
Lecture 5: Overview of 

Responsibility-Driven 

Design
Kenneth M. Anderson

University of Colorado, Boulder

January 25, 2005

1

January 25, 2005 © University of Colorado, Boulder, 2005

Design Skills
Wirfs-Brock and McKean argue that object design does not require 

rare and special “design” talent

They point to Betty Edwards’s assertion that children can be taught to 

draw in the same way they can be taught to read

She says “What if we belived that only those fortunately endowed with 

inborn creative ability could learn to read?

You can become good at object design with enough practice and 

experience

The key is learning to understand a design problem completely and 

then learning fundamental strategies for producing an acceptable 

solution

2



January 25, 2005 © University of Colorado, Boulder, 2005

Overview
Responsibility-Driven Design (RDD) involves

describing the actions and activities for which our software is 

responsible

describing the responsibilities in terms that both users and developers 

can understand

designing software objects that implement those responsibilities

RDD is not a sequential process

We will present the technique in stages but, in practice, you may use 

the steps in different ways for each iteration of your design process

3

January 25, 2005 © University of Colorado, Boulder, 2005

Project Definition and Planning
The first step of a software development project involves

defining project goals

constructing a plan for achieving them

A plan describes how the system will be developed, the values important 

to the project and the people involved, project personnel and processes, 

and expected deliverables

receiving buy-in from various stakeholders before starting

There are many different ways of planning a project; Fred Brooks in 

the The Mythical Man-Month suggests

1/3 planning, 1/6 coding, 1/4 component test, 1/4 system test

4



January 25, 2005 © University of Colorado, Boulder, 2005

RDD: Analysis
The analysis stage of RDD consists of three phases

System Definition

High-Level View of System

Detailed Description

Detailed View of Development Process, Functional Requirements, and 

Non-Functional Requirements

Object Analysis

Construction of Domain Objects

5

January 25, 2005 © University of Colorado, Boulder, 2005

System Definition

6

Activities

Develop high-level system architecture

Make use of UML Deployment Diagrams or just “boxes and arrows”

Identify major subsystems

Identify System Concepts

Document important terms and concepts that are prevalent in early 
conversations about the system

Identify System Responsibilities

What are the major responsibilities of the system as a whole; be aware 
that these responsibilities will be decomposed



January 25, 2005 © University of Colorado, Boulder, 2005

Detailed Description (I)
Activities

Specify Development Environment

What tools, frameworks, APIs, etc. will be used during development

Specify User Tasks

Identify the different types of users

Create Use Case narratives (high-level task descriptions)

Create concrete usage examples via scenarios

Analyze Non-Functional Requirements

7

January 25, 2005 © University of Colorado, Boulder, 2005

Detailed Description (II)
Activities, continued

Document System Dynamics

Create activity diagrams that capture interactions of use cases

Prototype User Interface

Screen Mockups / Low-Fidelity Prototypes (sketches)

Navigation Design

What are the main elements of the user interface, how do they relate, how do 

you traverse from one section of the application to another

8



January 25, 2005 © University of Colorado, Boulder, 2005

Object Analysis
Activities

Identify Domain Objects with Intuitive Sets of Responsibilities

Use CRC cards to identify and work with candidate roles and objects

Iterate until an initial object model has been created

Document additional concepts and terms

Create glossaries or other documentation that define concepts, describe 

important behaviors, and capture business rules

What’s a business rule?

A policy that customizes a particular process to a specific organization

9

January 25, 2005 © University of Colorado, Boulder, 2005

RDD: Design
The design stage of RDD consists of two phases

Exploratory Design

Highly iterative development of the domain object model

Design Refinement

Finalize the object model; Prepare for Implementation Phase

10



January 25, 2005 © University of Colorado, Boulder, 2005

Exploratory Design
Activities

Associate domain objects with “solution” objects

Assign responsibilities to objects

Develop initial collaboration model

Results

CRC model of objects, roles, responsibiliites, and collaborators

UML sequence/collaboration diagrams

Preliminary Class Definitions

Working Prototypes

11

January 25, 2005 © University of Colorado, Boulder, 2005

Design Refinement (I)
Activities

Justify Trade-Offs

Document design decisions

Design Application Control Styles

Identify control styles and decision making responsibilities

Decide visibility relationships between objects

Create refined UML class diagrams

12



January 25, 2005 © University of Colorado, Boulder, 2005

Design Refinement (II)
Activities, continued

Revise object model for flexibility, consistency, and maintainability

Create new object abstractions (develop inheritance hierarchy)

Revise object roles; adjust use of role stereotypes

Simplify interfaces and patterns of collaboration

Assign classes to roles (have classes implement particular interfaces)

Make use of design patterns

Document the design with UML diagrams

Formalize contracts between system components and classes

13

January 25, 2005 © University of Colorado, Boulder, 2005

Coming Up Next
Examine various techniques useful for analysis

CRC Cards

Use Cases

Scenarios

Conversations

Then cover chapters 3—6

Finding Objects

Responsibilities

Collaborations and Control Styles

14


