
Lecture 9: Finding Objects
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 8, 2005 © University of Colorado, Boulder, 2005

2

Goals for this Lecture
Review content of Chapter 3 from the textbook

Discuss the process for discovering candidate objects and roles in 

a software system

Review techniques that can aid this process

Design Stories

Search Strategies

Coming up with Names

Describing Candidate Objects and their relationships



February 8, 2005 © University of Colorado, Boulder, 2005

Laying a Foundation
Wirfs-Brock and McKean compare object design to graphic design

Good graphic design requires careful use of color, texture, and shapes 

to make images “leap off the page”.

A bad design muddles what should be emphasized

Example: “chart junk”

A good design is more than the sum of its parts.

Object designs, likewise, require good abstractions, well-formed 

objects, and a good overall structure

To create these designs, however, you need a process

3

February 8, 2005 © University of Colorado, Boulder, 2005

A Process for Finding Objects
Initial strategies for finding objects were a bit naïve

Take text that describes the requirements for the system and

Underline nouns ! Objects!

Underline verbs ! Methods!

This strategy is inadequate because finding good objects involves 

finding abstractions that are going to be useful for your application

Some of these abstractions may not have real-world counterparts

Although we must determine which domain concepts WILL be included 

and how they will fit within the overall application

4



February 8, 2005 © University of Colorado, Boulder, 2005

Finding Objects, continued
However, this does not mean we can’t be systematic!

We can “find objects” via

our knowledge of the application domain

our knowledge of “application machinery”

lessons learned from other designers (think patterns!)

our past design experiences (you’ll get better with each new system)

5

February 8, 2005 © University of Colorado, Boulder, 2005

The Process
1. Write a brief design story; Identify what is important about your 

application

2. Use this story to identify several major themes that define some 

central concerns for your application

3. Search for candidate objects that surround and support each theme

4. Check that each candidate represents a key domain concept

5. Look for candidates that will help your application interact with 

these key domain concepts

6. Name, describe, and characterize each candidate

6



February 8, 2005 © University of Colorado, Boulder, 2005

The Process, continued

7. Organize your candidates; Look for clusters of objects that have to 

work together to solve a problem (use cases can help here)

8. Double check to see if each candidate is appropriate

9. Defend each candidate’s reasons for inclusion

10. When discovery slows, move on to creating responsibilities 

(chapter 4) and collaborations (chapters 5 and 6)

7

February 8, 2005 © University of Colorado, Boulder, 2005

Discussion
Again, this process is not meant to be performed in a sequential 

manner; you may do several steps at once, you might discard 

several objects at once and start over, etc.

Wirfs-Brock and McKean recommend that you do start with a 

design story, however

The goal is to come up with a core set of initial object candidate 

that represent the fundamental abstractions upon which your 

system is based

Many additional candidates will be created as you move forward in 

analysis and design

8



February 8, 2005 © University of Colorado, Boulder, 2005

Find Objects FIRST
Your first candidates should be concrete objects or roles

These candidates should be “smart”

They “do things” in your system

They may “know things” about your system as well, but they do things in 
response to what they know

So, identify distinct objects with clear roles first; then identify their 
responsibilities and their relationships

Classes and Interfaces will come later once you have enough 
concrete objects to understand the key relationships in your design

Identify what objects have attributes and behaviors in common 
(classes) and what objects have common responsibilities (interfaces)

9

February 8, 2005 © University of Colorado, Boulder, 2005

Getting Started: Design Stories
To make finding objects easier, create a framework for searching 

for candidates by writing a story about your application

This allows you to identify candidates that “fall into place” and 

support various aspects of your story

The story should include not only functionality but your goals with 

respect to the software under design; what are the “cool things” about 

what you are trying to do and what things are you unsure about?

Try to coalesce information from multiple sources, like use cases, other 

requirements, system architecture, users, etc.

10



February 8, 2005 © University of Colorado, Boulder, 2005

Design Stories: How to Do It
Write a rough story—top paragraphs, more or less

Don’t take a lot of time revising and polishing it

What’s notable about the application? What is it supposed to do?

Is it connected to a real-world example?

Have you done something similar in the past?

If you are a member of a large design team

Write your own story first; then merge with other team members

Try to identify important themes within each story

11

February 8, 2005 © University of Colorado, Boulder, 2005

Design Stories: Examples
Lets look at the examples in the text book

Page 81 contains a story about Internet banking services

Page 82 contains a story about an Internet game, Kriegspiel

Both stories were written quickly: one rambles while the other is 
more focused

The key themes for the former are

Modeling online banking services, flexibly configuring behavior, 
sharing scare resources among thousands of users, supporting 
different views of accounts and access privileges

The key themes for the latter are

Game modeling, a computer opponent, partitioning responsibilities 
across distributed components

12



February 8, 2005 © University of Colorado, Boulder, 2005

Search Strategies
Themes in Design Stories can lead to candidates

Candidates will generally fall into one of these categories

The work your system performs

Things directly affected or connected to the application

Information that flows through your software

Decision making, control and/or coordination activities

Structures and groups of objects

Domain Concepts

What do these categories remind you of?

13

February 8, 2005 © University of Colorado, Boulder, 2005

Role Stereotypes!
As discussed before, objects need to have a clear role and these 

roles will often match the stereotypes we covered in Lecture 4

If your system performs computations, look for service providers

If your system interacts with the outside world, look for interfacers

With respect to users, only include them in your object model if you need 

to treat different types of users in different ways

If your system handles lots of events, look for controllers

If your system manipulates lots of information, look for structurers

Now, lets see how these are used to explore our two examples 

(pages 85—87) in the textbook

14



February 8, 2005 © University of Colorado, Boulder, 2005

What’s In a Name
Your candidates need strong names

When the name of an object is spoken, designers infer something 

about the object’s role and 

So make sure an object’s name fits its responsibilities

Wirfs-Brock and McKean provide several heuristics to use while 

naming object candidates

They note that multiple naming systems (roles, patterns, domain 

concepts) can coexist within a single application

15

February 8, 2005 © University of Colorado, Boulder, 2005

Naming Heuristics
Qualify Generic Names

This conveys both a general set of responsibilities and a specific type 

of behavior

Calendar vs. GregorianCalendar vs. JulianCalender

Include only the most revealing and salient facts in a name

Timer vs. 

MillisecondTimerAccurateWithinPlusOrMinusTwoMilliseconds (!!)

Give service providers “worker” names

StringTokenizer, SystemClassLoader, AppletViewer, etc.

16



February 8, 2005 © University of Colorado, Boulder, 2005

Naming Heuristics, continued
Names that convey broad responsibilities may imply the need for 

additional objects

AccountingService may be useful initially but may eventually be 

replaced with more specific services: PaymentService or 

TransferFundsService

Keep the generic name if you can think of at least three 

specializations; otherwise lose the name

This is a “black art”; choosing names that convey enough meaning 

without being overly restrictive is hard!

17

February 8, 2005 © University of Colorado, Boulder, 2005

Naming Heuristics, continued
Choose a name that does not limit behavior

Account vs. AccountRecord

the former can take on more responsibilities than the latter

Choose a name that lasts for a candidate’s lifetime

ApplicationCoordinator vs. ApplicationInitializer

the latter indicates that it will only be around at the launch of a program

Choose a name that fits your current design context

Names that sound reasonable for accounting applications may not 

make sense for other domains

18



February 8, 2005 © University of Colorado, Boulder, 2005

Naming Heuristics, continued
Do not overload names

even though some OO languages support this

Example: having two objects called Processor (each in different 
packages) that may process different things or “process” in different 
ways

Eliminate name conflicts by adding an adjective or using a 
synomym

TransactionProperties vs. Properties

as long as the two objects don’t do radically different things

Choose names that are readily understood

Account vs. Acct

19

February 8, 2005 © University of Colorado, Boulder, 2005

Describing Candidates
Use CRC Cards to describe candidates

Record name, description, and role stereotypes

Use patterns when describing candidates

See examples on page 94

Provide examples of how a candidate will be used to clarify its 

purpose (these examples will probably not fit on the CRC card)

20



February 8, 2005 © University of Colorado, Boulder, 2005

Connecting Candidates
Cluster candidates to help you clarify existing ones and “discover” 
new ones

Feel free to rearrange your clusters to gain new insights

Try clustering by

application layer

use case

stereotype role

object neighborhood

abstraction level

application theme

21

February 8, 2005 © University of Colorado, Boulder, 2005

Looking for Common Ground
Once you have identified a bunch of distinct candidates, its time to 
look for commonalities

These commonalities will help you identify classes and interfaces

Strategies

Look for powerful abstractions and common roles

Car, Boat, Bike, Tractor ! Vechicle

Look for the right level of abstraction

ChessMove vs. PawnMove, RookMove, etc.

Discard candidates if they can be replaced by a shared role

Book, CDs, DVDs, etc. ! InventoryItem

22



February 8, 2005 © University of Colorado, Boulder, 2005

Defending Candidates
You should be able to state why each candidate is worth keeping

Keep a candidate if you can

Give it a good name

Define it and give it a stereotype

Show that it can be used in a use case

Assign it one or two initial responsibilities

Understand how other objects view it

Differentiate it from similar candidates

23

February 8, 2005 © University of Colorado, Boulder, 2005

Defending Candidates, cont.
Discard a candidate when it

has responsibilities that overlap those of other candidates that you 

like better

seems vague

appears to be out of scope

doesn’t add value to the design

seems insignificant or “too clever” or too much for what you need to 

accomplish

24


