
Lecture 24: Domain-Driven

Design (Part 2)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 4448/6448 - Spring Semester, 2005

1

April 7, 2005 © University of Colorado, Boulder, 2005

2

Goals for this lecture
Review (most of) the material presented in chapters 4 and 5 of

Domain-Driven Design

Layered Architecture

Associations, Entities, Value Objects, Services, Modules

Present examples that illustrate these concepts

April 7, 2005 © University of Colorado, Boulder, 2005

Layered Architecture
Modern applications are often implemented using a layered

architecture; different layers support separation of concerns

A typical breakdown consists of the following layers

User Interface

Application

Domain

Infrastructure

The key is to isolate domain concepts from system concepts

“To apply our best thinking, we need to be able to look at the elements

of our model and see them as a system. We must not be forced to pick

[domain concepts] out of a much larger mix of objects, like trying to

identify constellations in the night sky”

3

April 7, 2005 © University of Colorado, Boulder, 2005

Quick Example
Shipping Application: Select Destination City for Cargo

We need code that

places a list selection widget on screen (UI)

queries the database for all possible cities (Infrastructure)

interprets user events and validates them (Application)

associates the selected city with the cargo (Domain)

commits change to database (Infrastructure)

The domain layer constitutes only a small portion of the entire

software system, yet its importance is disproportionate to its size

(for reasons covered in lecture 23)

4

April 7, 2005 © University of Colorado, Boulder, 2005

Basic Principles of Layers
Dependencies between layers should exist in only one direction

As such, within a layer, an object can depend on

other objects in its layer

and objects in layers “below” it

See example on page 72

If an object in a lower layer needs to communicate with an object in

a layer above it needs to use indirect mechanisms, such as

callbacks

an “upper” object passes itself as a parameter to a “lower” object after

implementing a predefined callback interface; the “lower” object uses

this reference to communicate back up

the Observer pattern

5

April 7, 2005 © University of Colorado, Boulder, 2005

Domain Layer
Objects within the domain layer are elements of “the model”

They should be isolated from the UI, Application, and Infrastructure

layers as much as possible

“The domain objects, free of the responsibility of displaying themselves,

storing themselves, managing application tasks, and so forth, can be

focused on expressing the domain model. This allows a model to

evolve... to capture essential business knowledge and put it to work.”

The domain layer is where all of the concepts, behaviors, and rules

specified for the model are implemented; the other layers should be

devoid of “domain logic” as much as possible

Rather than implementing a domain rule in the application layer, have it

call the domain layer and respond appropriately

e.g., a violation of a business rule might raise an exception in the domain

layer, that is caught by the application layer, and displayed by the UI layer.

6

April 7, 2005 © University of Colorado, Boulder, 2005

Expressing the Model in Software
Chapter 5 looks at issues that arise when establishing the link

between a model and the software that implements it

“[Associations and Objects] are simple to conceive and to draw, but

implementing them is a potential quagmire. [!]” — Page 81

We will look at the following model-related concepts

Associations: Relationships between model concepts

Entities: Objects with identity that need to be tracked

Value Objects: Serve as attributes to describe other objects

Services: Something that is done for a client on request; services will

mainly live within the technical layers of your software system

(“display this domain concept”) but the domain layer will also need

services to model domain-related activities

7

April 7, 2005 © University of Colorado, Boulder, 2005

Associations
For every traversable association in the model, there is a

mechanism in the software with the same properties

Ex.: an association between a customer and a sales representative

Represents, on one hand, “domain knowledge”

On the other hand, it also represents a pointer between two objects, or

the result of a database lookup, etc.

Associations can be implemented in many ways

A one-to-many association can be implemented as

a collection class pointed to by an instance variable

it might be a getter method that queries a database

Associations in the “real world”

Lots of many-to-many relationships, with many being bidirectional

Really hard to implement!

8

April 7, 2005 © University of Colorado, Boulder, 2005

Dealing with Associations
There are three techniques for making associations managable

Impose a traversal direction

Add a qualifier, effectively eliminating or reducing multiplicity

Eliminate nonessential associations (as dictated by the problem you

are trying to solve)

See examples of the first two techniques on pages 84-88

9

April 7, 2005 © University of Colorado, Boulder, 2005

Entities
Some objects are not defined primarily by their attributes. They

represent a thread of identity that runs through time and often

across distinct representations

Consider the notion of “customer” in a typical business system

Customer may have a payment history

if its good, “status” will accrue; if its bad, the customer’s information may be

transferred to a bill-collection agency

The same customer may be in the contact management software used by

your company’s sales force

The customer may be “squashed flat” for storage in a database

If business stops, the customer may be placed in an archive

Each aspect of the customer may be implemented in multiple ways,

using different representations and/or programming languages

They all represent the SAME customer however, and some means must

exist to match them even though their attributes may be different

10

April 7, 2005 © University of Colorado, Boulder, 2005

Entities, continued
An object defined primarily by its identity is called an Entity

They have life cycles that can radically change their form and content

Their identities must be defined so that they can be effectively tracked

This notion of identity is DIFFERENT from the identity mechanisms of

programming languages; i.e., it is different from “a == b” and

“a.equals(b)” that OO languages provide

Example

Two deposits of the same amount made to the same bank account on the

same day are NOT identical; they are two separate entity objects in the

banking domain

the objects representing the amounts ARE identical, however, and are most

likely Value Objects (discussed next)

11

April 7, 2005 © University of Colorado, Boulder, 2005

Modeling Entities
The key to modeling an entity object is to include only those

attributes that are used to establish its identity or are commonly

used to find or match it; include only those behaviors that support

the task of maintaining its identity

All other behaviors and attributes should be placed in separate

objects (some of which may also be Entities)

See example page 94

12

April 7, 2005 © University of Colorado, Boulder, 2005

Designing the Identity Operation
Each Entity must have a way of establishing its identity

Such that two instances of the same entity can be distinguished from

one another, even if they both contain the same descriptive attributes

(like our bank deposits from slide 11)

Identity is often operationally established by

ensuring that a single attribute has a unique id

or ensuring that some combination of attribute values always produce

a unique key

Often the means for establishing identity require a careful study of

the domain; what is it that humans do to distinguish the real-world

counterparts of the entity object?

13

April 7, 2005 © University of Colorado, Boulder, 2005

Value Objects (aka Values)
Some objects have no conceptual identity; these objects describe

some aspect of a thing

A person may be modeled as an Entity with an identity, but that

person’s NAME is a Value object

Values are instantiated to represent elements of a design that we

care about only for WHAT they are, not WHO they are

Example values

Colors, Dates, Numbers, Strings, etc.

Values are immutable; once created their values do not change

create values via factory methods; do not provide setter methods

operations that manipulate values produce new values as a result

Benefits: such objects can be easily shared

See example on page 99

14

April 7, 2005 © University of Colorado, Boulder, 2005

Services
In some situations, the clearest and most pragmatic design

includes operations that do not conceptually belong to a single

object; Rather than force the issue, we can follow the natural

contours of the problem space and include SERVICES explicitly in

the model

Slippery slope: if you give up too often on finding a home for an

operation, you will end up with a procedural programming solution

On the other hand, if you force an operation into an object that doesn’t

fit that object’s definition, you weaken that object’s cohesion and

make it more difficult to understand

15

April 7, 2005 © University of Colorado, Boulder, 2005

Services, continued
A service is an operation offered as an interface that stands alone in

the model; it is defined purely in terms of what it can do for a client

Services tend to be named for what they can do (verbs rather than

nouns)

A good service has three characteristics

The operation relates to a domain concept that is not a natural part of

an entity or value object

The interface is defined in terms of other elements of the domain

model

The operation is stateless (does not maintain or update its own

internal state in response to being invoked)

16

April 7, 2005 © University of Colorado, Boulder, 2005

Modules
Modules are groupings of model elements; They provide two views

on a model

one view provides details within an individual module

the second view provides information about relationships between

modules

We shoot for modules with high cohesion and low coupling

high cohesion: elements within a module all support the same

purpose

low coupling: elements within a module primarily reference

themselves; references to objects outside the module are kept to a

minimum

17

April 7, 2005 © University of Colorado, Boulder, 2005

What’s Next
Review the material of Chapter 6 of Domain-Driven Design

Life Cycles of Domain Objects

Aggregates

Factories

Repositories

18

