
Lecture 23: Domain-Driven

Design (Part 1)
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

April 5, 2005 © University of Colorado, Boulder, 2005

2

Goals for this lecture
Introduce the main concepts of Domain-Driven Design

Model-Driven Design

Ubiquitous Language

Present examples that illustrate these concepts

Goals for the Domain-Driven Design Lectures

Cover chapters 1-7 and parts of chapter 10 in 4 lectures!

April 5, 2005 © University of Colorado, Boulder, 2005

Domain-Driven Design
Eric Evans, the author of Domain-Driven Design, has been

programming and designing systems for 25 years

He asserts that for most software projects, the primary focus

should be on the domain and domain logic

“Domain-driven design flows from the premise that the heart of software

development is knowledge of the subject matter and finding useful ways

of understanding that subject matter. The complexity that we should be

tackling is the complexity of the domain itself -- not the technical

architecture, not the user interface, not even specific features. This

means designing everything around our understanding and conception of

the most essential concepts of the business and justifying any other

development by how it supports that core.”
From <http://domaindrivendesign.org/articles/blog/evans_eric_ddd_and_mdd.html>

3

April 5, 2005 © University of Colorado, Boulder, 2005

Model-Driven Design
Domain-Driven Design leads to Model-Driven Design since

developers capture their knowledge of a domain in models

In particular

A model-driven design is software structured around a set o domain

concepts

 A model-driven design for a UI framework is one in which UI concepts,

such as windows and menus, correspond to software constructs

Model-driven design embeds a domain model into the very fabric of a

software system.

This creates a feedback loop between learning about a domain and

implementing a system that addresses a problem in that domain

Teams who embrace model-driven design are aware that a change to

the code IS a change to the model (and vice versa)

4

April 5, 2005 © University of Colorado, Boulder, 2005

Model Benefits in DDD
The model and its implementation shape each other

The link between model and code makes the model relevant and

ensures that the work spent on analysis is not wasted

Indeed, the results of your analysis are present in the developed system!

The model creates a language used by all team members

The language spreads domain knowledge throughout a team

It allows developers to speak to domain experts (e.g. users) without

translation

The model is distilled knowledge

Analysis is hard; we need to capture the information we get from it

The model is the team’s agreed-upon way of structuring domain

knowledge and and distinguishing the elements of most interest

5

April 5, 2005 © University of Colorado, Boulder, 2005

Tackling Complexity
The heart of software is its ability to solve domain-related problems

for its users

Software functionality either solves a domain-related problem or

performs a domain-related task

All other features support these two goals

When a domain is complex, it becomes difficult to accomplish this

To be successful, developers must steep themselves in the domain

Problem: Most developers are not interested in this!

Domain work is messy and demands a lot of knowledge not

necessarily related to computer science

Developers enjoy quantifiable problems that exercise their technical

skills!

Evans asserts that domain complexity has to be tackled head-on by

developers or they risk irrelevance!

6

April 5, 2005 © University of Colorado, Boulder, 2005

Crunching Knowledge
Domain modeling requires processing (crunching) knowledge

In the same way that financial analysts crunch numbers to, e.g.,

understand the quarterly performance of a corporation

While speaking with domain experts, a domain modeler will

try one organizing idea (set of concepts) after another

create models, try them out, reject some, transform others

Success is achieved when the modeler has created a set of

abstract concepts that makes sense of all the details provided by

the domain experts

Domain experts are a critical part of the process

Without them, developers tend to create models with concepts that

seem naive and shallow to domain experts

7

April 5, 2005 © University of Colorado, Boulder, 2005

Ingredients of Effective

Modeling
Bind the model and the implementation

As a model is developed, create rapid prototypes that test the domain

These prototypes contain primarily domain concepts

no UI, no persistence, no infrastructure

Chapter 3 begins with a story of what happens when you don’t do this!

Cultivate a language based on the model

Domain experts teach you their concepts and vocabulary

You teach them the basics of class diagrams and sequence diagrams

(via the use of lots of examples)

Eventually either side “can take terms straight out of the model,

organize them into sentences consistent with the structure of the

model, and be unambiguously understood without translation”

8

April 5, 2005 © University of Colorado, Boulder, 2005

Ingredients of Effective

Modeling, continued
Develop a knowledge-rich model

The objects of your model should have behavior and may follow rules

The model should not be just a data schema (think class diagram) but

should express behavior, constraints, etc. that help solve domain-

related problems

Distill the model

It will be easy to add concepts to a model but more important is

learning to remove concepts that are no longer useful

Be willing to brainstorm and experiement

Try out variations of the model with rapid prototypes; think of the

model as a laboratory that can enable domain-related experiments

Use the results of those experiments to evolve the model

9

April 5, 2005 © University of Colorado, Boulder, 2005

Example: PCB Design
Chapter 1 contains a brief example of domain-driven design when

the author was working with a team of printed-circuit board

designers

Evans knew nothing about electronic hardware

Initial conversations with the designers were difficult

Evans was not an electrical engineer and didn’t understand the designers

concepts or skills

The designers were not software developers and could not explain the

functionality they needed very well

The first breakthrough came with Evans noticing that the concept of a

“Net” kept appearing in the reports that the designers wanted from

the software system

A net on a PCB is a wire conductor that connects a set of components

and can carry an electric signal to each component its connected to

10

April 5, 2005 © University of Colorado, Boulder, 2005

Example continued
This “breakthrough” led to a sequence of class diagrams and

interaction diagrams that eventually led to a greater understanding

of the domain PLUS identified a problem within the domain that

needed solving

See pages 7 - 11 of domain-driven design

The concepts included

component type (pin map), component instance, pin, net

The problem was detecting the number of hops a signal caused

across the components of a PCB

One concept, net topology, was dropped when the developer

discovered it wasn’t needed to solve this problem

11

April 5, 2005 © University of Colorado, Boulder, 2005

Knowledge-Rich Design
To repeat, models capture more information than just the “classes”

of a domain

As Evans says, it goes beyond the “find the nouns and verbs” heuristic

of some object-oriented models

In particular, models capture behavior, business activities, and

business rules (policies, constraints, etc.)

This makes knowledge crunching difficult since there may be

inconsistencies between business rules

Domain experts (workers) can often detect these inconsistencies and

apply “common sense” or create policies to deal with inconsistencies

when they arise

Software can’t do this! (At least not easily!)

12

April 5, 2005 © University of Colorado, Boulder, 2005

Example: Modeling Business Rules
Consider a simple domain: Booking cargo on ships

The associated application might have code that looks like this:

public int makeBooking(Cargo cargo, Voyage voyage) {

int confirmation = getOrderNumber();

voyage.addCargo(cargo, confirmation);

return confirmation;

}

13

Voyage Cargo*

April 5, 2005 © University of Colorado, Boulder, 2005

Example, continued
A standard practice in the shipping industry is to accept more cargo

than a particular ship can carry on voyage

This is know as “overbooking” and is used because there are typically

always last-minute cancellations

One way of specifying the overbooking policy is via a percentage of

the ship’s total capacity

So, if a requirements documents says “Allow 10% overbooking” our

code might change to look like this

public int makeBooking(Cargo cargo, Voyage voyage) {

double maxBooking = voyage.capacity() * 1.1;

if ((voyage.bookedCargoSize() + cargo.size()) > maxBooking)

return -1;

...

}

14

April 5, 2005 © University of Colorado, Boulder, 2005

Problem: Hidden Knowledge
The problem with this approach is that the overbooking policy is not

reflected in our model

The policy has been recorded in a requirements document and hidden

away inside one method in our application

Domain-Driven Design recommends making that knowledge a part

of the model: change the model, change the code (and vice versa)

15

Voyage Cargo*

Overbooking
Policy

{sum(cargo.size) < voyage.capacity * 1.1}

April 5, 2005 © University of Colorado, Boulder, 2005

Example, continued
Our code would now look like this

public int makeBooking(Cargo cargo, Voyage voyage) {

if (!overbookingPolicy.isAllowed(cargo, voyage)) return -1

...

}

and the OverbookingPolicy class would have this method:

public boolean isAllowed(Cargo cargo, Voyage voyage) {

return (cargo.size() + voyage.bookedCargoSize()) <=

(voyage.capacity() * 1.1);

}

16

April 5, 2005 © University of Colorado, Boulder, 2005

Ubiquitous Language
A core piece of domain-driven design is the symbiotic nature of the

model being created for your software system and the language

used by developers to discuss the system under design

Evans states

Use the model as the backbone of a language. Commit the team to

exercising that language relentlessly in all communication within the

team and in the code. Use the same language in diagrams, writing, and

especially speech

Iron out difficulties by experimenting with alternative expressions, which

reflect alternative models. Then refactor the code, renaming classes,

methods, and modules to conform to the new model

This allows developers to use their linguistic abilities to aid software

design, resolving ambiguity or confusion over terms in conversation

See example on pages 27 to 30

17

April 5, 2005 © University of Colorado, Boulder, 2005

Merging Jargons

18

technical
aspects of

design

technical
terms

design
patterns

domain
concepts

"big picture"
view of
system

subdomains

business terms
developers

don't understand

familiar business terms
not relevant to the

system under design

Ubiquitous Language

Problem SpaceSolution Space

April 5, 2005 © University of Colorado, Boulder, 2005

Using Language to Refine a Model
When working on a model, speak the relationships out loud until

you’ve captured requirements in a concise way

Three examples (from bad to good)

If we give the Routing Service an origin, destination, and arrival time, it

can look up the stops the cargo will have to make and, well... stick

them in the database.

The origin, destination, and so on... it all feeds into the Routing

Service, and we get back an Itinerary that has everything we need in it

A Routing Service finds an Itinerary that satisfies a Route

Specification

Once you’ve got a statement like the last, you can supplement with

additional statements

A Routing Service needs an origin, a destination, and an arrival time

19

April 5, 2005 © University of Colorado, Boulder, 2005

One Team, One Language
Developers will want to hide the model from the domain experts

The model is too abstract for them

They don’t understand objects

We have to collect requirements in their terminology

Recall that the model is supposed to describe the user’s domain!

If sophisticated domain experts don’t understand the model,

something is wrong with the model!

Indeed, the domain experts will be your best resource for testing the

adequacy of a model

They will quickly find problems, notice ambiguity, identify naive

assumptions, etc.

20

April 5, 2005 © University of Colorado, Boulder, 2005

Documents and Diagrams
Diagrams are good for

anchoring discussions about the model

brainstorming changes to the model

But diagrams can’t capture everything

attributes and relationships tell half the story because behavior and

constraints are not easily illustrated

You can diagram some behaviors but you can’t diagram all of them!

“The vital detail about the design is captured in the code!”

Documents are needed to capture decisions in large groups but

beware entropy! Documents often get left behind!

Good documents provide background and record the thinking behind

decisions; they should not try to replace code’s ability to provide detail

See example page 42

21

April 5, 2005 © University of Colorado, Boulder, 2005

What’s Next
Review the contents of Part II of Domain-Driven Design

The Building Blocks of a Model-Driven Design

Layered Architecture

Entities, Value Objects, Services, Modules

Life Cycles of Domain Objects

Aggregates

Factories

Repositories

22

