
Lecture 30: Domain-Driven 

Design, Part 5
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

April 28, 2005 © University of Colorado, Boulder, 2005

Supple Design
In chapter 10, Evans reviews a few of the techniques that he uses to 

make his design “supple”

supple, adj.

Readily bent; pliant.

Moving and bending with agility; limber.

Yielding or changing readily; compliant or adaptable.

Results of <http://dictionary.reference.com/search?q=supple>

2



April 28, 2005 © University of Colorado, Boulder, 2005

Supple Design, continued
Those techniques are

Intention-Revealing Interfaces

Side-Effect Free Functions

Assertions

Standalone Classes

Closure of Operations

Conceptual Contours

Lets look at the first three and briefly at the next two (Conceptual 

Contours is left as an exercise for the reader!)

Evans shows the relationships of these techniques on page 245

3

April 28, 2005 © University of Colorado, Boulder, 2005

Intention-Revealing Interfaces
The interface of a class should reveal how that class is to be used

If developers don’t understand the interface (and have access to 

source), they will look at the implementation to understand the class

At that point, the value of encapsulation is lost

So, name classes and methods to describe their effect and 

purpose, without reference to their implementation

These names should be drawn from the Ubiquitous Language

Write a test case before the methods are implemented to force your 

thinking into how the code is going to be used by clients

A simple example is shown on pages 247-249

4



April 28, 2005 © University of Colorado, Boulder, 2005

Side-Effect-Free Functions
Operations (methods) can be broadly divided into two categories

commands and queries

Commands are operations that affect the state of the system

Side effects are changes to the state of the system that are not 

obvious from the name of the operation

They can occur when a command calls other commands which call 

other commands etc.; the developer invoked one command, but ends 

up changing multiple aspects of the system

Queries are “read-only” operations that obtain information from the 

system but do not change its state

5

April 28, 2005 © University of Colorado, Boulder, 2005

Side-Effect-Free Functions, cont.
Operations that return results without producing side effects are 

called functions

A function can call other functions without worrying about the depth 

of nesting; this makes it easier to test than operations with side 

effects

To increase your use of side-effect-free functions, you can

separate all query operations from all command operations

commands should not return domain information and be kept simple

queries and calculations should not modify system state

Use Value Objects when possible to avoid having to modify domain 

objects; operations on value objects typically create new value 

objects

See example on pages 252 to 254

6



April 28, 2005 © University of Colorado, Boulder, 2005

Assertions
After you have performed work on creating as many side-effect free 

functions and value objects as possible, you are still going to have 

command operations on Entity objects

To help developers understand the effects of these commands, use

intention-revealing interfaces AND

assertions

Assertions typically state three things

the pre-conditions that must be true before an operation

the post-conditions that will be true after the operation

invariants that must always be true of a particular object

(these are typically not associated with any particular operation)

7

April 28, 2005 © University of Colorado, Boulder, 2005

Example
Many languages provide an assert mechanism

If not, you can move assertions for particular operations to test cases

Here’s an example of pre-conditions and post-conditions

public void removeAttribute(String name) {

assert (name != null);

_atts.remove(name);

assert (!_atts.keySet().contains(name))

}

Another example on pages 256-259

8



April 28, 2005 © University of Colorado, Boulder, 2005

Standalone Classes
Interdependencies make models and designs hard to understand

They also make them hard to test

We should do as much as possible to minimize dependencies in our 

models

Modules and Aggregates are two techniques already discussed for 

doing this; They don’t eliminate dependencies but tend to reduce and/

or limit them in some way

Another technique is to identify opportunities for creating stand-

alone classes for domain concepts

Such classes do not make use of any other domain concept

The Pigment Color class of the Paint example in the book is one such 

instance; it has clearly defined responsibilities and stands alone

9

April 28, 2005 © University of Colorado, Boulder, 2005

Closure of Operations
In Math, certain operations are “closed” with respect to a particular 

type of number; For instance, addition is closed under the set of 

integers; add any two integers and you get an integer

When it fits, define operations such that their return type is the 

same as the type of its arguments; Such operations provides a 

high-level interface without introducing any dependency on other 

concepts

Many Value Objects work in this way

PigmentColor.mixedWith() is one such operation

java.lang.BigDecimal has examples of others;

public BigDecimal add(BigDecimal value)

public BigDecimal multiply(BigDecimal value)

10



April 28, 2005 © University of Colorado, Boulder, 2005

Closure Of Operations, cont.
Even “partial” closure is good

This refers to the situation of an operation that “almost” meets the 

definition, such as

public BigDecimal divide(BigDecimal value, int roundingMode)

or where the arguments are the same as the host class but the return 

type is different

The book shows one such example from Smalltalk (other scripting 

languages have similar mechanisms) on page 270

11

April 28, 2005 © University of Colorado, Boulder, 2005

Semester in Review
Fundamental OO Concepts

Responsibility-Driven Design

Use Cases

Design Patterns

Refactoring

Test-Driven Design

Domain-Driven Design

OO Life Cycles

Have a good summer!

12


