Vbbb

Lecture 26: Domain-Driven
Design (Part 4)

Kenneth M. Anderson

Object-Oriented Analysis and Design
CSCI 4448/6448 - Spring Semester, 2005

+ +

Vbbb

Goals for this lecture

¢» Review the extended example presented in chapter 7 of Domain-
Driven Design

¢» Cargo Delivery Example

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




3 RAURAURAN Y

First Three Lectures

oe The last 3 lectures covered the pattern language of Domain Driven
Design; Each core concept in the book is presented as a pattern

«» Ubiquitous Language and Model Driven Design
& Layered Architecture

¢» Entities, Value Objects, Services, Modules

¢» Aggregates, Factories, Repositories

& Using these patterns, Evans claims, can improve the quality of
software development life cycles; leading you to a place where

¢» analysis and design information are captured in code

» domain complexities are partitioned into useful structures

o the life cycles of domain objects are managed efficiently

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

4 RAURAURAN Y

Chapter 7

¢¢ In chapter 7, Evans tries to bring the pattern language to bear on
one example, to show how the parts work together

¢» The domain: cargo tracking
¢ The requirements
¢ Track key handling of customer cargo
& Book cargo in advance
¢ Send invoices to customers automatically
&% The initial model (page 164)
&% Customer, Cargo, Delivery History, Delivery Specification
¢» Handling Event, Carrier Movement, Location

¢s It would take a while to get to this point in the model’s development

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




5 RAURAURAN Y

Model Benefits

¢» This model provides several benefits

s It captures domain knowledge
¢» Multiple Customers are involved with a Cargo, each playing some role

¢» A series of Carrier Movements satisfying the Specification will fulfill the
delivery goal

¢» These statements can be constructed directly from observing the
model (a feature related to the Ubiquitous Language pattern)

«» Each element in the model has a clear meaning
¢» Handling Event is a discrete action taken with the Cargo
¢» Delivery Specification defines a delivery goal
& This keeps this concern out of the Cargo class; keeping cohesion high

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

6 RAURAURAN Y

On to Design

¢» The requirements and the model are produced by analysis

¢» The example starts with the transition to the design phase
¢» We begin by applying the Layered Architecture pattern
&% The model is placed in the domain layer
¢» We now identify classes that will be needed in the application layer
¢» Application Layer
¢» Three functions needed to solve the requirements are
¢» Recording what happens to each cargo (Incident Logging Application)
¢» Handling requests to book cargo (Booking Application)
¢» Searching for the current or past status of a cargo (Tracking Query)

¢» These classes are coordinators that use the domain layer

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




7 RAURAURAN Y

Identifying Entities and Values

¢» Another important issue is identifying what concepts in the domain
have identity that must be tracked by our application
¢» After analysis all concepts except Delivery Specifications are
identified as Entity objects
¢» Customers, Cargo, Handling Events, Carrier Movements, Location, etc.
¢» Most will have automatically generated ids; Handling Events are different
because a domain expert reveals that each such event can be uniquely
identified by combining a cargo’s id with its completion time and type
& The same Cargo cannot be loaded and unloaded at the same time
&% Delivery Specifications are Value Objects because they can be shared
by two cargos going to the same place
¢» Eventually, we hope, the cargo’s Delivery History should end with an
“unload” event at the Location indicated in the Delivery Specification

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

8 RAURAURAN Y

Designing Associations

¢» We need to revisit the associations in the model to attempt to
reduce the implementation complexity and to better match our
requirements (see page 170)
&% For instance, the association between Handling Events and Carrier
Movements is bi-directional and has multiplicity in one direction

¢» If we were tracking the inventory of ships, we would want to traverse
from Carrier Movements to Handling Events; but, we are just tracking
individual pieces of cargo; add directionality on that relationship to show
we only need to implement one direction

¢ We have one cycle in the model
¢» Cargo — Delivery History —» Handling Event — Cargo

¢ Cycles are tricky; need to balance complexity of implementation with
performance; for instance, a database lookup on one of the associations
can break the cycle but may impede performance if done frequently

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




9 RAURAURAN Y

Designing Aggregates

¢» Need to examine model for aggregate boundaries
¢» Customers, Locations, and Carrier Movements have their own
identities and are (potentially) shared by many Cargos
¢» they should each (possibly) be the root of their own Aggregates
& they may also just be Entities that do not have a complex internal structure
&% Cargo requires additional thought (page 171)
¢» Delivery History and Delivery Specifications are obvious elements of a
Cargo aggregate
¢» Handling Event, however, is not because we previously identified the
need to search for handling events in two separate instances
& Looking for handling events related to a particular Cargo
& Looking for handling events related to a particular Carrier Movement

& Even though we decided we didn’t need this particular query to meet our
requirements; requirements can change!

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

10 NARAUR AN

Selecting Repositories

¢ There are five Entity objects in the design, each a root of an
aggregate
¢» We need to decide which ones deserve repositories

& Recall that some objects we need to find via queries others we will
“find” by traversing associations

¢ To do this, we return to our three application functions

¢» The booking application needs to look up Customers and Locations
& It creates Cargos

¢» The Incident Logging Application needs to look up Carrier Movements
and Cargos

¢» The Tracking Query needs to look up Cargos (it gets to handling
events by traversing associations)

¢ As such, we add four repositories (page 172)

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




11 RAURAURAN Y

Walking Through Scenarios

¢ We must continually check our decisions by “walking through”
scenarios (think “use cases”) to make sure we can meet our
requirements
& Two Examples
¢» Changing a Cargo’s Destination
& Create a new Delivery Specification and update the Cargo object
¢» Repeat Business (Cargos from repeat customers are often very similar)
& Use old Cargos as a template for new Cargos; Copy old Cargo and then
& Replace Delivery History with a newly created, empty, history
& Copy collection that maps roles to customers (do not copy customers)

& Create new tracking id (just as we would when creating a new Cargo)

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

12 RAURAURAN Y

Identifying Factories

¢» The book discusses two factories (others would be needed)
¢» Cargo needs a factory because it has a lot of parts that need to be
created before its root can be handed to the application layer
¢» We need to make sure that a newly created Cargo has
¢» an empty delivery history that points back to Cargo (page 174-175)
¢» a null delivery specification (added later by the booking application)
¢» Handling Event needs a factory since it would be useful to have
factory methods that create each of the different types of handling
events automatically (page 176)
¢» Because of the cycle in our model, adding handling events to a
Cargo’s delivery history is not a straightforward task (page 176)
¢» In a multiuser app, contention for the Cargo aggregate can occur, yet

creation of Handling Events needs to happen quickly (page 177-179)
& Evans replaces Delivery History with query and adds a Repository

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




13 NARAUR AN

The Role of Modules

¢» The Shipping model is expanded on page 180 and an initial
partitioning into modules is attempted

¢» The classes are partitioned by pattern type (Entities, Values, etc.)

¢%» Such partitions are not helpful since they do not support or capture our
knowledge of the domain

¢ A second partitioning is presented on page 181 that expands on our
knowledge of the domain

¢» We now group classes with the following concepts
¢» Customer, Billing, and Shipping

¢» Ubiquitous Language: Our company does shipping for customers so we
can bill them

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <

14 RAURAURAN Y

Summary and What’s Next?

s» The example concludes with a discussion of the issues surrounding
the introduction of a new requirement (and dealing with domain
objects that live in multiple systems)

¢« Overall the example provides insight into how the various patterns
of Domain-Driven Design can be used to build a software system

¢» What’s Next
¢s A survey of other object-oriented life cycles

¢s Guest Lecture: The use of the Rational Unified Process at Sandia
National Labs

¢ Chapter 10 of Domain Driven Design
¢» Semester project presentations

-GP- April 14, 2005 © University of Colorado, Boulder, 2005 <




