
Lecture 26: Domain-Driven

Design (Part 4)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

April 14, 2005 © University of Colorado, Boulder, 2005

2

Goals for this lecture
Review the extended example presented in chapter 7 of Domain-

Driven Design

Cargo Delivery Example

April 14, 2005 © University of Colorado, Boulder, 2005

First Three Lectures
The last 3 lectures covered the pattern language of Domain Driven

Design; Each core concept in the book is presented as a pattern

Ubiquitous Language and Model Driven Design

Layered Architecture

Entities, Value Objects, Services, Modules

Aggregates, Factories, Repositories

Using these patterns, Evans claims, can improve the quality of

software development life cycles; leading you to a place where

analysis and design information are captured in code

domain complexities are partitioned into useful structures

the life cycles of domain objects are managed efficiently

3

April 14, 2005 © University of Colorado, Boulder, 2005

Chapter 7
In chapter 7, Evans tries to bring the pattern language to bear on

one example, to show how the parts work together

The domain: cargo tracking

The requirements

Track key handling of customer cargo

Book cargo in advance

Send invoices to customers automatically

The initial model (page 164)

Customer, Cargo, Delivery History, Delivery Specification

Handling Event, Carrier Movement, Location

It would take a while to get to this point in the model’s development

4

April 14, 2005 © University of Colorado, Boulder, 2005

Model Benefits
This model provides several benefits

It captures domain knowledge

Multiple Customers are involved with a Cargo, each playing some role

A series of Carrier Movements satisfying the Specification will fulfill the

delivery goal

These statements can be constructed directly from observing the

model (a feature related to the Ubiquitous Language pattern)

Each element in the model has a clear meaning

Handling Event is a discrete action taken with the Cargo

Delivery Specification defines a delivery goal

This keeps this concern out of the Cargo class; keeping cohesion high

...

5

April 14, 2005 © University of Colorado, Boulder, 2005

On to Design
The requirements and the model are produced by analysis

The example starts with the transition to the design phase

We begin by applying the Layered Architecture pattern

The model is placed in the domain layer

We now identify classes that will be needed in the application layer

Application Layer

Three functions needed to solve the requirements are

Recording what happens to each cargo (Incident Logging Application)

Handling requests to book cargo (Booking Application)

Searching for the current or past status of a cargo (Tracking Query)

These classes are coordinators that use the domain layer

6

April 14, 2005 © University of Colorado, Boulder, 2005

Identifying Entities and Values
Another important issue is identifying what concepts in the domain

have identity that must be tracked by our application

After analysis all concepts except Delivery Specifications are

identified as Entity objects

Customers, Cargo, Handling Events, Carrier Movements, Location, etc.

Most will have automatically generated ids; Handling Events are different

because a domain expert reveals that each such event can be uniquely

identified by combining a cargo’s id with its completion time and type

The same Cargo cannot be loaded and unloaded at the same time

Delivery Specifications are Value Objects because they can be shared

by two cargos going to the same place

Eventually, we hope, the cargo’s Delivery History should end with an

“unload” event at the Location indicated in the Delivery Specification

7

April 14, 2005 © University of Colorado, Boulder, 2005

Designing Associations
We need to revisit the associations in the model to attempt to

reduce the implementation complexity and to better match our

requirements (see page 170)

For instance, the association between Handling Events and Carrier

Movements is bi-directional and has multiplicity in one direction

If we were tracking the inventory of ships, we would want to traverse

from Carrier Movements to Handling Events; but, we are just tracking

individual pieces of cargo; add directionality on that relationship to show

we only need to implement one direction

We have one cycle in the model

Cargo ! Delivery History ! Handling Event ! Cargo

Cycles are tricky; need to balance complexity of implementation with

performance; for instance, a database lookup on one of the associations

can break the cycle but may impede performance if done frequently

8

April 14, 2005 © University of Colorado, Boulder, 2005

Designing Aggregates
Need to examine model for aggregate boundaries

Customers, Locations, and Carrier Movements have their own

identities and are (potentially) shared by many Cargos

they should each (possibly) be the root of their own Aggregates

they may also just be Entities that do not have a complex internal structure

Cargo requires additional thought (page 171)

Delivery History and Delivery Specifications are obvious elements of a

Cargo aggregate

Handling Event, however, is not because we previously identified the

need to search for handling events in two separate instances

Looking for handling events related to a particular Cargo

Looking for handling events related to a particular Carrier Movement

Even though we decided we didn’t need this particular query to meet our

requirements; requirements can change!

9

April 14, 2005 © University of Colorado, Boulder, 2005

Selecting Repositories
There are five Entity objects in the design, each a root of an

aggregate

We need to decide which ones deserve repositories

Recall that some objects we need to find via queries others we will

“find” by traversing associations

To do this, we return to our three application functions

The booking application needs to look up Customers and Locations

It creates Cargos

The Incident Logging Application needs to look up Carrier Movements

and Cargos

The Tracking Query needs to look up Cargos (it gets to handling

events by traversing associations)

As such, we add four repositories (page 172)

10

April 14, 2005 © University of Colorado, Boulder, 2005

Walking Through Scenarios
We must continually check our decisions by “walking through”

scenarios (think “use cases”) to make sure we can meet our

requirements

Two Examples

Changing a Cargo’s Destination

Create a new Delivery Specification and update the Cargo object

Repeat Business (Cargos from repeat customers are often very similar)

Use old Cargos as a template for new Cargos; Copy old Cargo and then

Replace Delivery History with a newly created, empty, history

Copy collection that maps roles to customers (do not copy customers)

Create new tracking id (just as we would when creating a new Cargo)

11

April 14, 2005 © University of Colorado, Boulder, 2005

Identifying Factories
The book discusses two factories (others would be needed)

Cargo needs a factory because it has a lot of parts that need to be

created before its root can be handed to the application layer

We need to make sure that a newly created Cargo has

an empty delivery history that points back to Cargo (page 174-175)

a null delivery specification (added later by the booking application)

Handling Event needs a factory since it would be useful to have

factory methods that create each of the different types of handling

events automatically (page 176)

Because of the cycle in our model, adding handling events to a

Cargo’s delivery history is not a straightforward task (page 176)

In a multiuser app, contention for the Cargo aggregate can occur, yet

creation of Handling Events needs to happen quickly (page 177-179)

Evans replaces Delivery History with query and adds a Repository

12

April 14, 2005 © University of Colorado, Boulder, 2005

The Role of Modules
The Shipping model is expanded on page 180 and an initial

partitioning into modules is attempted

The classes are partitioned by pattern type (Entities, Values, etc.)

Such partitions are not helpful since they do not support or capture our

knowledge of the domain

A second partitioning is presented on page 181 that expands on our

knowledge of the domain

We now group classes with the following concepts

Customer, Billing, and Shipping

Ubiquitous Language: Our company does shipping for customers so we

can bill them

13

April 14, 2005 © University of Colorado, Boulder, 2005

Summary and What’s Next?
The example concludes with a discussion of the issues surrounding

the introduction of a new requirement (and dealing with domain

objects that live in multiple systems)

Overall the example provides insight into how the various patterns

of Domain-Driven Design can be used to build a software system

What’s Next

A survey of other object-oriented life cycles

Guest Lecture: The use of the Rational Unified Process at Sandia

National Labs

Chapter 10 of Domain Driven Design

Semester project presentations

14

