a single time series|e.g. inferring usefulinformation about internal (and unmeasurable) transformer temperatures from their output voltages. Thereonstrution produed by delay-oordinate embedding is not, of ourse, ompletely equivalent to theinternal dynamis in all situations, or embedding would amount to a general solution to ontrol theory'sobserver problem: how to identify all of the internal state variables of a system and infer their valuesfrom the signals that an be observed. However, a single-sensor reonstrution, if done right, an still beextremely useful beause its results are guaranteed to be topologially (i.e., qualitatively) idential to theinternal dynamis. This means that onlusions drawn about the reonstruted dynamis are also trueof the internal dynamis of the system inside the blak box. All of this is important for intelligent dataanalysis beause fully observable systems are rare in siene and engineering pratie; as a rule, many|often, most|of a system's state variables either are physially inaessible or annot be measured withavailable sensors. Worse yet, the true state variables may not be known to the user; temperature, forinstane, an play an important and often unantiipated role in the behavior of an eletroni iruit. Thedelay-oordinate embedding methods overed in setion 3 of this hapter not only yield useful informationabout the behavior of the unmeasured variables, but also give some indiation of how many independentstate variables atually exist inside the blak box.Although the vast majority of natural and man-made systems is nonlinear, almost all textbook time-series analysis tehniques are limited to linear systems. The objetive of this hapter is to present amore broadly useful arsenal of time-series analysis tehniques|tools that an be applied to any system,linear or nonlinear. The tehniques that have been developed by the nonlinear dynamis ommunity overthe past deade play a leading role in this presentation, but many other ommunities have developeddi�erent approahes to nonlinear time-series analysis. One of the more famous is Tukey's \exploratorydata analysis," a sleuthing approah that emphasizes (and supports) visual examination over blind, brute-fore digestion of data into statistis and regression urves[50℄. Some of the more-reent developments inthis �eld attempt to aid|or even augment|the analyst's abilities in unonventional ways, ranging from3D virtual-reality displays to haptis (representing the data as a touh pattern, whih has been proposedfor reading mammograms[30℄) or data soni�ation.The setions that follow are organized as follows. Setion 1 quikly reviews some of the traditionalmethods that apply to linear systems. Setion 2 overs the bare essentials of dynamial systems theory andpratie, with a spei� emphasis on how those tehniques are useful in IDA appliations. This materialforms the basis of the general theory of dynamis that applies to any system, linear or nonlinear. If all of theimportant properties of the target system an be identi�ed and measured and the data are basially noise-1e.g., dividing the di�erene between suessive positions by the time interval between the measurements2
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Figure 2: The \input + transfer funtion! output" framework of traditional signal proessing. Top: timedomain. Bottom: frequeny domain.free, these tehniques, alone, an provide a very good solution to many nonlinear data-analysis problems. Ifthere are fewer sensors than state variables, however, one must all upon the methods desribed in setion 3in order to reonstrut the dynamis before one an apply the setion 2 methods. Noise is a muh morediÆult problem. There exist tehniques that \�lter" nonlinear time-series data, turning the nonlinearityto advantage and reduing the noise by a exponentially large fator[15℄, but the mathematis of this is wellbeyond the sope of this disussion. This hapter ontinues with two extended examples that demonstrateboth the analysis methods of setion 2 and the delay-oordinate reonstrution tehniques of setion 3, andonludes with some disussion of the utility of these methods in intelligent data analysis.1 Linear Systems AnalysisThe basi framework of traditional signal analysis[43℄ is shematized in Fig. 2; in it, an input signal is appliedto a system to yield an output. One an desribe this proess in the time domain, using the impulse responseh(t) to model the system, or in the frequeny domain, using the frequeny response transfer funtion H(s).The impulse response of a system is its transient response to a quik kik (x(t0) = 1; x(t) = 08 t 6= t0);the frequeny response H(s) desribes, for all s, what the system does to a sinusoidal input of frequenys. H(s) is a omplex funtion; it is most frequently written (and plotted) in magnitude (jH(s)j) and angle(6 H(s)) form, but sometimes appears as RefH(s)g and ImfH(s)g.Deomposing a problem in this \input + transfer funtion ! output" manner is very useful; amongother things, it allows one to apply powerful reasoning tehniques like superposition2. The problem withFig. 2 is that systems an reat very di�erently to di�erent inputs at di�erent times|that is, h(t) andH(s) may depend on the magnitude of x, or they may have time-dependent oeÆients. Either situationnegates almost all of the advantages of both parts of the framework shown in the Figure. Nonlinearity(the former ase) and nonstationarity (the latter) are treated later in this hapter; in the remainder of thissetion, we assume linearity and time invariane.The top paradigm in Fig. 2 is easier to think about, but the bottom is mathematially muh easier towork with. In partiular, deriving y(t) from x(t) and h(t) involves a onvolution:y(t) = x(t) � h(t)= Z +1�1 x(�)h(t � �)d�2If the inputs x1 and x2 produe the outputs y1 and y2, respetively, then the input x1 + x2 will produe the outputy1 + y2. 3



whereas the frequeny-domain alulation only requires multipliation:Y (s) = X(s)H(s)The frequeny domain has a variety of other powerful features. The spetrum is easy to interpret; the peaksof jH(s)j orrespond to the natural frequenies (\modes") of the system and hene, loosely speaking, to thenumber of degrees of freedom. Di�erential equations beome algebrai equations when transformed intothe frequeny domain, and signal separation is a trivial operation. Beause of these advantages, engineersare trained to transform problems into the frequeny domain, perform any required manipulations (e.g.,�ltering) in that domain, and then reverse-transform the results bak into the time domain.Traditional analysis methods haraterize a linear system by desribing h(t) or H(s). Depending onthe demands of the appliation, this desription|the \model"|an range from the highly abstrat to thevery detailed:1. desriptive models: e.g., the sentene \as water ows out of a bathtub, the level in the tub dereases"2. numerial models: a table of the water level in the tub versus time3. graphial models: the same information, but in pitorial form4. statistial models: the mean, standard deviation, and/or trend of the water level5. funtional models: a least-squares �t of a line to the water level data6. analyti models: an equation, algebrai or di�erential, that relates outow and water levelThe simpliity of the �rst item on the list is deeptive. Qualitative models like this are quite powerful|indeed, they are the basis for most human reasoning about the physial world. A iruit designer, forinstane, reasons about the gain-bandwidth tradeo� of a iruit, and understands the system in terms ofa balane between these two quantities: \if the gain goes up, the bandwidth, and hene the speed, goesdown...". Many traditional analysis methods are also based on qualitative models. One an, for instane,ompute the loation of the natural frequenies of a system from the ring frequeny and deay time of itsimpulse response h(t) or the shape of its frequeny response H(s); the latter also lets one ompute thespeed (rise time) and stability (gain or phase margin) of the system. Step and ramp response|how thesystem reats to inputs of the form x(t) = 0 t < 0x(t) = 1 t � 0and x(t) = 0 t < 0x(t) = t t � 0respetively|also yield useful data analysis results; see [41℄ for details. Though qualitative models arevery powerful, they are also very diÆult to represent and work with expliitly; doing so e�etively is thefous of the qualitative reasoning/qualitative physis ommunity[52℄.As noted and disussed by many authors (e.g., [49℄), tables of numbers are muh more useful to humanswhen they are presented in graphial form. For this reason, numerial models|item 2 in the list above|arerarely used, and many IDA researhers, among others, have devoted muh e�ort to �nding and odifyingsystemati methods for portraying a data set graphially and highlighting its important features. Anotherway to make numbers more useful is to digest them into statistial values[53℄ like means, medians, andstandard deviations, or to use the methods of funtional approximation (e.g., hapter 10 of [20℄) andregression to �t some kind of urve to the data. Statistiians sometimes apply transformations to datasets for the purpose of stabilizing the variane or foring the distribution into a normal form. These4



methods|whih an be found in any basi text on statistial methods, suh as [36℄|an make dataanalysis easier, but one has to remember how the transformed data have been manipulated and be arefulnot to draw unwarranted onlusions from it. It an also be hard to know what transformation to apply ina given situation; Box and Cox developed a formal solution to this, based on a parametri family of powertransforms[5℄.Sometimes, none of these abstrations and approximations is adequate for the task at hand and onemust use an analyti model. Again, these ome in many avors, ranging from algebrai expressions topartial di�erential equations. One of the simplest ways to use an algebrai equation to desribe a system'sbehavior is to model its output as a weighted sum of its urrent and previous inputs. That is, if one has aseries of values fxi(t)g of some system input xi|e.g., the position of a ar's throttle, measured one perseond|one predits its output y (the ar's speed) using the equation:y(t) = LXl=0 blxi(t� l) (1)The tehnial task in �tting suh an Lth-order moving average (MA) model to a data set involves hoosingthe window size L and �nding appropriate values for the bl. A weighted average of the last L values is asimple smoothing operation, so this equation represents a low-pass �lter. The impulse response of suh a�lter|again, how it responds to a quik kik|is desribed by the oeÆients bl: as l goes from 0 to L, theimpulse �rst \hits" b0, then b1, and so on. Beause this response dies out after L timesteps, equation (1)is a member of the lass of so-alled �nite impulse response (FIR) �lters.Autoregressive (AR) models are similar to MA models, but they are designed to aount for feedbak,where the output depends not only on the inputs, but also on the previous output of the system:y(t) = MXm=0 amy(t�m) + xi(t) (2)Feedbak loops are ommon in both natural and engineered systems; onsider, for instane, a ruise ontrolwhose task is to stabilize the speed of a ar at 100 kph by manipulating the throttle ontrol. Traditionalontrol strategies for this problem measure the di�erene between the urrent output and the desired setpoint, then use that di�erene to ompute the input|e.g., opening the ar's throttle x in proportion to thedi�erene between the output y and the desired speed. Feedbak also has many important impliations forstability, in part beause the loop from output to input means that the output y an ontinue to osillateinde�nitely even if the input is urrently zero. (Consider, for example, the AR model y(t) = �y(t�1)+x(t)if x = 0.) For this reason, AR models are sometimes alled in�nite impulse response (IIR) �lters. Thedependene of y(t) on previous values of y also ompliates the proess of �nding oeÆients am that �tthe model to a data set; see, e.g., [6℄ for more details.The obvious next step is to ombine MA and AR models:y(t) = LXl=0 blxi(t� l) + MXm=0 amy(t�m) (3)This \ARMA" model is both more general and more diÆult to work with than its predeessors; one musthoose L and M intelligently and use frequeny-transform methods to �nd the oeÆients; see [6℄ for thismethodology. Despite these diÆulties, ARMA models and their lose relatives have \dominated all areasof time-series analysis and disrete-time signal proessing for more than half a entury"[51℄.Models like those in the ARMA family apture the input/output behavior of a system. For some tasks,suh as ontroller design, input/output models are inadequate and one really needs a model of the internaldynamis: a di�erential equation that aounts for the system's dependene on present and previous states.As an example, onsider the spring/mass system of Fig. 1. If x is the deformation of the spring from itsnatural length, one an write a fore balane at the mass as follows:�F = mamg � kx = ma5



Aeleration a is the seond derivative of position (a = x00) and both are funtions of time, so the fore-balane equation an be rewritten as: mx(t)00 = mg � kx(t) (4)This linear3 di�erential equation expresses a set of onstraints among the derivatives of an unknownfuntion x(t) and a set of onstants. The mg term is gravity; the kx term is Hooke's law for the foreexerted by a simple spring. The signs of mg and kx are opposite beause gravity pulls in the diretionof positive x and the spring pulls in the diretion of negative x. Di�erential equations apture a system'sphysis in a general way: not only does their form mirror the physial laws, but their solutions also aountfor every possible behavior of the system. For any initial onditions for the position and veloity of themass, for instane, the equation above ompletely desribes where it will be at all times in the future.However, di�erential equations are muh more diÆult to work with than the algebrai models desribedin the previous paragraphs. They are also muh more diÆult to onstrut. Using observations of a blak-box system's outputs to reverse-engineer its governing equations|i.e., �guring out a di�erential equationfrom partial knowledge about its solutions|is an extremely diÆult task if one does not know what isinside the box. This proedure, whih is known as system identi�ation in the ontrol-theory literature,is fairly straightforward if the system involved is linear; the textbook approah[28℄ is to hoose a generiordinary di�erential equation (ODE) system _~x(t) = B~x(t)|with ~x(t) = x1(t); x2(t); : : : xn(t)|fast-Fourier-transform the sensor data, and use the harateristis of the resulting impulse response to determine theoeÆients of the matrix B. The natural frequenies, whih appear as spikes on the impulse response, yieldthe system's eigenvalues; the o�-diagonal elements an be determined via an analysis of the shape of theimpulse response urve between those spikes. See [28℄ or [33℄ for a full desription of this proedure.A linear, time-invariant system an be desribed quite niely by the kinds of models that are desribedin this setion, but nonstationarity or nonlinearity an throw a large wrenh in the works. The standardtextbook approah[10℄ to nonstationary data analysis involves speial tehniques that reognize the exatform of the nonstationarity (e.g., linear trend) and various mahinations that transform the time seriesinto stationary form, at whih point one an use ARMA methods. Nonlinearity is not so easy to getaround. It an be shown, for instane, that ARMA oeÆients and the power spetrum (i.e., FourieroeÆients) ontain the same information. Two very di�erent nonlinear systems, however, may havealmost indistinguishable spetra, so methods in the ARMA family break down in these ases4. Spetralsimilarity of dissimilar systems also has important impliations for signal separation. In linear systems, itis often safe to assume, and easy to reognize, that the \important" parts of the signal are lower down onthe frequeny sale and easily separable from the noise (whih is assumed to be high frequeny), and it iseasy to implement digital �lters that remove omponents of a signal above a spei�ed uto� frequeny[37℄.In nonlinear systems, as desribed in more detail in the following setion, the important parts of the signaloften over the entire spetrum, making signal separation a diÆult proposition. Nonlinearity is even moreof a hurdle in system identi�ation: onstruting dynami models of linear systems is relatively tratable,but human pratitioners onsider nonlinear system identi�ation to be a \blak art," and automating theproess[7℄ is quite diÆult.2 Nonlinear Dynamis BasisA dynamial system is something whose behavior evolves with time: binary stars, transistor radios,predator-prey populations, di�erential equations, the air stream past the owl of a jet engine, and myriadother examples of interest to sientists and engineers in general and intelligent data analysts in partiular.The bulk of an engineering or siene eduation and the vast majority of the data analysis methods inurrent use, some of whih are outlined in the previous setion, are foused on linear systems, like a masson a spring: systems whose governing equations do not inlude produts, powers, transendental funtions,3The right-hand side of a linear di�erential equations is of the form ax+ b4One an onstrut a pathwork of loal-linear ARMA models[47℄ in situations like this, but suh tatis ontribute littleto global system analysis and understanding. 6
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xFigure 3: A state-spae trajetory representing the osillation of the spring-mass system of Figure 1.et. Very few systems �t this mold, however, and the behavior of nonlinear systems is far riher thanthat of linear systems. This rihness and generality makes nonlinear systems both muh more diÆult andmuh more interesting to analyze.The state variables of a dynamial system are the fundamental quantities needed to desribe it fully|angular position � and veloity ! = _� for a pendulum, for instane, or apaitor voltages and indutorurrents in an eletroni iruit. The number n of state variables is known as the dimension of the system;a pendulum or a mass on a spring is a two-dimensional system, while a three-apaitor iruit has threedimensions. Simple systems like this that have a �nite number of state variables an be desribed byordinary di�erential equation (ODE) models like Equation (4) for the spring-mass system or��(t) = �g sin �(t) (5)for a pendulum moving under the inuene of gravity g. Equation (4) is linear and equation (5), beause ofthe sin term, is not; in both systems, n = 2. If the number of state variables in the system is in�nite|e.g.,a moving uid, whose physis is inuened by the pressure, temperature and veloity at every point|the system is alled spatiotemporally extended, and one must use partial di�erential equation (PDE)models[14℄ to desribe it properly. In this hapter, we will on�ne our attention to �nite-dimensionaldynamial systems that admit ODE models. Beause so many real-world problems are nonlinear, we willonentrate on methods that are general and powerful enough to handle all dynamial systems|not justlinear ones. Finally, sine most natural and man-made systems are not only nonlinear but also dissipative|that is, they lose some energy to proesses like frition|we will not over the methods of onservative orHamiltonian dynamis[3, 35℄.Muh of traditional systems analysis, as desribed in the previous setion, fouses on time-series orfrequeny-domain data. The nonlinear dynamis ommunity, in ontrast, relies primarily upon the state-spae representation, plotting the behavior on the n-dimensional spae (Rn) whose axes are the statevariables. In this representation, the damped osillation of a mass bouning on a spring manifests not asa pair of deaying sinusoidal time-domain signals, as in Fig. 1, but rather as a spiral, as shown in Fig. 3.State-spae trajetories like this|system behavior (i.e., ODE solutions) for partiular initial onditions|only impliitly ontain time information; as a result, they make the geometry of the equilibrium behavioreasy to reognize and analyze.Dissipative dynamial systems have attrators: invariant state-spae strutures that remain after tran-sients have died out. A useful way to think about this is to envision the \ow" of the dynamis ausingthe state to evolve towards a \low point" in the state-spae landsape (f., a raindrop running downhillinto an oean). There are four di�erent kinds of attrators:� �xed or equilibrium points� periodi orbits (a.k.a. limit yles)� quasiperiodi attrators� haoti or \strange" attrators 7



A variety of pitures of these di�erent attrators appear in the later pages of this hapter. Fixed points|states from whih the system does not move|an be stable or unstable. In the former ase (f., Fig. 3)perturbations will die out; in the latter, they will grow. A ommonplae example of a stable �xed point is amarble at rest in the bottom of a bowl; the same marble balaned preariously on the rim of that bowl is atan unstable �xed point. Limit yles are signals that are periodi in the time domain and losed urves instate spae; an everyday example is the behavior of a healthy human heart. (One of the heart's pathologialbehaviors, termed ventriular �brillation, is atually haoti.) Quasiperiodi orbits and haoti attratorsare less familiar and harder to analyze, but no less ommon or interesting. The latter, in partiular, arefasinating. They have a �xed, ompliated, and highly harateristi geometry, muh like an eddy in astream, and yet nearby trajetories on a haoti attrator move apart exponentially fast with time, muhas two nearby wood hips will take very di�erent paths through the same eddy. Trajetories over haotiattrators densely, visiting every point to within arbitrary �, and yet they never quite repeat exatly.These properties translate to the very omplex, almost-random, and yet highly strutured behavior thathas intrigued sientists and engineers for the last twenty years or so. Further disussion of haoti systems,inluding a variety of examples, appears in setion 4. Parameter hanges an ause a nonlinear system'sattrator to hange drastially. A hange in blood hemistry, for instane, an ause the heart's behaviorto hange from a normal sinus rythym to ventriular �brillation; a hange in temperature from 99.9 to100.1 degrees Celsius radially alters the dynamial properties of a pot of water. These kinds of topologialhanges in its attrator are termed bifurations.Attrator type is an important nonlinear data analysis feature, and there are a variety of ways foromputer algorithms to reognize it automatially from state-spae data. One standard geometri lassi-�ation approah is ell dynamis[26℄, wherein one divides the state spae into uniform boxes. In Fig. 4,for example, the limit yle trajetory|a sequene of two-vetors of oating-point numbers measured bya �nite-preision sensor|an be represented as the ell sequene[:::(1; 0)(2; 0)(3; 0)(4; 0)(4; 1)(5; 1)(5; 2)(4; 2)(3; 2)(3; 3)(4; 3)(4; 4):::℄Beause multiple trajetory points are mapped into eah ell, this disretized representation of the dy-
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Figure 4: Identifying a limit yle using simple ell mappingnamis is signi�antly more ompat than the original series of oating-point numbers and therefore muheasier to work with. This is partiularly important when omplex systems are involved, as the number ofells in the grid grows exponentially with the number of dimensions5. Though the approximate nature ofthis representation does abstrat away muh detailed information about the dynamis, it preserves manyof its important invariant properties; see [23℄ or [32℄ for more details. This point is ritial to the utilityof the method; it means that onlusions drawn from the disretized trajetory are also true of the realtrajetory|for example, a repeating sequene of ells in the former, as in Fig. 4, implies that the full Rndynamis is on a limit yle.5The example of Fig. 4 is two-dimensional, but the ell dynamis formalism generalizes easily to arbitrary dimension.8



Muh as a bowl an have several low spots or a mountain range an inlude many drainages, nonlinearsystems an have multiple attrators of di�erent types. Eah attrator lies in a unique basin of attration(all the points in the bowl or mountain range from whih a marble or raindrop will end up at that attrator),and those basins partition6 the state spae. A linear system, on the other hand, an have only one �xedpoint, and its basin|if it is stable|is all of Rn. Dissipation, the notion of transient behavior that dies out,and the requirement that attrators are proper subsets of their basins are linked. Dynamiists think aboutbasin/attrator dynamis using the state-spae ontration metaphor: initial onditions anywhere insidethe boundary of a basin of attration will onverge to the assoiated attrator, so one envisions a volumeof initial onditions spread out aross the basin, all eventually onverging to the attrator. (Conservativesystems|those in whih energy is onserved|preserve state-spae volumes and do not have attrators.)Basins are very important for nonlinear data analysis. Attrators in neighboring basins an be quitedi�erent, and so small di�erenes in initial onditions matter; a raindrop a millimeter away from a sharpmountain ridge will take a radially di�erent path if a light breeze omes up. This an be a useful wayto approah the analysis of a system that appears to have several behavior modes. Basin boundaries anbe omputed using the grid-based tehniques desribed in the previous paragraph, as well as a variety ofother approahes; see [21℄ or setion 10.3.3 of [39℄ for more details.The �xed nature of an attrator of a dynamial system is ritially important to the approah tointelligent data analysis that is outlined in this hapter; it implies that the dynamial invariants of suhattrators|their immutable mathematial properties|do not depend on how these attrators are viewed7,and therefore that analysis tehniques that measure those invariants should yield the same results in the faeof transformations like oordinate hanges, for instane. Stability is suh an invariant: a stable �xed pointshould not beome unstable if one realibrates a sensor. Topologial dimension is another: a �xed pointshould not appear as a limit yle when viewed from another angle. The nonlinear dynamis literaturede�nes dozens of other dynamial invariants and proposes hundreds of algorithms for omputing them;see [2℄ for a readable and omprehensive introdution. The two most ommon invariants in this list are theLyapunov exponent �, whih measures how fast neighboring trajetories diverge, and the family of frataldimensions, so named beause they an take on non-integer (frational! \fratal") values, whih measurehow muh of Rn a trajetory atually oupies.The Lyapunov exponent is de�ned as: � = limt!11t ln jsi(t)j (6)where the si(t) are the eigenvalues of the variational system (the matrix-valued linear di�erential equationthat governs the growth of a small variation in the initial ondition; see appendix B of [39℄ for details). A n-dimensional system has n �s, eah measuring the expansion rate, in one \diretion," of the distane betweentwo neighboring trajetories. � is the nonlinear generalization of the real part of an eigenvalue; a positive �implies exponential growth of a perturbation along the unstable manifold, the nonlinear generalization ofthe eigenvetor assoiated with a positive-real-part eigenvalue. A negative � implies exponential shrinkageof the perturbation along the stable manifold that is the nonlinear analog of the stable eigenvetor. Asystem that has all negative �s in some region is said to be \stable in the sense of Lyapunov," and itstrajetories relax to some proper subset of that region (the attrator). A system with all positive �s isunstable in all diretions. A zero � implies less-than-exponential growth, whih generally takes plae alongthe attrator. State-spae ontration, part of the formal de�nition of dissipation, requires that ��i < 0for any dissipative system.The point of retooling the de�nition of dimension to allow for non-integer values is to be able to a-urately haraterize objets that are \between" two topologial dimensions. A Cantor set, for example|onstruted by removing the middle portion of a line segment ad in�nitum, as shown in Fig. 5|ontainsan in�nite number of zero-dimensional objets (points) but its topologial dimension is still zero. Frataldimensions apture this property; one standard measure of the fratal dimension of the middle-third re-moved Cantor set, for example, is 0.63. This invariant is ommon in the nonlinear dynamis ommunity6This is a slight abuse of the tehnial term \partition;" nonattrating sets|whih have no basins of attration|an existin dynamial systems, and basins tehnially do not inlude their boundaries.7within some limits, of ourse 9



<etc>Figure 5: A middle-third-removed Cantor setbeause many (not all) haoti attrators have fratal state-spae struture|that is, their attrators havenon-integer values of the fratal dimension. The most-ommon algorithm for omputing any fratal di-mension of a set A, loosely desribed, is to disretize state spae into �-boxes, ount the number of boxes8oupied by A, and let �! 0: d = lim�!0n log(N(A;�))log(1=�) o (7)whereN(A; �) is the number of losed balls of radius � > 0 needed to overA. (Stritly speaking, one doesn'tjust ount the boxes, but rather aumulates the value of some measure on eah box; see the disussionof equation (8) in setion 3.2.) In reality, oating-point arithmeti and omputational omplexity plaeobvious limits on the � ! 0 part of equation (7); in pratie, one repeats the dimension alulation for arange of �s and �nds the power-law asymptote in the middle of the log-log plot of dimension versus �.Dynamial invariants like � and d an be used to lassify attrators. In a n-dimensional system, thereare n Lyapunov exponents �i and:� A stable �xed point has n negative �s (sine perturbations in any diretion will die out) and a frataldimension of zero.� An attrating limit yle has one zero � and n� 1 negative �s (sine perturbations o� the attratorwill die out, and a perturbation along the orbit will remain onstant) and a fratal dimension of one.� A haoti attrator has one zero � (along the attrator), at least one positive � and|generallybut not always|a non-integer fratal dimension. The positive � reets haos's hallmark \sensitivedependene on initial onditions:" the system's tendeny to fore neighboring trajetories apart.Intelligent data analysis tools that target attrator type, basin geometry, dynamial invariants, et.are harder to implement than the kinds of tehniques that one an apply to a linear system, and theirimpliations are generally less wide-ranging. If the system under onsideration is linear, as mentionedpreviously, data analysis is relatively easy and one an make more (and more-powerful) inferenes fromthe results. Where nonlinear systems are onerned, however, traditional methods often do not apply; inthese problems, time-series analysis is muh harder and the onlusions one an draw from the results arefundamentally limited in range. This stems from the inherent mathematial diÆulties of the domain, andit is essentially unavoidable. If one is faed with a fundamentally nonlinear problem, one has no hoiebut to use the more diÆult (and perhaps unfamiliar) methods overed in this hapter. The reader who isinterested in delving deeper into this �eld should onsult any of the dozens of good nonlinear dynamis booksthat are urrently in print. An exellent overall starting point is [45℄, the basi mathematis is overedpartiularly well in [25℄, a omprehensive olletion of algorithms appears in [39℄, and an entertainingpopular overview may be found in [44℄.3 Delay-Coordinate EmbeddingGiven a time series from a sensor on a single state variable xi(t) in a n-dimensional dynamial system,delay-oordinate embedding lets one reonstrut a useful version of the internal dynamis9 of that sys-8Hene the term \box-ounting dimension."9That is, the state-spae trajetory f~x(t)g, where ~x = fx1; x2; : : : xng is the vetor of state variables10



xi(t) t xi(t) t1.6352 0.000 1.6214 0.0081.6337 0.001 1.6183 0.0091.6322 0.002 1.6183 0.0101.6306 0.003 1.6168 0.0111.6276 0.004 1.6137 0.0121.6260 0.005 1.6107 0.0131.6230 0.006 1.6076 0.0141.6214 0.007 1.6045 0.015Table 1: An example data set: samples of one state variable xi, measured every �t = 0:001 seonds.tem. If the embedding is performed orretly, the theorems involved guarantee that the reonstruteddynamis is topologially (i.e., qualitatively) idential to the true dynamis of the system, and thereforethat the dynamial invariants are also idential. This is an extremely powerful orrespondene; it impliesthat onlusions drawn from the embedded or reonstrution-spae dynamis are also true of the real|unmeasured|dynamis. This implies, for example, that one an reonstrut the dynamis of the earth'sweather simply by setting a thermometer on a windowsill.There are, of ourse, some important aveats. Among other things, a orret embedding requires atleast twie as many dimensions as the internal dynamis|a requirement that makes reonstrution ofthe weather thoroughly impratial, as it is a spatially extended system and thus of in�nite dimension.Moreover, even if the dynamis of the system under examination is simple, its preise dimension is oftenvery hard to measure and rarely known a priori. This is the main soure of the hard problems of delay-oordinate embedding, whih are disussed in more detail|together with some solutions|in the followingsetions.3.1 Embedding: the basi ideasConsider a data set omprised of samples xi(t) of a single state variable xi in a n-dimensional system,measured one every �t seonds, suh as the example sensor time series shown in Table 1. To embed suha data set, one onstruts dE-dimensional reonstrution-spae vetors ~r(t) from dE time-delayed samplesof the xi(t), suh that ~r(t) = [xi(t); xi(t� �); xi(t� 2�); : : : ; xi(t� (m� 1)�)℄or ~r(t) = [xi(t); xi(t+ �); xi(t+ 2�); : : : ; xi(t+ (m� 1)�)℄For example, if the time series in Table 1 is embedded in two dimensions (dE = 2) with a delay � = 0:005,the �rst few points in the reonstrution-spae trajetory are:(1.6352 1.6260)(1.6337 1.6230)(1.6322 1.6214)(1.6306 1.6214)(1.6276 1.6183)(1.6260 1.6183)...If dE = 5 and � = 0:003, the �rst few points of the trajetory are:(1.6352 1.6306 1.6230 1.6183 1.6137) 11



(a) (b)Figure 6: A losed urve in 3D, viewed from (a) the top and (b) the side. The latter projetion is istopologially onjugate to a irle; beause of the self-intersetion, the projetion in (a) is not.(1.6337 1.6276 1.6214 1.6183 1.6107)(1.6322 1.6260 1.6214 1.6168 1.6076)(1.6306 1.6230 1.6183 1.6137 1.6045)...The at of sampling a single system state variable xi(t) is equivalent to projeting an n-dimensionalstate-spae dynamis down onto a single axis; the embedding proess demonstrated above is akin to\unfolding" or \reinating" suh a projetion, albeit on di�erent axes: the dE delay oordinates xi(t); xi(t��); xi(t� 2�); et. instead of the n true state variables x1(t); x2(t); : : : ; xn(t). The entral theorem[46℄relating suh embeddings to the true internal dynamis, whih is generally attributed to Takens, wasproved in [38℄ and made pratial in [42℄; informally, it states that given enough dimensions (dE) andthe right delay (�), the reonstrution-spae dynamis and the true, unobserved state-spae dynamis aretopologially idential. More formally, the reonstrution-spae and state-spae trajetories are guaranteedto be di�eomorphi if dE = 2n+ 1, where n is the true dimension of the system10.Di�eomorphisms|transformations that are invertible, di�erentiable, and that possess di�erentiableinverses|preserve topology but not neessarily geometry. This means that an attrator reonstrutedusing delay-oordinate embedding may look very di�erent from the true attrator, but the former an bestrethed and bent into the shape of the latter without \rossing over" itself. The 2n + 1 requirementof the theorem is really a brute-fore worst-ase limit for eliminating projetion-indued rossings. Theself-intersetion point in Fig. 6(a), for example, makes the 2D projetion of that urve not di�eomorphito a irle; viewed from another angle, however, as in part (b), the urve is indeed smoothly deformableinto a irle. 2n+1 is simply the minimum number of dimensions required to eliminate all suh rossings,so lower-dimension embeddings may well be orret. This an, in fat, be exploited in deriving a tighterand easy-to-ompute bound on dE that is valid in \almost every" situation[42℄.The topologial equivalene guaranteed by the Takens theorem is a powerful onept: it lets one drawsensible, justi�able onlusions about the full dynamis of an n-dimensional system using only the outputof a single sensor. In partiular, many properties of the dynamis are preserved by di�eomorphisms; ifone omputes them from a orret embedding, the answer will hold for the true internal dynamis as well.There are, of ourse, some important onditions on the theorem, and the diÆulties that they pose are thesoure of most of the e�ort and subtlety in these types of methods. Spei�ally, in order to embed a dataset, one needs dE and � , and neither of these parameters an be measured or derived from the data set,either diretly or indiretly, so algorithms like those desribed in the following setion rely on numeri andgeometri heuristis to estimate them.From a qualitative standpoint, embedding is not as outlandish as it may initially appear. The statevariables in a nonlinear system are generally oupled to one another temporally by the dynamis, so usingquantities that resemble forward di�erenes as the axes of a reonstrution spae makes some sense. (Asmentioned before, tehniques like divided di�erenes an, in theory, be used to derive veloities fromposition data; in pratie, however, these methods often fail beause the assoiated arithmeti magni�es10� is missing from these requirements beause the theoretial onditions upon it are far less stringent and limiting, asdesribed in the seond paragraph of the next setion. 12



sensor error.) One an think of the xi(t), xi(t � �), et., as independent oordinates that are nonlinearlyrelated to the true state variables. The spei�s of that relationship may not|and need not|be obvious;the important point is that the form of that relationship ensures that the reonstruted dynamis ~r(t) 2 RdEis di�eomorphi to the true dynamis ~x(t) 2 Rn.3.2 Finding appropriate embedding parametersThe time-series analysis literature ontains sores of methods that use a variety of heuristis to solve theentral problem of delay-oordinate reonstrution: given a salar time series from a dynamial systemof unknown dimension, estimate values for the dimension dE and delay � that will guarantee a orretembedding. Many of these algorithms are somewhat ad ho; almost all are omputationally expensive andhighly sensitive to sensor and algorithm parameters, and di�erent ones produe surprisingly di�erent results,even on the same data set. See [2℄ for a reent summary and the FAQ for the newsgroup si.nonlinear[1℄for a list of publi-domain software implementations of many of these algorithms. This hapter overs onlya few of the most widely aepted and/or interesting representatives of this body of work.The delay � governs whether or not the oordinates x(t� j�) are indeed independent. If � is small, thereonstrution-spae trajetory will lie very near the main diagonal. As long as the struture is not in�nitelythin, this type of embedding is theoretially orret; in pratie, however, �nite-preision arithmeti on�xed-length (and possibly noisy) trajetories an easily generate apparent rossings in situations like this.If � is too large, on the other hand, suessive points ~r(t) and ~r(t+�t), where �t is the sampling interval,will be unorrelated and the larger spaing of the points in ~r(t) again interferes numerially with topologialequivalene. Ideally, then, one wants a time window for � that is long enough for the system state to evolveto a visible (with respet to oating-point arithmeti) but not exessive extent.One way to ompute suh an estimate is to perform some sort of averaged autoorrelation of suessivepoints in the time series xi(t) or in the embedded trajetory ~r(t)|e.g., average mutual information[17℄|asa funtion of � . For very small � , these statistis will be lose to 1.0, sine suessive reonstrution-spae trajetory points are very lose to one another11. For larger � , suessive points beome inreasinglyunorrelated. The �rst minimum in the distribution is a sensible hoie for � : qualitatively, it orresponds tothe smallest � for whih the dynamis has aused nearby trajetory points to beome somewhat unorrelated(i.e., new information has been introdued between samples). This hoie was originally proposed[17℄ byFraser; other authors suggest using other features of the autoorrelation urve to hoose good values for�|e.g., the �rst maximum, with the rationale that these \lose returns" orrespond to natural periodsof the system. Note that sine one an ompute average mutual information (AMI) from one- and two-embeddings (that is, dE = 1 and dE = 2), this kind of proedure does not require one to �rst �nd a orretvalue for dE .The Pineda-Sommerer (P-S) algorithm[40℄, whih solves both halves of the embedding parameter prob-lem at one, is more esoteri and ompliated. Its input is a time series; its outputs are a delay � and avariety of di�erent estimates of the dimension dE . The proedure has three major steps: it estimates �using the mutual information funtion, uses that estimated value �0 to ompute a temporary estimate Eof the embedding dimension, and uses E and �0 to ompute the generalized dimensions Dq, members of aparametrized family of fratal dimensions. Generalized dimensions are de�ned asDq = 1q � 1 lim sup�!0 logPi pqilog � (8)where pi is some measure of the trajetory on box i. D0; D1, and D2 are known, respetively, as theapaity, information, and orrelation dimensions. The atual details of the P-S algorithm are quiteinvolved; we will only give a qualitative desription:� Construt one- and two-embeddings of the data for a range of �s and ompute the saturation dimensionD�1 of eah; the �rst minimum in this funtion is �0. The D�1 omputation entails:11Note that ~r(t) = xi(t) if dE = 1. 13
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Figure 7: The geometri basis of the FNN algorithm. If this urve is projeted onto the x axis, the pointsA, B, and C appear to be near neighbors, even though C is quite distant in the 2D view. Di�erenesbetween one- and two-embeddings of these data will expose false near neighbors like the [A,C℄ pair.� Computing the information dimension D1 for a range of embedding dimensions E and identi-fying the saturation point of this urve, whih ours at embedding dimension D�1 . The D1omputation entails:� Embedding the data in E-dimensional spae, dividing that spae into E-ubes that are � ona side, and omputing D1 using equation (8) with q = 1.P-S inorporates an ingenious omplexity-redution tehnique in the fratal dimension alulation: the �s(see equation (7)) are hosen to be of the form 2�k for integers k and the data are integerized, allowingmost of the mathematial operations to proeed at the bit level and vastly aelerating the algorithm.The false near neighbor (FNN) algorithm[29℄, whih takes a � and a time series and produes a lowerbound on dE , is far simpler than P-S. (As mentioned above, upper bounds for dE are often hosen to bethe smallest integer greater than twie the apaity dimension, D0, of the data, in aordane with [42℄.)FNN is based on the observation that neighboring points may in reality be projetions of points that arevery far apart, as shown in Fig. 7. The algorithm starts with dE = 1, �nds eah point's nearest neighbor,and then embeds the data with dE = 2. If the point separations hange abruptly between the one- andtwo-embeddings, then the points were false neighbors (like A and C in the x-projetion of Fig. 7). TheFNN algorithm ontinues adding dimensions and re-embedding until an aeptably small12 number offalse near neighbors remains, and returns the last dE-value as the estimated dimension. This algorithmis omputationally quite omplex; �nding the nearest neighbors of m points requires O(m2) distanealulations and omparisons. This an be redued to O(m logm) using a K-D tree implementation[18℄.As should be obvious from the ontent and tone of this introdution, estimating � and dE is algorithmi-ally ad ho, omputationally omplex, and numerially sensitive. For this reason, among others, nonlineartime-series analysis tehniques that do not require embedding are extremely attrative. Reent evidene[27℄suggests that the reurrene plot|a two-dimensional representation of a single trajetory wherein the timeseries spans both ordinate and absissa and eah point (i; j) on the plane is shaded aording to the dis-tane between the two orresponding trajetory points yi and yj|may be suh a tehnique. Among theirother advantages, reurrene plots also work well on nonstationary data; see the following setion for anexample (Fig. 11) and more disussion.12An algorithm that removes all false near neighbors an be unduly sensitive to noise.
14
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(a) (b) ()Figure 8: State-spae plots of Lorenz system behavior with a = 10 and b = 8=3: (a) a stable �xed point forr = 15 (b) a haoti attrator for r = 45 () a periodi orbit for r = 100. All three plots are two-dimensional(x� z) projetions of three-dimensional attrators.4 ExamplesIn this setion, we demonstrate some of the onepts and algorithms desribed in the previous two setionsusing two examples, one simulated and one real.4.1 The Lorenz systemIn the early 1960s[34℄, Edward Lorenz derived a simple model of the physis of a uid that is being heatedfrom below: _~x(t) = ddt~x(t) = 24 _x(t)_y(t)_z(t) 35 = 24 a(y(t)� x(t))rx(t) � y(t)� x(t)z(t)x(t)y(t)� bz(t) 35 (9)This 3rd-order (n = 3) ODE system is a rough approximation of a muh more omplex model: the Navier-Stokes PDEs for uid ow. The state variables x; y; and z are onvetive intensity, temperature variation,and the amount of deviation from linearity in the vertial onvetion pro�le, respetively; the oeÆients aand r are physial parameters of the uid|the Prandtl and Rayleigh numbers|and b is the aspet ratio.This set of equations is one of the most ommon examples in the nonlinear dynamis literature. At low rvalues, its solutions exhibit damped osillations to simple �xed-point equilibria, the �rst ategory on the listof attrator types on page 7, as shown in Fig. 8(a). For higher r|whih translates to a higher heat input|the onvetion rolls in the modeled uid persist, in a ompliated, highly strutured, and nonperiodi way;see part (b) of Fig. 8 for an example. This behavior, reported in a 1963 paper entitled \DeterministiNonperiodi Flow," led Lorenz to reognize the lassi \sensitive dependene on initial onditions" in theontext of a �xed attrator geometry that is now a well-known hallmark of haos. (The term \haos"was oined twelve years later[31℄.) If r is raised further, the onvetion rolls beome periodi|the seondategory in the list on page 7. See part () of the Figure for an example.The trajetories plotted in Fig. 8 inlude omplete information about all three of the state variables. Inthe analysis of a real system, this may be an overly optimisti senario; while temperature is not hard tomeasure, the other state variables are not so easy, so a full state-spae piture of the dynamis|informationthat is amenable to the tehniques of setion 2|may well be unavailable. Using the theory and tehniquesdesribed in setion 3, however, one an reonstrut the internal dynamis of this system from a time-seriessampling of one of its state variables|say, the x oordinate of the haoti attrator in part (b) of Fig. 8,whih is plotted in time-domain form in Fig. 9(a). After embedding those data in delay oordinates, onean apply the nonlinear state-spae analysis methods of setion 2 to the results. The �rst step in theembedding proess is to deide upon a delay, � . The �rst minimum in the AMI results shown in Fig. 9 fallsat roughly � = 0:09 seonds13. Using this � , the false-near neighbor results (part (b) of Fig. 9) suggest an13The x-axis of the plot is measured in multiples of the sample interval of 0.002 seond.15



(a)
0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 M
ut

ua
l I

nf
or

m
at

io
n 

(A
M

I)

Time Delay (τ)

Average Mutual Information for Lorenz Signal

1 2 3 4 5 6 7
0

0.25

0.5

0.75

1

F
N

N
 %

Embedding Dimension

False near Neighbor Analysis for Lorenz Signal

(b) ()
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Embedding Dimension

C
al

cu
la

te
d 

B
ox

−
co

un
tin

g 
D

im
en

si
on

Box−counting Dimension for Lorenz Signal

(d)Figure 9: The x oordinate of the haoti Lorenz signal from part (b) of Fig. 8 and the orrespondingembedding parameter analysis: (a) time series (b) average mutual information (AMI) as a funtion of thedelay � () false-near neighbor (FNN) perentage as a funtion of embedding dimension dE (d) box-ountingdimension (D0) as a funtion of dE . AMI, FNN and D0 results ourtesy of Joe Iwanski.
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Figure 10: Embeddings of the haoti Lorenz signal from Fig. 9(a) with dE = 3 and various delays,plotted in 2D projetion. The formal requirements of the embedding proess|whih these attratorsmeet|guarantees that they are topologially idential to the true attrator in Fig. 8(b).embedding dimension of two or three, depending on one's interpretation of the heuristi \aeptably smallperentage" threshold in the algorithm. The box-ounting dimension of this data set levels o� at roughly1.8 for dE = 2 and above, as an be seen in part () of the Figure. Following [42℄, this would imply anupper-bound embedding dimension of four.It an be diÆult to keep this menagerie of dimensions straight. In this example, the true dimensionis known: n = 3. The time series x(t) in Fig. 9(a) is a one-dimensional projetion of the R3 trajetory inFig. 8(b) onto the x axis. In the worst ase, the Takens theorem tells us that an aurate reonstrution mayrequire as many as dE = 2n+1 = 7 embedding dimensions in order to assure topologial onjugay to thetrue dynamis. Reall that this is a very pessimisti upper bound; in pratie, slightly more opportunistialgorithms like the one proposed in [42℄ are able to make better bounds estimates|values for dE that arelower than 2n+1 and, at the same time, that avoid projetion-indued topologial inequivalenies betweenthe true and reonstruted dynamis. In making suh estimates, many of these algorithms make use ofthe fat that attrators do not oupy all of Rn. The fratal dimension of the a = 10; r = 45; b = 8=3Lorenz attrator, for instane, is somewhere between 1 and 2, depending upon whih algorithm one uses;the alulated apaity dimension D0 of the trajetory in Fig. 8(b), in partiular, is 1.8, implying an upperbound of dE = 4. Even this estimate is somewhat pessimisti. Fratal dimension is a highly digested pieeof information: a lumped parameter that ompresses all the geometri information of an attrator into asingle number. Beause the FNN algorithm is based upon a more-detailed examination of the geometry,its results (dE = 3, in this ase) are a better lower bound.Fig. 10 shows embeddings of the Lorenz time series of Fig. 9 with dE = 3 and various �s. Note how thisreonstruted attrator starts out as a thin band near the main diagonal and \inates" with inreasing � .17
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Figure 11: Reurrene plots (rps) of a short segment (top) of the Lorenz data from part (a) of Fig. 9.The pixel at i; j is shaded to reet the distane between the ith and jth point in the time series. On theunthresholded reurrene plot (utrp) on the bottom left, eah pixel is oded aording to the olor barshown to the right of the utrp; in the thresholded rp to the bottom right, pixels are blak if the distanefalls within some presribed threshold orridor and white otherwise. Results ourtesy of Joe Iwanski.The sample interval in this data set was not muh smaller than the � returned by the AMI algorithm, sothe thinnest reonstrution is fairly wide. Note, too, the resemblane of these reonstruted attrators tothe true state-spae trajetory in Fig. 8(b) and how that resemblane hanges with � . The whole pointof doing an embedding is that the former an be deformed smoothly into the latter|even the � = 0:5reonstrution, where the similarity (let alone the di�eomorphism!) is hard to visualize|and that thedynamial invariants of true (Fig. 8(b)) and reonstruted (Fig. 10) attrators are idential. That is, a�xed point in the reonstruted dynamis implies that there is a �xed point in the true dynamis, and soon. As noted before, this is the power of delay-oordinate embedding: one an use nonlinear dynamisanalysis tehniques on its results and safely extend those onlusions to the hidden internal dynamis ofthe system under examination.It would, of ourse, be ideal if one ould avoid all of these embedding mahinations and analyze thesalar time series diretly. As mentioned at the end of setion 3, reurrene plots (rps) are relatively newand potentially quite powerful nonlinear time-series analysis tools whose results appear to be independentof embedding dimension in some ases[27℄. An rp is a two-dimensional representation of a single trajetory;the time series is spread out along both x and y axes of the plot, and eah pixel is shaded aording tothe distane between the orresponding points|that is, if the 117th point on the trajetory is 14 distaneunits away from the 9435th point and the distane range 13{15 orresponds to the olor red, the pixel lyingat (117, 9435) on the rp will be shaded red. Fig. 11 shows a reurrene plot (rp) of a short segment of thethe Lorenz signal in part (a) of Fig. 9. Di�erent types of attrators leave lear and suggestive signaturesin rps; it is easy to reognize a periodi signal, for instane, and haoti attrators exhibit the type ofintriate patterns that are visible in Fig. 11. Formalized lassi�ation of these signatures, however, is adiÆult problem|and a urrent researh topi. There are well-developed statistial approahes[27, 48℄,but strutural/metri analysis (e.g., via pattern reognition) is still an open problem, although some reentprogress has been made[8, 19℄.
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4.2 The driven pendulumA time-series plot of a data set from an angle sensor on a parametrially fored pendulum|a solid aluminumarm that rotates freely on a standard bearing, driven vertially by a motor through a simple linkage|isshown in part (a) of Fig. 12. An atuator ontrols the drive frequeny and a sensor (an optial enoder)measures its angular position. The behavior of this apparently simple devie is really quite ompliatedand interesting: for low drive frequenies, it has a single stable �xed point, but as the drive frequeny israised, the attrator undergoes a series of bifurations. In the sensor data, this manifests as interleavedhaoti and periodi regimes[13℄. The driven pendulum is also interesting from a modeling standpoint; athigh resolutions, the baklash in the bearings invalidates the standard textbook model. Modeling thesee�ets is ritial, for instane, to the aurate ontrol of robot arms.The test run plotted in Fig. 12 was hosen for this example beause the pendulum is osillating in ahaoti manner, whih rules out many traditional time-series analysis methods. The haos manifests asseemingly strutured, almost-periodi patterns in the time-series signal: osillations that are quite similarbut not idential and that almost (but not quite) repeat. Though these patterns are highly suggestive, theyare very diÆult to desribe or lassify in the time domain; in a state-spae view, however, the haraterististruture of the pendulum's haoti attrator beomes patently obvious. Unfortunately, diret state-spaeanalysis of this system is impossible. Only angle data are available; there is no angular veloity sensorand attempts to ompute angular veloity via divided di�erenes from the angle data yield numeriallyobsured results beause the assoiated arithmeti magni�es the disretization error in angle (from thesensor resolution) and time (from timebase variation in the data hannel).Delay-oordinate embedding, however, produes a lean, easily analyzable piture of the dynamisthat is guaranteed to be di�eomorphi to the system's true dynamis. As in the Lorenz example, theembedding proedure begins with an estimation of � . AMI results on the haoti pendulum data set,shown in part (b) of Fig. 12, suggest a delay of 0.022 seonds (roughly 11 liks at a sample interval of0.002 seonds). FNN results onstruted using this � , shown in Fig. 11(), suggest an embedding dimensionof dE = 3. The apaity dimension D0|part (d)|varies between 1.7 and 2.1, implying an upper boundof dE = 5, following [42℄.In the Lorenz example of the previous setion, the true dimension n was known. In the experimentalpendulum setup, this is not the ase. Presumably, three of the state variables are the bob angle �, theangular veloity !, and the time14 t; if, however, the devie is shaking the lab benh or ontrating andexpanding with ambient temperature, other fores may ome into play and other state variables may haveimportant roles in the dynamis. The results desribed in the previous paragraph, whih suggest that thedynamial behavior of the pendulum is low-dimensional (dE = 3� 5, spei�ally), imply that the systemis probably not inuened by variables like lab benh position or temperature. Higher dE values from theestimation algorithms would suggest otherwise. This kind of high-level information, a natural result ofdelay-oordinate reonstrution and nonlinear dynamis analysis, is extremely useful for intelligent dataanalysis.Fig. 13 shows embeddings for various �s; note how a small � , as in the Lorenz example, reates areonstrution that hugs the main diagonal, and how that reonstruted attrator unfolds as � grows.The pendulum data were greatly oversampled, so it is possible to reate a thinner embedding than in theLorenz example, as shown in part (a) of this Figure. This is the type of reonstrution whose topologiallyonjugay to the true dynamis is e�etively destroyed by noise and numerial problems; note the apparentoverlap of trajetories and sprinkling of noisy points just outside the true attrator in the � = 0:01 and� = 0:02 embeddings.As before, one one has a suessful reonstrution of the dynamis, all of the analysis tools desribedin setion 2 an be brought to bear upon it, and their onlusions an be assumed to hold for the system'sfull underlying behavior.14In a driven or nonautonomous system, time is an exogenous variable.19
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(d)Figure 12: A haoti sensor data set from a parametrially fored pendulum: (a) time-domain plot of thebob angle, measured modulo 2� (b) AMI () FNN and (d) D0 results, all ourtesy of Joe Iwanski.
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Figure 13: Embeddings of the pendulum data set from part (a) of Fig. 12.
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5 Why Nonlinear Dynamis and Embedding are Useful for In-telligent Data AnalysisOne of the more ommon|and more diÆult|problems faed by an engineer or sientist is to analyze thedynamis of a ompliated nonlinear system, given only measurements of one state variable. The tehniquesdesribed in setion 3 of this hapter, oupled with the theory overed in setion 2, make signi�ant inroadson this problem, allowing one to draw useful, justi�able, and sensible onlusions about a nonlinear systemfrom the output of a single sensor. Spei�ally, a orret embedding of a data set from a single sensor on ablak-box system is guaranteed to have the same dynamial invariants as the n-dimensional dynamis of thesystem inside the blak box, and those invariants are useful tools for intelligent data analysis. Time-seriesanalysis tools for linear systems are muh easier to understand, implement, and use, but the universe is byand large nonlinear, so the appliation range of those kinds of tools is severely limited. Filtering out noise,for example, is fairly straightforward when one is working with data from a linear system: one simplytransforms the data into the frequeny domain and uses a low-pass �lter. In nonlinear systems, separatingsignal from noise is problemati, as the former is often broad band and thus the two are intermingled.(Noise, inidentally, is in�nite-dimensional, so its impliations for embedding dimension alulations aredire; reall the 2n + 1 requirement in the embedding theorems.) There has been some reent work onnonlinear \�ltering" algorithms[22℄, inluding �ltered delay-oordinate embedding[42℄ and an intriguingtehnique that exploits the stable and unstable manifold struture of a haoti attrator to ompress thenoise ball. The latter method requires omplete knowledge of the dynamis|the ODEs that govern thesystem. Sine reverse-engineering ODEs from time-series samples of their solutions is an open problem fornonlinear systems, this �ltering approah is hard to put into pratie. One an, however, approximate theODEs with loal-linear models and get some reasonable results; see [15℄ for more details. In some ases,noise an atually be turned to advantage; its presene in a time series an allow the modeler to \explore"more of the state spae[9℄.One popular tehnique that may be onspiuous by its absene from this hapter is the neural net.Neural nets[24℄, whih are disussed in Chapter 7 of this volume, are essentially nonlinear regressionnetworks that model the input/output behavior of a system. They are very good at learning the patternsin a data set, and hene are very e�etive at prediting what a system will do next. However, they do notmodel the underlying physis in a human-omprehensible form. It is very diÆult to learn anything usefulabout a system by examining a neural net that has been \trained" on that system, so this tehnique hasbeen omitted from this disussion. Their ability to predit, however, makes neural nets potentially usefulto intelligent data analysis in a somewhat ounterintuitive fashion: if one needs more data, one an traina neural net on the time series and then use it to augment that data set, generating new points that areonsistent with the dynamis[11℄.Nonlinear dynamis tehniques like the ones desribed in this hapter may be more diÆult to under-stand and use than the more-familiar linear ones, but they are more broadly appliable|indeed, the latteran be viewed as a subset of the former. This family of theory and tehnique is valuable not only for time-series analysis, but also for many other tasks, suh as modeling and predition[12℄. The kinds of modelsmentioned in the �rst paragraph of this setion, for instane, have been suessfully used to predit thebehavior of systems ranging from roulette wheels[4℄ to physiologial disease patterns, urrenies markets,and Bah fugues[51℄.Aknowledgements: Matt Easley, Joe Iwanski, and Vanessa Robins ontributed ode, data analysisresults, and/or ideas to this paper.Referenes[1℄ http://amath-www.olorado.edu/appm/faulty/jdm/faq.html.[2℄ H. D. I. Abarbanel. Analysis of Observed Chaoti Data. Springer, 1995.22
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