A simple modelview matrix:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -d & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]
A less-simple modelview matrix:

- centered at \((1, 0, 1, 1)^T\) in world coordinates

- points at origin, so \(\vec{n} = (-1, 0, -1, 0)^T\)

- up is \(\vec{v} = (0, 1, 0, 0)\)

- get third vector for camera frame by taking cross product: \(\vec{u} = (1, 0, -1, 0)^T\)
\[(M^T)^{-1} = \begin{bmatrix}
1 & 0 & -1 & 1 \\
0 & 1 & 0 & 0 \\
-1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}^{-1} = \begin{bmatrix}
\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & -\frac{1}{2} & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}\]
Translation:

\[
M^T = \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Scaling:

\[M^T = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Reflection:

\[M^T = ??? \]
Shear:

\[M^T = \begin{bmatrix}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

How would you shear in the y direction instead?
Non-rigid body transformations:
Rotation:

Easy in 2D:

Harder in 3D:

3D rotation matrices do not commute
Euler angles:

rotation about “principal axes” of object:

\[R_x(\beta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta & 0 \\ 0 & \sin \beta & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[R_z(\beta) = \begin{bmatrix} \cos \beta & -\sin \beta & 0 & 0 \\ \sin \beta & \cos \beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

(all assuming right-handed coord systems)
Euler angles, cont.:

• all of those rotate around an (implicit) origin

• what if you want to rotate around the center of the object instead?

\[
R_z(\beta) = \begin{bmatrix}
\cos \beta & -\sin \beta & 0 & x_f - x_f \cos \beta + y_f \sin \beta \\
\sin \beta & \cos \beta & 0 & x_f - x_f \sin \beta - y_f \cos \beta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

ick.

The idea: move to origin; rotate; move back. The matrix above is the product of the associated three transformations (move, rotate, move back). See section 4.8.1.
Rotation about arbitrary axis:

First, move the fixed point to the origin:

Then, perform individual constituent rotations:

but finding θ_x, θ_y, and θ_z can be hard
Issues w.r.t. Euler angles:

- rotations are order-dependent and there are no conventions about which order to use

- hard to deal with rotation about arbitrary axis

- interpolation for animation violates movement "motif"

- widely used anyway, because they’re “simple”

- better idea: quaternions (later)
Transformation book-keeping:

- OpenGL: “current transformation matrix” is the product of the modelview matrix and the projection matrix:

 ![Diagram](image)

- modelview: positions world relative to camera

- projection: projects onto viewport (chapter 5)
Manipulating the modelview matrix:

- can set/manipulate directly...but be careful (glLoadMatrixf, glMultMatrixf, glLoadMatrix)

- or do the usual “load identity and then frob” stuff:

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  glTranslatef(4.0, 5.0, 6.0);
  glRotatef(45.0, 1.0, 2.0, 3.0);
  // args to glRotate are: angle and
  // vect coords of rotation axis
  glTranslatef(-4.0, -5.0, -6.0);
  ```

 What does this do?

- pushing, popping: glPushMatrix, glPopMatrix
 (to save modelview matrix while you’re messing around)
Capturing the topology of the cube:

Does cube.c do this?