
Lecture 25: Domain-Driven

Design (Part 3)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

April 12, 2005 © University of Colorado, Boulder, 2005

2

Goals for this lecture
Review (most of) the material presented in chapter 6 of Domain-

Driven Design

Aggregates

Factories

Repositories

Present examples that illustrate these concepts

April 12, 2005 © University of Colorado, Boulder, 2005

Domain Object Life Cycle
Every object has a life cycle (see page 123)

It is created

It moves through various states

It is then deleted or archived

If the latter, it can eventually be restored and live again

For transient objects, this life cycle is simple to manage

But for domain objects, this life cycle can be complicated

You need to keep track of state changes and each object may have

complex relationships with other objects

3

April 12, 2005 © University of Colorado, Boulder, 2005

Life Cycles and MDD
Two challenges occur in Model-Driven Design with respect to

managing object life cycles

Maintaining object integrity throughout the life cycle

making sure constraints/rules/invariants are maintained

Preventing the model from getting “swamped” by the complexity of

managing the life cycle

We do this via the use of three patterns

Aggregates: which provide clear boundaries within the model and

thereby reduce complexity

Factories: used to encapsulate the complexities of creating and

reconstituting complex objects (aggregates)

Repositories: use to encapsulate the complexities of dealing with

persistent complex objects (aggregates)

4

April 12, 2005 © University of Colorado, Boulder, 2005

Aggregates
Model objects often participate in complex relationships

Managing the consistency of these relationships can be difficult

Compounding this problem is the fact that the “real world” often

gives no hints as to the location of sharp boundaries in this web of

concepts and relationships

Quick Example: Deleting a Person from a Database

Do you delete the Person’s associated value objects?

What if other Person objects need those value objects

If so, they may end up pointing to garbage

If not, you may litter the database with unreferenced value objects

Further compounding this problem is that these objects are often

accessed by multiple users concurrently

We need to prevent simultaneous changes to interdependent objects

5

April 12, 2005 © University of Colorado, Boulder, 2005

More on Aggregates
An Aggregate is a cluster of associated objects that we treat as a

unit for the purpose of data changes

Each aggregate has a root and a boundary

The root is a single, specific entity object contained in the aggregate

The boundary defines what is IN the aggregate and what is OUT

Clients can only hold references to the root object of an aggregate

Objects within the aggregate are allowed to hold references to one

another

Objects within the aggregate have local identity but not global identity

Thus a Car object may have global identity but its tires do not (see page 127)

Aggregates can have invariants associated with them (page 128)

These invariants are typically enforced/maintained by the root object

A delete operation on an aggregate must delete everything within the

boundary at once

6

April 12, 2005 © University of Colorado, Boulder, 2005

Example
The book presents an extended aggregate example on pages 130 to

134 looking at a purchase order aggregate and examining issues

surrounding updates to purchase orders and parts

It highlights the consistency issues that can come into play when

dealing with multiuser updates to shared objects

7

April 12, 2005 © University of Colorado, Boulder, 2005

Factories
Factories are key elements in the domain layer that manage the

creation of complex domain objects

Car engines are hard to build; humans and robots are used to

accomplish the task

Once built, the car engine can focus on what it does best

It doesn’t need to know how to build itself

Furthermore, you don’t need the humans/robots that created it, in order

to use it

The same is true of complex domain objects

We can create them with factories and then use them for their

purpose without need for the factory

This approach can keep complex object construction and rule

invariant code out of the domain objects themselves

8

April 12, 2005 © University of Colorado, Boulder, 2005

Factories, continued
While they are considered part of the domain layer, Factories

typically do NOT belong to the model

Basic interactions (page 138)

The factory defines a method with all the parameters needed to create

a particular class of domain object

A client invokes the method providing the required parameters

The factory creates the new object and makes sure that all class

invariants are valid

The factory returns the newly created object to the client

Factories are thus ideal for creating Entities and Aggregates

They are less necessary for Value Objects

9

April 12, 2005 © University of Colorado, Boulder, 2005

Implementing Factories
Three Factory-related methods appear in the Design Patterns book

Abstract Factory, Factory Method (see Lecture 13), Builder

Two basic requirements on Factories

Each creation method is atomic (cannot be interrupted in the

presence of multiple threads) and enforces all invariants of the

created object or Aggregate

If something goes wrong during creation, the method should throw an

exception than allow an object to be created in an inconsistent state

Placing invariant logic in a factory can often save a lot of space in the

domain class itself; because typically a domain object’s methods will not

allow the object to be transformed into an illegal state after its created

Factory methods should return abstract types, not concrete classes

Thus a Factory for a linked list in Java would return the type List and not

the type LinkedList or ArrayList

10

April 12, 2005 © University of Colorado, Boulder, 2005

Locating Factories
As much as possible, place factories where control for the creation

of an object makes sense

If you need to add an element to a pre-existing aggregate, provide a

factory method on the root object of the aggregate (page 140)

If you have two closely related domain object, consider placing a

factory method on one of them to create the other (page 140)

When creating aggregates or complex Entity objects, create a

dedicated Factory object

With respect to aggregates, the factory creates the aggregate all at once

and returns a reference to the aggregate’s root (page 141)

With respect to Entities, the factory will make sure that the entity’s

identity is globally unique within your application

11

April 12, 2005 © University of Colorado, Boulder, 2005

Factories and Archived Objects
Factories can be used to reconstitute archived objects (page 146)

Reconstituting a persistent object can be a complex process

There are two differences in this situation however

Entity objects are not given new identities; rather the stored

information is used to reconstitute their previous identities

Rule violations will be handled differently

when first creating an object, a violation can safely cause an exception

but if information from an archive causes a violation, it means either

there is a bug in our domain class, allowing an object that was valid after

creation to enter an invalid state

or, there is a bug in our persistence code, that takes a valid object and stores

it incorrectly

OR, the persistent information was modified outside of our application

regardless, rather than throwing an exception, we must attempt repair

12

April 12, 2005 © University of Colorado, Boulder, 2005

Repositories
To do anything with an object, you must have a reference to it

How do you get that reference?

You could create the object

Or, you could traverse an association from an object you already have

OR, you could execute a query to find that object in a database based on

its attributes

Most designs will use a combination of search and traversal to keep

model-driven designs manageable (avoiding the problems

discussed at the beginning of chapter 3)

You need to be careful with search however, because it becomes easy

to think of objects as just “containers” for the information stored in

the database; your design can start to lose its OO feel

In particular, you can decide not to create aggregates and entities, and

just use queries to grab the objects you need directly

13

April 12, 2005 © University of Colorado, Boulder, 2005

Finding a balance
To limit the scope of the object access problem, we can

not worry about transient objects

objects used only in the method that created them

not provide query access to objects that can more easily be found via

traversal

thus, we don’t need a search function for, e.g., a person’s address;

instead we will traverse an association of the Person class to get that

not provide query access to objects that are internal to an aggregate;

you need to go through the aggregate’s root

Instead, we will use a Repository that provides search capabilities

based on object attributes to find, typically, the roots of aggregates

that are not convenient to reach by traversal

14

April 12, 2005 © University of Colorado, Boulder, 2005

More on Repositories
A Repository represents a collection of objects of a certain type

Clients can add and remove objects from this set; the repository will

take care of adding/removing the corresponding object to/from a

particular persistence mechanism

Clients provide attributes to a repository’s search methods to gain

access to particular objects in the domain (page 151); the repository

takes care of creating the query needed to retrieve such objects from

the persistence mechanism (page 155)

Benefits

Repositories provide a simple model for accessing persistent objects

Repositories decouple applications from persistence mechanisms

Repositories can be defined abstractly and then be implemented in

multiple ways (such as in-memory collections, XML, RDMS, etc.)

15

April 12, 2005 © University of Colorado, Boulder, 2005

Additional Issues
Query Types

Repositories can support

hard-coded queries (page 153) and

specification-based queries (page 153)

Implementation Concerns

Client code ignores a repository’s implementation, developers do not

Developers need to understand how queries bring objects into memory

and how that memory is reclaimed

Keep factories and repositories distinct (page 158)

Have repositories use factories to reconstitute objects

With new objects, have clients add the object to a repository; do not

have a factory create and then add an object directly

What’s Next? Covering the extended example of chapter 7

16

