
Lecture 4: Design Concepts of Responsibility-Driven Design

1 of 25© University of Colorado, 2005January 20, 2005

Lecture 4: Design Concepts For Responsibility-
Driven Design

Kenneth M. Anderson

January 20, 2005

Lecture 4: Design Concepts of Responsibility-Driven Design

2 of 25© University of Colorado, 2005January 20, 2005

Lecture 4: Design Concepts For Responsibility-
Driven Design

Introduction

Chapter 1 of Object Design covers topics that aid
understanding of Responsibility-Driven Design
Object Machinery

Roles
Role Stereotypes

Responsibilities and Collaborations

Object Contracts

Pre- and Post- Conditions

Domain Objects

Application-Specific Objects

Design Patterns

Frameworks

Architecture

Lecture 4: Design Concepts of Responsibility-Driven Design

3 of 25© University of Colorado, 2005January 20, 2005

Introduction

Chapter 1 of Object Design covers topics that aid
understanding of Responsibility-Driven Design

Architecture
Architectural Styles

Control Styles

Example: Layered Architecture

Lecture 4: Design Concepts of Responsibility-Driven Design

4 of 25© University of Colorado, 2005January 20, 2005

Introduction

Object Machinery

Software as a biological system
Like cells, software objects don't know what goes on inside
one another (encapsulation) but they communicate
(message passing) and work together to perform complex
tasks (delegation and collaboration)

A software system's dynamic behavior emerges from the
interactions of many objects

Object Responsibilities

Lecture 4: Design Concepts of Responsibility-Driven Design

5 of 25© University of Colorado, 2005January 20, 2005

Object Machinery

Object Responsibilities

an object

knows
information

maintains
connections

performs
services

makes
decisions

Common Object Design Terms
An application is a set of interacting objects

An object is an implementation of one or more roles

A role is a set of related responsibilities

A responsibility is an obligation to perform a task or know information

A collaboration is an interaction of objects or roles (or both)

A contract is an agreement outlining the terms of a collaboration

Lecture 4: Design Concepts of Responsibility-Driven Design

6 of 25© University of Colorado, 2005January 20, 2005

Object Machinery

Roles

Objects should have a specific purpose to play
within a software system, i.e., a role
Roles are powerful because they allow objects that
implement a role to be used interchangeably

Roles can be implemented using interfaces and composition

Role Stereotypes
Stereotypes are "purposeful oversimplifications" to give
designers a target for defining roles

The following stereotypes have proven useful over time
Information Holder: knows and provides information

Structurer: maintains relationships between objects and information about
those relationships

Service Provider: performs work

Coordinator: reacts to events by delegating tasks to others

Controller: makes decisions and closely directs the actions of other objects

Lecture 4: Design Concepts of Responsibility-Driven Design

7 of 25© University of Colorado, 2005January 20, 2005

Roles

Role Stereotypes

The following stereotypes have proven useful over time

Coordinator: reacts to events by delegating tasks to others

Controller: makes decisions and closely directs the actions of other objects

Interfacer: transforms information and requests between distinct parts of a
software system

Objects will often fit more than one stereotype, e.g.,
information holders will often provide services

A designers goal will be to decide what to emphasize and to strive to provide
a clear cut role for each object

Responsibilities and Collaborations
Responsibilities are assigned to roles

Roles are implemented by objects
If an object implements a role, it decides to accept the role's responsibilities

Objects work together to fulfill responsibilities
These object networks are called collaborations

A designer's task is to distribute responsibilities (roles)
across a set of "intelligent" objects that can collaborate with
each other such that all responsibilities are fulfilled

Lecture 4: Design Concepts of Responsibility-Driven Design

8 of 25© University of Colorado, 2005January 20, 2005

Roles

Responsibilities and Collaborations

A designer's task is to distribute responsibilities (roles)
across a set of "intelligent" objects that can collaborate with
each other such that all responsibilities are fulfilled

An "intelligent" object is one that has the right blend of information that it
know about and services it can provide because of that information

you don't want to make any one object too powerful or too weak; the former tend to
dominate designs in a bad way, reducing the use of encapsulation, inheritance,
polymorphism, etc.; the latter tend not to provide much utility to the system overall

We will see specific examples of roles, responsibilities, and
collaborations as we delve into responsibility-driven design
over the next few weeks

Object Contracts
Objects exist within an environment consisting of other
objects

It is often helpful to specify during analysis and design the
"contract" an object has with this environment

Lecture 4: Design Concepts of Responsibility-Driven Design

9 of 25© University of Colorado, 2005January 20, 2005

Roles

Object Contracts

It is often helpful to specify during analysis and design the
"contract" an object has with this environment

Here, a contract refers to specifying the conditions under which an object
guarantees its work (pre-conditions) and the effects it leaves behind when its
work is complete (post-conditions)

There are a number of ways this type of information can be
documented; A particularly useful method is the use of
"assert()" mechanisms in programming languages

At the start of each method, you place assert statements that specify the
method's per-conditions; At the end of the method, you place assert
statements that specify the post-conditions. At run-time, if an assert fails
(evaluates to false), an exception is thrown

Lecture 4: Design Concepts of Responsibility-Driven Design

10 of 25© University of Colorado, 2005January 20, 2005

Roles

Domain Objects

Designers and Users need a common vocabulary
This vocabulary allows designers to learn about the user's
domain and to understand the requirements being provided
by the user

This vocabulary often takes the form of a glossary but it can
be much more useful if its incorporated into the object model
of the system under design

This "vocabulary term as object" is considered a domain object

Problem Context
In the analysis and design of software systems, we face the
following situation

Problem Domain

Solution Domain
Domain Object

Lecture 4: Design Concepts of Responsibility-Driven Design

11 of 25© University of Colorado, 2005January 20, 2005

Domain Objects

Problem Context
In the analysis and design of software systems, we face the
following situation

Problem Domain

Solution Domain
Domain Object

There will be plenty of objects in the problem domain

There will be plenty of objects in the solution domain

Our job is to find those objects from the problem domain that can be modeled in the
solution domain that allow us to solve the problem posed to us by our users

an ordera customer an item

a clerk

a discount
a shipping

rule

a credit
history

Domain Objects

Inventory Control System

Domain consists of
 Information
 Services
 Relationships

Lecture 4: Design Concepts of Responsibility-Driven Design

12 of 25© University of Colorado, 2005January 20, 2005

Domain Objects

Problem Context
In the analysis and design of software systems, we face the
following situation

Problem Domain

Solution Domain
Domain Object

Our job is to find those objects from the problem domain that can be modeled in the
solution domain that allow us to solve the problem posed to us by our users

an ordera customer an item

a clerk

a discount
a shipping

rule

a credit
history

Domain Objects

Inventory Control System

Domain consists of
 Information
 Services
 Relationships

There are many more objects possible in the domain of inventory control, but we may not
need them!

Lecture 4: Design Concepts of Responsibility-Driven Design

13 of 25© University of Colorado, 2005January 20, 2005

Domain Objects

Application-Specific Objects

A software system also needs plenty of objects
from the solution domain in order to function!
These objects are referred to as application-specific objects

They are typically added to a design AFTER the domain objects have been
specified and are often driven by environmental and platform constraints (e.g.
the choice of an application framework)

They consist of things like
user-interface elements

controller objects (more on that later)

collection classes

etc.

Lecture 4: Design Concepts of Responsibility-Driven Design

14 of 25© University of Colorado, 2005January 20, 2005

Application-Specific Objects

A software system also needs plenty of objects
from the solution domain in order to function!

They consist of things like

an ordera customer an item

a clerk

a discount
a shipping

rule

a credit
history

Application Objects

Inventory Control System

a window

a credit
checker

an order
manager

Interfacing

Coordination

Control

The key to developing a successful software system is our
ability as designers in merging domain objects into the
solution domain, e.g. the world of the computer

Design Patterns

Lecture 4: Design Concepts of Responsibility-Driven Design

15 of 25© University of Colorado, 2005January 20, 2005

Design Patterns

Software designers will confront design problems
as they develop a software system
Fortunately, many of these problems have been encountered
(and solved!) before

Design Patterns are descriptions of successful
solutions to common design problems
They were made famous in the software development
community by "the gang of four", the authors of the Design
Patterns book that appeared in 1994

Good designers try to incorporate design patterns into their
designs as much as possible; it allows them to focus on new
problems or problems specific to their situation

Design Patterns are often conveyed with a specific
structure; our text book adopts the following

Lecture 4: Design Concepts of Responsibility-Driven Design

16 of 25© University of Colorado, 2005January 20, 2005

Design Patterns

Design Patterns are often conveyed with a specific
structure; our text book adopts the following
Name: Communicates the Intent of the Pattern

Problem: Describes a common design problem

Forces: Describes the tradeoffs you can make when applying
this pattern

Context: Describes when the solution is appropriate

Solution: Describes how the problem can be solved

Consequences: Describes the impacts of using this solution
in a software system

Patterns provide the following benefits
Common Design Vocabulary: Raises the level of abstraction
in analysis and design

Lecture 4: Design Concepts of Responsibility-Driven Design

17 of 25© University of Colorado, 2005January 20, 2005

Design Patterns

Patterns provide the following benefits
Common Design Vocabulary: Raises the level of abstraction
in analysis and design

Expertise: Patterns are solutions that have worked before
Rule of Three: The design pattern book included only those patterns that had
been deployed in at least three production systems

Understanding: Developers can more readily understand the
structure of a software system if it follows established design
patterns

Example: Double Dispatch
See code examples for two implementations of the "rock,
paper, scissors" game; one that uses double dispatch and
one that doesn't

Lecture 4: Design Concepts of Responsibility-Driven Design

18 of 25© University of Colorado, 2005January 20, 2005

Design Patterns

Frameworks

Frameworks are sets of objects designed to be
extended and/or used to implement a common
software service
Frameworks have been developed for

user interface services

persistence services

networking services

etc.

Typically, developers subclass framework objects to extend
the framework for their particular situation

Alternatively, they provide objects which plug-in to the framework via
composition by implementing a particular interface that governs when a
framework will call the object and how; Think Adobe Photoshop plug-ins

Frameworks offer a number of benefits:

Lecture 4: Design Concepts of Responsibility-Driven Design

19 of 25© University of Colorado, 2005January 20, 2005

Frameworks

Frameworks offer a number of benefits:
Efficiency: frameworks reduce the amount of design and
coding that you have to do

Richness: domain expertise is captured in the framework

Consistency: developers become use to the framework's
structure; this allows them to develop new applications faster

Predictability: frameworks have been "stress tested" through
frequent and wide use; they are hence more reliable and
predictable than newly written software

Frameworks come with disadvantages as well:
Complexity: frameworks often have steep learning curves

Blinders: developers may try to use a framework outside of
its design constraints; "once you have a hammer, everything
looks like a nail"

Lecture 4: Design Concepts of Responsibility-Driven Design

20 of 25© University of Colorado, 2005January 20, 2005

Frameworks

Frameworks come with disadvantages as well:

Blinders: developers may try to use a framework outside of
its design constraints; "once you have a hammer, everything
looks like a nail"

Performance: A framework can sometimes be slower than
custom code because the framework's design goals may be
flexibility and reusability and not performance

Example Framework: Cocoa on MacOS X

Lecture 4: Design Concepts of Responsibility-Driven Design

21 of 25© University of Colorado, 2005January 20, 2005

Frameworks

Architecture

A system's architecture consists of structure and
behavior
Structure refers to the elements that appear in the software
system and how they are arranged

typically these elements are "coarse" and refer to large subsystems;

but sometimes the elements are "fine grained" such as components, or even
individual objects

it depends on the system

Behavior refers to the rules that govern how those elements
interact

Architectural Styles
An architectural style is a predefined set of elements and
behaviors; There are many types of architectural styles:

pipe and filter (Unix: "everything is a file")

message bus (pub/sub communication)

Lecture 4: Design Concepts of Responsibility-Driven Design

22 of 25© University of Colorado, 2005January 20, 2005

Architecture

Architectural Styles
An architectural style is a predefined set of elements and
behaviors; There are many types of architectural styles:

pipe and filter (Unix: "everything is a file")

message bus (pub/sub communication)

shared repository

layered abstract machines

Architectural styles are defined to provide benefits to the
applications that follow them

layered architectures promote modularity and separation of concerns

pipe and filter promotes tool integration and consistency

message bus promotes loose coupling between system components

Control Styles
An important aspect of a software system's architecture is its
control style (which we will examine later this semester)

Control style refers to how an application receives,
processes, and responds to input events (from users and
other tools)

Lecture 4: Design Concepts of Responsibility-Driven Design

23 of 25© University of Colorado, 2005January 20, 2005

Architecture

Control Styles

Control style refers to how an application receives,
processes, and responds to input events (from users and
other tools)

A centralized control style involves the use of one object that processes
and responds to all input events; such systems may use other objects but
these tend to be just information holders with no logic of their own

A dispersed control style is located at the other end of the spectrum; logic
for handling input events are spread across lots of objects; can lead to long
sequences of method invocations to follow when debugging a single event

A delegated control style is a compromise between these two extremes;
control is distributed across a number of object networks; each network
handles one or a few input events, with the logic to process the event
distributed evenly across each object in the network; dependencies between
the various control centers are kept to an absolute minimum

Example: Layered Architecture
Major responsibilities of a software system are distributed
across a number of layers; layers on top are "closer" to the
user (information presentation / event handling); layers on
the bottom are "closer" to the machine (domain-related
services / persistence / networking / ...)

Lecture 4: Design Concepts of Responsibility-Driven Design

24 of 25© University of Colorado, 2005January 20, 2005

Architecture

Example: Layered Architecture
Major responsibilities of a software system are distributed
across a number of layers; layers on top are "closer" to the
user (information presentation / event handling); layers on
the bottom are "closer" to the machine (domain-related
services / persistence / networking / ...)

Objects collaborate mostly within their layer

Messages across layers occur across well-defined connections with clients
"above" servers. Thus,

requests flow down the layers

results flow up

Only the top and bottom layer are connected to the "outside" world

Summary

Lecture 4: Design Concepts of Responsibility-Driven Design

25 of 25© University of Colorado, 2005January 20, 2005

Summary

So far, we have covered
fundamental OO concepts

objects and classes

encapsulation and abstraction

inheritance and composition

polymorphism

abstract classes and interfaces

object identity

Design concepts relevant to Responsibility-Driven Design
Roles

Domain and Application Specific Objects

Design Patterns, Frameworks

Application Architecture

Next: Responsibility-Driven Design

