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Abstract

To determine if two given lists of numbers are the same set, we would sort both lists and
see if we get the same result. The sorted list is a canonical form for the equivalence relation
of set equality. Other canonical forms for equivalences arise in graph isomorphism and its
variants, and the equality of permutation groups given by generators. To determine if two given
graphs are cospectral, however, we compute their characteristic polynomials and see if they are
the same; the characteristic polynomial is a complete invariant for the equivalence relation of
cospectrality. This is weaker than a canonical form, and it is not known whether a canonical
form for cospectrality exists. Note that it is a priori possible for an equivalence relation to be
decidable in polynomial time without either a complete invariant or canonical form.

Blass and Gurevich (“Equivalence relations, invariants, and normal forms, I and II”, 1984)
ask whether these conditions on equivalence relations – having an FP canonical form, having
an FP complete invariant, and simply being in P – are in fact different. They showed that
this question requires non-relativizing techniques to resolve. Here we extend their results using
generic oracles, and give new connections to probabilistic and quantum computation.

We denote the class of equivalence problems in P by PEq, the class of problems with com-
plete FP invariants Ker, and the class with FP canonical forms CF; CF ⊆ Ker ⊆ PEq, and we
ask whether these inclusions are proper. If x ∼ y implies |y| ≤ poly(|x|), we say that ∼ is
polynomially bounded; we denote the corresponding classes of equivalence relation CFp, Kerp,
and PEqp. Our main results are:

• If CF = PEq then NP = UP = RP and thus PH = BPP;

• If CF = Ker then NP = UP, PH = ZPPNP, integers can be factored in probabilistic
polynomial time, and deterministic collision-free hash functions do not exist;

• If Ker = PEq then UP ⊆ BQP;

• There is an oracle relative to which CF 6= Ker 6= PEq; and

• There is an oracle relative to which CFp = Kerp and Ker 6= PEq.

Attempting to generalize the third result above from UP to NP leads to a new open question
about the structure of witness sets for NP problems (roughly: can the witness sets for an NP-
complete problem form an Abelian group?). We also introduce a natural notion of reduction
between equivalence problems, and present several open questions about generalizations of these
concepts to the polynomial hierarchy, to logarithmic space, and to counting problems.

Many of the new results in this thesis were obtained in collaboration with Lance Fortnow,
and have been submitted for conference presentation.
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1 Introduction

Equivalence relations and their associated algorithmic problems arise throughout mathematics and
computer science. Examples run the gamut from trivial — decide whether two lists contain the same
set of elements — to undecidable — decide whether two finitely presented groups are isomorphic
[Nov55, Boo57]. Some examples are of great mathematical importance — genus, orientability, and
number of boundary components together form a complete homeomorphism invariant of connected
surfaces that can be calculated easily from any triangulation [DH07] — and some are of great
interest to complexity theorists, such as graph isomorphism (GI).

Complete invariants, as in the example of surface homeomorphism, are a common tool for
finding algorithmic solutions to equivalence problems. Normal or canonical forms — where a unique
representative is chosen from each equivalence class as the invariant of that class — are also quite
common, particularly in algorithms for GI and its variants [HT72, BL83, FSS83, Mil80, BGM82].
More recently, Agrawal and Thierauf [AT00, Thi00] used a randomized canonical form to show that
Boolean formula non-isomorphism (FI) is in AMNP. More generally, the book by Thierauf [Thi00]
gives an excellent overview of equivalence and isomorphism problems in complexity theory.

Many efficient algorithms for special cases of GI have been upgraded to canonical forms or
complete invariants. Are these techniques necessary for an efficient algorithm? Are these techniques
distinct? Gary Miller [Mil80] pointed out that GI has a polynomial-time complete invariant if and
only if it has a polynomial-time canonical form (see Section 3.1.1 for details; see also [Gur97]). The
general form of this question is central both in [BG84a, BG84b] and here: are canonical forms or
complete invariants necessary for the efficient solution of equivalence problems?

In 1984, Blass and Gurevich [BG84a, BG84b] introduced complexity classes to study these
algorithmic approaches to equivalence problems. Although we came to the same definitions and
many of the same results independently, this thesis can be viewed partially as an update and a
follow-up to their papers in light of the intervening 25 years of complexity theory. The classes UP

(NP problems with at most one witness for each input), RP (problems solvable by a probabilistic
algorithm in polynomial time with one-sided error), and BQP (bounded-error quantum polynomial
time), the function classes NPMV (multi-valued functions computed by NP machines) and NPSV

(single-valued functions computed by NP machines), and generic oracle (forcing) methods feature
prominently in this thesis.

Blass and Gurevich [BG84a, BG84b] introduced the following four problems and the associated
complexity classes. Where they use “normal form” we say “canonical form,” though the terms are
synonymous and the choice is immaterial. We also introduce new notation for these complexity
classes that makes the distinction between language classes and function classes more explicit. For
an equivalence relation R ⊆ Σ∗ × Σ∗, they defined:

The recognition problem: given x, y ∈ Σ∗, decide whether x ∼R y.
The invariant problem: for x ∈ Σ∗, calculate a complete invariant f(x) for R, that is, a function

such that x ∼R y if and only if f(x) = f(y).
The canonical form problem: for x ∈ Σ∗ calculate a canonical form f(x) for R, that is, a

function such that x ∼R f(x) for all x ∈ Σ∗, and x ∼R y implies f(x) = f(y).
The first canonical form problem: for x ∈ Σ∗, calculate the first y ∈ Σ∗ such that y ∼R x. Here,

“first” refers to the standard length-lexicographic ordering on Σ∗, though any ordering that can be
computed easily enough would suffice.

The corresponding polynomial-time complexity classes are defined as follows:
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Definition 1.1. PEq consists of those equivalence relations whose recognition problem has a
polynomial-time solution. Ker(FP) consists of those equivalence relations that have a polynomial-
time computable complete invariant. CF(FP) consists of those equivalence relations that have a
polynomial-time canonical form. LexEqFP consists of those equivalence relations whose first canon-
ical form is computable in polynomial time.

Note that PEq and LexEqFP are both defined in terms of the polynomial-time computability
of particular functions, whereas Ker(FP) and CF(FP) are defined in terms of the existence of
polynomial-time functions with a certain property. The notations are designed partially to suggest
these similarities and differences.

We occasionally omit the “FP” from the latter three classes. It is obvious that

LexEq ⊆ CF ⊆ Ker ⊆ PEq,

and our first guiding question is: which of these inclusions is tight?
Blass and Gurevich showed that none of the four problems above polynomial-time Turing-

reduces (Cook-reduces) to the next in line. We extend their results using forcing, and we also give
further complexity-theoretic evidence for the separation of these classes, giving new connections to
probabilistic and quantum computing. Our main results in this regard are:

Proposition 4.23. † If CF = Ker then integers can be factored in probabilistic polynomial time.

Proposition 4.24. † If CF = Ker then collision-free hash functions that can be evaluated in deter-
ministic polynomial time do not exist.

Theorem 4.16. † If Ker = PEq then UP ⊆ BQP. If CF = PEq then UP ⊆ RP.

We also show the following two related results:

Corollary 4.14. If CF = Ker then NP = UP and PH = ZPPNP.

Corollary 4.17. † If CF = PEq then NP = UP = RP and in particular, PH = BPP.

Corollary 4.14 follows from the slightly stronger Theorem 4.11, but we do not give the statement
here as it requires further definitions.

It is rare for complexity classes to be defined by a type of algorithm, rather than an amount of
resources, such as time, space, nondeterminism, randomness, or interaction. We believe this makes
these classes and their connections to more standard complexity classes all the more interesting.

The remainder of this thesis is organized as follows. In Section 2 we give preliminary defini-
tions and background. In Section 3 we discuss and give background on some of the motivations
for studying complexity classes of equivalence relations. In particular we review the complexity-
theoretic upper bounds on GI, the equivalence of complete invariants and canonical forms for GI,
and Agrawal and Thierauf’s result on formula isomorphism [AT00]. In Section 4.1 we review the
original results of Blass and Gurevich [BG84a, BG84b]. We also combine their results with other
results that have appeared in the past 25 years to yield some immediate extensions. In Section
4.2 we prove new results connecting these classes with probabilistic and quantum computation.
In Section 4.2.1, we introduce a group-like condition on the witness sets of NP-complete problems
that would allow us to extend the first half of Theorem 4.16 from UP to NP, giving much stronger

†The dagger “† ” indicates results or definitions we believe are significantly original.
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evidence that Ker 6= PEq. We believe the question of whether any NP-complete sets have this prop-
erty is of independent interest: a positive answer would provide nontrivial quantum algorithms
for NP problems, and a negative answer would provide further concrete evidence for the lack of
structure in NP-complete problems. In Sections 4.3.2 and 4.3.3 we discuss connections with integer
factoring and collision-free hash functions, respectively. In Section 4.3.7 we introduce a notion of
reduction between equivalence relations and the corresponding notion of completeness. In Section
5, we update and extend some of the oracle results of [BG84a, BG84b] using forcing techniques. In
the final section we mention several directions for further research, in addition to the several open
questions scattered throughout the thesis.

The new results in this thesis were obtained in collaboration with Lance Fortnow, and have
been submitted for conference presentation [FG08].

2 Preliminaries

This section serves to introduce standard concepts, and fix notation and conventions. We expect
it is mostly review and make little or no attempt at proofs or excessive formality.

We assume the reader is familiar with standard models of computation. We use the multi-tape
Turing machine with read-only input tape and write-only output tape as our standard model of
computation, and make no further mention of the model except where it is relevant. Oracle Turing
machines have a separate oracle tape and oracle query state. When the machine enters the query
state, it transitions to one of two specified states depending on whether the string on the oracle tape
is in the oracle. An oracle Turing machine with unspecified oracle is denoted M� for emphasis.

Alphabet and strings Throughout, Σ denotes a finite set, called the alphabet, and is usually
taken to be {0, 1}. We often use the term “bit” rather than the more general “symbol” because
of this convention. The set of strings of length exactly k over Σ is denoted Σk. The empty string
is denoted ε. The notation Σ≤k is used to denote

⋃k
n=0 Σn, and Σ∗ is used to denote the set of

all finite strings. The length of a string is denoted by absolute value: thus |x| = k if and only if
x ∈ Σk.

Lexicographic order. When Σ is an initial segment of the natural numbers, it is equipped
with the usual ordering, but even otherwise we may think of Σ as having an ordering <Σ. The
lexicographic ordering on Σ∗ is given by x <lex y if |x| < |y| or |x| = |y|, and if j is the leftmost
position at which x and y differ, then x[j] <Σ y[j].

There is a bijective correspondence between Σ∗ and N, given by the lexicographic ordering on
Σ∗, and we use this correspondence freely, referring to elements of Σ∗ as “numbers” and speaking
of the “length of the number n.” Note that the length of the number n is ⌈log|Σ|(n)⌉. We use log
to denote log2.

Tuples. Ordered tuples are written with parentheses, such as (u0, . . . , uk). When needed, an
ordered tuple is encoded into a single string by the iterated application of an easily computable and
easily invertible bijective pairing function 〈·, ·〉 : N×N → N such as 〈x, y〉 = 1

2(x+ y)(x+ y+1)+ y.
The iteration is performed as follows: 〈u0, . . . , uk〉 = 〈u0, 〈u1, . . . , uk〉〉. We find that, in writing,
we never need to explicitly invoke this tupling function.

4



2.1 Computational Problems

A subset L ⊆ Σ∗ is called a language. The complement of L is denoted L = Σ∗\L. The decision
problem for a language L is: given x ∈ Σ∗, decide whether or not x ∈ L. Many computational
problems can be stated as decision problems, or are computationally equivalent to decision prob-
lems.

However, some problems are more naturally stated as search problems. A search problem is:
given x ∈ Σ∗, find some y such that (x, y) satisfies some condition. For example, given an (encoding
of) a graph G, find a Hamiltonian path in G if one exists. A solution to a search problem is a
function f such that (x, f(x)) satisfies the desired condition, or f(x) = ⊥ if there is no string y such
that (x, y) satisfies the desired condition. Hence the computational complexity of search problems
is closely related to the computational complexity of functions.

The indicator function of a language L is the function

L(x) =

{

1 if x ∈ L

0 if x /∈ L

It is standard to abuse notation and use the same letter for both the language and its indicator
function. Algorithmically solving the decision problem L is the same as computing the function L.

2.2 Reductions

A Turing reduction from language A to language B is an oracle Turing machine M� such that
A(x) = MB(x) for all x ∈ Σ∗. We write M : A ≤T B. (The function-like notation “M : A ≤T B is
not standard, but is a fairly natural combination of standard function notation f : X → Y and the
standard reduction notation A ≤T B.)

A truth-table reduction from A to B is a nonadaptive Turing reduction: the queries made by
M� on input x are determined solely by x, and not by the oracle answers to previous queries. We
write M : A ≤tt B.

A many-one reduction or m-reduction from A to B is a (computable) function f : Σ∗ → Σ∗

such that x ∈ A ⇐⇒ f(x) ∈ B. We write f : A ≤m B.
A one-one reduction or 1-reduction is an injective many-one reduction, denoted f : A ≤1 B.
A majority reduction from A to B is a function f such that, if f(x) = (y1, . . . , yk) then

x ∈ A ⇐⇒ yi ∈ B for more than k/2 values of i.

We write A ≤maj B.
For any notion of reduction r, A ≡r B denotes that A ≤r B and B ≤r A. If C is a complexity

class, then ≤C
r denotes that the reducing machine lies in C. In particular, the polynomial-time-

bounded versions of the above reductions are denoted ≤P
T , ≤P

tt , ≤
P
m, ≤P

1 , and ≤P
maj , respectively.

Polynomial-time Turing reductions are known as Cook reductions and polynomial-time many-
one reductions are known as Karp reductions, since these were the types of reductions originally
used by their respective namesakes to define NP-completeness [Coo71, Kar72].

A class (collection) of languages C is said to be closed under r reductions if B ∈ C and A ≤r B
implies A ∈ C.
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2.3 Complexity Classes

Polynomial time. The class of languages decidable in deterministic polynomial time is denoted
P.

The class of languages decidable in nondeterministic polynomial time is denoted NP. Equiva-
lently, A ∈ NP if there is a set B ∈ P such that

x ∈ A ⇐⇒ (∃pw)[(x,w) ∈ B]

where the right hand side is taken to mean “there exists a polynomial q such that |w| ≤ q(|x|) and
(x,w) ∈ B.” Such a string w is said to witness that x ∈ A, and is called a witness for x.

If C is a class of languages, then coC = {L : L ∈ C}. For example, A ∈ coNP if and only if there
is a set B ∈ P such that

x ∈ A ⇐⇒ (∀pw)[(x,w) ∈ B]

where ∀p has the obvious meaning. Note that we can use (x,w) ∈ B or (x,w) /∈ B in the above
characterization, since P is closed under complementation, i. e., P = coP.

The following basic questions (and many more) are open: P
?
= NP, NP

?
= coNP, P

?
= NP∩coNP.

Hardness and completeness. If C is a class of languages and r is a notion of reduction, a
language L is said to be hard for C under r reductions if X ≤r L for every X ∈ C. If, furthermore
L ∈ C, then L is said to be r-complete for C.

In many cases, a standard notion of reduction is used. For example, a language L is said to be
NP-hard if it is hard for NP under Karp (≤P

m) reductions.
Logarithmic space. The class of languages decidable in deterministic logarithmic space is

denoted L. The class of languages decidable in nondeterministic logarithmic space is denoted NL.
Unlike the situation for NP, it is known that NL = coNL [Imm88, Sze88].

Polynomial space. The class of languages decidable in polynomial space is denoted PSPACE.
The nondeterministic analogue, NPSPACE is often mentioned only up to the point of Savitch’s
Theorem, which says that PSPACE = NPSPACE [Sav69]. We make no further (explicit) mention of
NPSPACE.

Relativizing complexity classes. For a language A, and a class of oracle Turing machines
M, we can define the relativized class MA as the class of languages that are Turing-reducible
to A by some machine in M. For a class of machines M and a class of languages D, we define
MD =

⋃

X∈D MX .
It is standard to abuse this terminology and use classes of languages instead of classes of

machines for the base of the oracle, but the meaning is as expected. For example, PA is the set of
all languages that are polynomial-time Turing-reducible to A.

The polynomial hierarchy, lowness, and highness. Relativizing to a language L is essen-
tially the same as relativizing to its complement L. Hence, for example NPNP contains both NP and
coNP. Based on this observation, we may define the polynomial hierarchy, originally introduced by
Meyer and Stockmeyer [MS72] in analogy with the arithmetic hierarchy from computability theory:

Σ0P = P

Σ1P = NP

Σk+1P = NPΣkP

∆k+1P = PΣkP.
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From these, we define ΠkP = coΣkP; for example, Π1P = coNP. Thus Σ0P = Π0P = ∆0P = ∆1P =
P. Note that Σk+1P = ΣkP

NP.
It is clear that ΣkP ∪ ΠkP ⊆ ∆k+1P ⊆ Σk+1P ∩ Πk+1P. The polynomial hierarchy is the union

PH =
⋃∞

k=0 ΣkP =
⋃∞

k=0 ΠkP =
⋃∞

k=0 ∆kP.
The following are equivalent: (1) ΣkP = ΠkP, (2) ΣjP = ΣkP for some j ≥ k, and (3) PH = ΣkP.

If any (and hence all) of these conditions holds, we say the hierarchy collapses to the k-th level.
If this does not hold for any level k, we say that PH is infinite. It is widely believed that PH is
infinite.

For a language L ∈ NP, ΣkP ⊆ ΣkP
L ⊆ Σk+1P. Hence, L is said to be lowk if ΣkP

L = ΣkP and
highk if ΣkP

L = Σk+1P. The classes LkP and HkP consist of the lowk, respectively highk, languages
in NP [Sch83]. The following basic results are easy to show:

• LkP ⊆ Lk+1P for all k, and similarly HkP ⊆ Hk+1P,

• L0P = P,

• L1P = NP ∩ coNP,

• H0P = {L : L is ≤P
T -complete for NP},

• if HkP ∩ LkP is nonempty, then PH = ΣkP.

The low hierarchy and the high hierarchy are thus thought to stratify NP. However, it is also
believed that there are problems in NP that are neither low nor high. Indeed, Ladner’s Theorem
[Lad75] can be used to show that if LkP 6= HkP, or equivalently if PH 6= ΣkP, then there are
problems in NP\(LkP ∪ HkP).

Complexity class operators. We now define the operators ∀· and ∃· on complexity classes.
If C is a complexity class, then ∀ · C consists of those languages L for which there is a language
L′ ∈ C such that

x ∈ L ⇐⇒ (∀py)[(x, y) ∈ L′].

The ∃· operator is defined similarly. It is clear from our definitions that NP = ∃·P and coNP = ∀·P.
Indeed, it holds generally that co∃ · C = ∀ · coC.

It is a standard exercise to show that

∀ · ΣkP = Πk+1P and ∃ · ΠkP = Σk+1P.

Hence we may consider Σk as the operator ∃ · ∀ · · · ·Qk· where there are k operators total and Qk

is ∀ or ∃ depending on whether k is even or odd, respectively. Similarly, we may consider Πk to be
an operator ∀ · ∃ · · · · ·Q′

k·.
Randomness. Several complexity classes have been defined to capture various notions of

randomized computation. Bounded-error probabilistic polynomial time, denoted BPP, consists of
those languages L for which there is a language L′ ∈ P and a polynomial p such that, for all x of
length n:

Pr
r∈Σp(n)

[L′(x, r) = L(x)] ≥ 2/3

Here, 2/3 can be replaced by any function of n that is bounded below by 1/2+ ε for some constant
ε > 0. By running an algorithm for L′ several times with independent random bits r and taking
the majority vote, the probability of correctness can be increased to 1 − 2q(n) for any polynomial
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q. Note that BPP allows two-sided error : L′ can err on strings x ∈ L and on strings x /∈ L. BPP

algorithms are sometimes referred to as polynomial-time Monte Carlo algorithms.
The classes RP and coRP are the one-sided error version of BPP. The class RP consists of those

languages L for which there is a language L′ ∈ P and a polynomial p such that

x ∈ L =⇒ Pr
r∈Σp(|x|)

[L′(x, r) = 1] > 1/2

x /∈ L =⇒ Pr
r∈Σp(|x|)

[L′(x, r) = 1] = 0

Probabilistic classes can also be defined in terms of nondeterministic Turing machines. A prob-
abilistic Turing machine is a nondeterministic Turing machine where each binary nondeterministic
choice, referred to as a “coin flip,” is assigned a probability of 1/2. The probability of any given
branch of the computation is the product of the probabilities of the coin flips that occur on that
branch. In this model, it is clear that RP ⊆ NP.

The class ZPP, or zero-error probabilistic polynomial time, consists of those languages for
which there is a randomized algorithm that never errs, and runs in expected polynomial time, the
expectation being taken over the random coin flips. It is an easy exercise to show that ZPP =
RP ∩ coRP. ZPP algorithms are sometimes referred to as polynomial-time Las Vegas algorithms
[Bab79].

The relationship between BPP and NP is unknown. Today it is an easy exercise to show that
if NP ⊆ BPP then NP = RP, though this was originally proved by Ko [Ko82]. Sipser [Sip83], with
help from Gács, and Lautemann [Lau83] showed that BPP ⊆ Σ2P ∩ Π2P.

Similar to the ∀· and ∃· operators, we can define the BP· operator. The class BP · C consists of
those languages L for which there is a language L′ ∈ C and a polynomial p such that

Pr
r∈Σp(|x|)

[L′(x, r) = L(x)] ≥ 2/3.

It is clear that BP · P = BPP. Schöning [Sch89] noticed that Lautemann’s proof in fact shows if a
class C is closed under majority reducibility, then BP · C ⊆ ∀ · ∃ · C ∩ ∃ · ∀ · C.

Mixing randomness and nondeterminisim: interactive proofs and Arthur-Merlin

games. Arthur-Merlin games, and in particular the complexity class AM, were introduced by
Babai [Bab85]. The basic idea is that the mere mortal King Arthur (with access to random coins)
wishes the all-powerful wizard Merlin to prove a fact to him. For our purposes, it is simplest to
define the class of Arthur-Merlin games as:

AM = BP · NP.

Babai showed [Bab85] that for any fixed number of alternations of the operators BP and ∃·,
BP · ∃ ·BP · ∃ · · · · ·P = AM. Often such extensions are denoted, for example, MAM = ∃ · BP · ∃ · P.

Note that in this definition, Arthur’s coins are public. At the same time, Goldwasser, Micali,
and Rackoff [GMR89] defined a similar class in which the coin tosses are all private — they need
not be revealed to the verifier. Both of these models are known as interactive proofs. Subsequently,
Goldwasser and Sipser [GS86] showed that “public coins are as good as private coins,” that is, the
class of languages with constant-round interactive proofs is exactly AM.

Subsequently it was shown that GI ∈ coAM [GMW86, GS86]; see Section 3.1 for more details.
Although it will not be relevant, we feel we should mention one of the crowning achievements

of complexity theory in the 1990s. The class IP consists of those languages that have interactive
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proofs with a polynomially bounded number of rounds, that is, the number of rounds can grow as
a polynomial of the size of the input. The one non-relativizing proof technique currently known
— arithmetization — was developed in the course of proving that IP = PSPACE [LFKN90, Sha90]
(see also [BFL90, BF90, AW08] for related work).

Quantum complexity. The class BQP consists of those languages that can be decided on
a quantum computer in polynomial time with error strictly bounded away from 1/2, as in the
definition of BPP. For more details on quantum computing, we recommend the book by Nielson
and Chuang [NC00].

2.4 Function Classes

Complexity-bounded function classes are defined in terms of Turing transducers: Turing machines
with an additional write-only output tape. A transducer only outputs a value if it enters an
accepting state. In general, then, a nondeterministic transducer can be partial and/or multi-
valued. Whenever we say “partial” or “multivalued,” we mean “potentially partial” and “potentially
multivalued.” For such a function f , we write

set-f(x) = {y : some accepting computation of f outputs y}

The domain of a partial multi-valued function is the set

dom(f) = {x : set-f(x) 6= ∅}.

The graph of a partial multi-valued function is the set

graph(f) = {(x, y) : y ∈ set-f(x)}.

The class FP is the class of all total functions computable in polynomial time. The class PF is
the class of all partial functions computable in polynomial time. Note that machines computing a
PF function must halt in polynomial time even when they make no output.

Logarithmic-space functions. The class FL is the class of all (single-valued, total) functions
computable by a logspace transducer. Note that neither the input tape nor the output tape is
counted in the space usage.

Nondeterministic functions. The class NPSV consists of all single-valued partial functions
computable by a nondeterministic polynomial-time transducer. Note that multiple branches of an
NPSV transducer may accept, but they must all have the same output.

The class NPMV consists of all multi-valued partial functions computable by a nondeterministic
polynomial-time transducer.

The classes NPSVt and NPMVt are the subclasses of NPSV and NPMV, respectively, consisting
of the total functions in those classes.

The classes NPSVg and NPMVg are the subclasses of NPSV and NPMV, respectively, whose
graphs are in P.

A refinement of a multi-valued partial function f is a multi-valued partial function g such that
dom(g) = dom(f) and set-g(x) ⊆ set-f(x) for all x. In particular, if set-f(x) is nonempty then so
is set-g(x).

If F1 and F2 are two classes of partial multi-valued functions, then

F1 ⊆c F2
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means that every function in F1 has a refinement in F2.
It is known that NPMV ⊆c PF if and only if P = NP [Sel92] if and only if NPSV ⊆ PF [SXB83].

Selman [Sel94] is one of the classic works in this area, and gives many more results regarding these
function classes.

The following theorem is our main formal evidence for believing that NPMV *c NPSV:

Theorem 2.1 ([HNOS94]). The following conditions are requivalent:

1. There is a function f ∈ NPSV such that, for any formula ϕ, f(ϕ) is a satisfying assignment
of ϕ, if one exists, or ⊥ otherwise;

2. NPMV ⊆c NPSV;

3. NPMVg ⊆c NPSV [Sel94].

If any, and hence all, of the above conditions hold, then PH = Σ2P.

In fact, they showed that the conditions of the above theorem imply SAT ∈ (NP ∩ coNP)/poly
[HNOS94]. At the time, this was only known to imply PH = Σ2P, but shortly thereafter the collapse
was improved to PH = ZPPNP [KW95].

We note that NPMVg ⊆c NPSVg obviously implies NPMVg ⊆c NPSV, and hence that the
conditions of the above theorem hold, but that the converse, namely the implication NPMV ⊆c

NPSV =⇒ NPMVg ⊆c NPSVg, is not known to hold.
It is not difficult to show that NPMVg ⊆c NPSVg implies NP = UP; we review a proof of this

fact in the proof of Corollary 4.14. Again, the converse is not known to hold. We also note that it
is still an open question as to whether NP = UP implies any collapse of PH at all.

The following diagram summarizes these implications:

NPMVg ⊆c NPSVg

��

+3 NPMVg ⊆c NPSV
KS

[Sel94]

��

[HNOS94]
+3 SAT ∈ (NP ∩ coNP)/poly

��

NP = UP NPMV ⊆c NPSV
PH = Σ2P [HNOS94]

PH = ZPPNP [KW95]

Any implication not present in the above diagram is not known to hold, nor are there oracles known
to settle these non-implications either way.

2.5 Equivalence Relations

A binary relation R is a subset of Σ∗ ×Σ∗. If R is an equivalence relation and (x, y) ∈ R, we write
x ∼R y. An equivalence relation is

• reflexive: x ∼R x for all x;

• symmetric x ∼R y ⇐⇒ y ∼R x for all x, y;

• transitive: if x ∼R y and y ∼R z then x ∼R z.
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If f is any function, then the kernel of f is

Ker(f) = {(x, y) : f(x) = f(y)}.

It is clear that Ker(f) is an equivalence relation. If R = Ker(f) then f is said to be a complete
invariant for R. A canonical form for an equivalence relation R is a function g such that x ∼R g(x)
for all x, and x ∼R y if and only if g(x) ∼R g(y). Note that if g is a canonical form for R, then
Ker(g) = R and g is idempotent, that is, g ◦ g = g. Indeed, g is a canonical form for R if and only
if g is an idempotent complete invariant for R.

If R is an equivalence relation, then the equivalence class of the string x is:

[x]R = {y : x ∼R y}.

The equivalence classes of R partition Σ∗.
The trivial relation is all of Σ∗×Σ∗, that is, all strings are equivalent under the trivial relation,

or equivalently [x] = Σ∗ for all x. The discrete relation is the relation of equality, that is, each
string is equivalent only to itself under the discrete relation. Equivalently, the discrete relation
satisfies [x] = {x} for every x.

3 Motivation

In this section, we help motivate the study of complexity classes of equivalence relations. In
Section 3.1 we review some naturally occurring isomorphism and equivalence problems, and some
of the algorithmic and complexity-theoretic results that make them interesting, aside from their
intrinsic mathematical interest. In Section 3.2 we give an indication of how studying complexity
classes of equivalence relations can shed new light on function classes. In Section 3.3 we discuss
chain conditions on languages, inspired by chain conditions in algebra and topology, and how they
initially led us to study complexity classes of equivalence relations.

3.1 Naturally Occurring Isomorphism and Equivalence Problems

Many naturally occurring isomorphism and equivalence problems are of great algorithmic and
complexity-theoretic interest. Their study has led to novel algorithmic techniques, and they are
some of the few remaining candidates for naturally occurring problems of intermediate complexity.

In the original paper in which Karp defines NP-completeness [Kar72], he noted that GraphIso,
Composites, and LinearProgramming were not known to be NP-complete nor known to be in P. At
the time, it was unknown whether this situation was due to a lack of proof or whether there were
any problems at all in that were not NP-complete but not in P. Such problems are known as
problems of intermediate complexity.

Shortly thereafter, Richard Ladner [Lad75] proved:

Theorem 3.1 (Ladner’s Theorem [Lad75]). If P 6= NP then there is a family of sets {Aq : q ∈
Q} ⊆ NP such that A0 = ∅, A1 is m-complete for NP, p ≤ q implies Ap ≤P

m Aq, and p > q implies
Ap 6≤P

T Aq.

This showed that intermediate problems exist in abundance, but did not resolve the questions
about the naturally occurring potentially intermediate problems mentioned above. Indeed, the sets

11



constructed in Ladner’s Theorem have a somewhat artificial flavor. For example, A1/2 looks like
A1 for certain stretches of input and like A0 for other stretches; it is essentially by choosing these
stretches appropriately that the proof works.

Since then, both LinearProgramming [Hač79] and Composites [AKS04] have been shown to be in
P. Graph isomorphism and related problems — such as graph automorphism (decide if a graph has
any nontrivial automorphism) and ring iso- and automorphism — are some of the few remainining
naturally occurring problems potentially of intermediate complexity.

Our main evidence that GI /∈ P is anecdotal: many smart people have tried to prove that
GI ∈ P and failed. Usually these attempts are not total failures: the isomorphism problems for
many restricted classes of graphs have been shown to be in P. For example, the following classes of
graphs have polynomial-time isomorphism algorithms: trees [Kel57] (now an easy exercise), planar
graphs [HT72, HW74], graphs of bounded genus [Mil80], graphs of bounded eigenvalue multiplicity
[BGM82], and graphs of bounded degree [Luk82].

However, we have more technical evidence that GI is not NP-complete:

Theorem 3.2 ([Bab77, Mat79]). Counting the number of isomorphisms between two graphs is Cook
equivalent to deciding whether two graphs are isomorphic. Briefly: ♯GI ≡P

T GI.

The above result contrasts GI from many NP-complete problems. For example, ♯SAT is ♯P-
complete; if L is an NP-complete language for which there is a parsimonious reduction from SAT

to L, that is, a reduction that preserves the number of witnesses, then ♯L is also ♯P-complete.
Such parsimonious reductions are known for many NP-complete problems, and hence the counting
versions of many NP-complete problems are ♯P-complete. Since P♯P contains the whole polynomial
hierarchy [Tod89], ♯P-hard problems are thought to be much harder than NP problems.

The following gives further technical evidence that GI is not NP-complete:

Theorem 3.3. If GI is NP-complete, then PH = Σ2P.

Outline of proof. First, GI ∈ coAM; there is a two-round interactive proof for GI using private coins
[GMW86], and any such interactive proof can be converted to one using public coins [GS86]. Babai
[Bab85] observed that Lautemann’s proof [Lau83] that BPP ⊆ Σ2P ∩ Π2P directly extends to give
AM ⊆ Π2P. Finally, Boppana, H̊astad, and Zachos [BHZ87] showed that if NP ⊆ coAM then
PH = Σ2P = AM. This last result also follows directly from the fact that MAM = AM [Bab85] (see
[BM88] Section 1.9). Babai and Moran [BM88] gave an alternative direct proof of this theorem.

Schöning extended this result by a slightly different argument as follows:

Theorem 3.4 ([Sch88]). The graph isomorphism problem is low for Σ2P. Briefly: GI ∈ L2P.

Corollary 3.5. The graph isomorphism problem is not in HkP unless PH = Σmax(k,2)P. In partic-

ular, GI is not ≤P
T -complete for NP unless PH = Σ2P.

Outline of proof of Theorem 3.4. As with the previous result, this result relies on the fact that
GI ∈ NP ∩ coAM [GMW86, GS86]. It is relatively easy to show that AM ∩ coAM is low for AM, and
thus GI is low for AM. Finally, ∀ · AM = Π2P, and this result relativizes. Thus GI is low for Π2P,
and the result follows by complementation.

The book by Köbler, Schöning, and Torán [KST93] gives a nice, relatively self-contained
overview of GI and the various complexity-theoretic results surrounding it.

12



Boolean formula isomorphism, abbreviated FI, is an exemplar potentially of intermediate com-
plexity one level higher in the polynomial hierarchy. Recall that two Boolean formulas F and G are
equivalent if F (x) = G(x) for all assignments x. Two Boolean formulas F and G are isomorphic if
there is some permutation π of the inputs of F such that F ◦π is equivalent to G. Note that Boolean
formula equivalence is coNP-complete and Boolean formula isomorphism lies in Σ2P. There are
also complexity-theoretic upper bounds on FI, analogous to the above bounds on GI:

Theorem 3.6 ([AT00]). The formula isomorphism problem cannot be Σ2P-complete unless PH =
Σ3P.

This result relies on a randomized canonical form for the formula equivalence problem.

Definition 3.7 ([Thi00]). A randomized canonical form for an equivalence relation R is a (poten-
tially partial) function f(x, r) such that

1. Prr[x ∼R f(x, r)] ≥ 3/4, and f(x, r) makes no output otherwise;

2. If x ∼R y, then f(x, r) = f(y, r) for all r.

The reason a canonical form for formula equivalence is needed is that

F0 = x1 ∧ (x1 ∨ x2)

F1 = x1 ∧ x2

are isomorphic by interchanging x1 and x2, but this permutation does not make them synactically
identical. The analogous result that was needed to show that GI ∈ coAM is: if G ∼= H then there is
a permutation π of the vertices such that π(G) = H, where here equality is understood as syntactic
equality.

The randomized canonical form for formula equivalence is based on a circuit learning algorithm
of Bshouty et al.[BCKT96]:

Theorem 3.8 ([BCKT96]). There is a randomized canonical form for Boolean circuit equivalence
in FPNP.

Agrawal and Thierauf noted that this randomized canonical form works just as well for Boolean
formula equivalence. In fact, all of the following results on Boolean formula equivalence also hold
for Boolean circuit equivalence, since they all rely on the above theorem. Using essentially the
same two-round interactive proof for graph non-isomorphism, we get:

Corollary 3.9 ([AT00]). The formula non-isomorphism problem is in AMNP = BP · Σ2P.

Using this result, the reasoning of Theorem 3.3 extends to give:

Corollary 3.10 ([AT00]). The formula isomorphism problem cannot be Σ2P-complete unless PH =
Σ3P.

Much as the initial result about the non-NP-completeness of GI was extended to show that
GI ∈ L2P, we would like to extend Agrawal and Thierauf’s results about FI to show that FI is in
some sense “low.” It is easy to see that FI is coNP-hard, so FI cannot be in LkP unless PH collapses.
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Furthermore, Agrawal and Thierauf [AT00] showed that UOClique ≤P
m FI. Since UOClique is not

known to be in the Boolean closure of NP, this is taken as evidence that FI is strictly above coNP.
If this is the case, then the usual notion of lowness is not even applicable to FI. However, the
reasoning used in Theorem 3.4 [Sch88] extends directly to show that an FI oracle cannot move
classes up PH by two levels, unless PH collapses:

Proposition 3.11. † Σ2P
FI = Σ3P.

Corollary 3.12. † If ΣkP
FI = Σk+2P, then PH = Σmax(k,3)P.

3.1.1 From invariants to canonical forms

Gary Miller [Mil80], at the end of his Section II, pointed out that for graph isomorphism, “Using
standard reducibility techniques it is easy to see that succinct codes [polynomial complete invariants]
and canonical forms are polynomial time equivalent” (see also [Gur97]). Since the proof is fairly
general, and hence may be applicable to other equivalence relations, we review it here.

Proposition 3.13. The canonical form problem for GI uniformly Cook-reduces to the complete
invariant problem. That is, there is a polynomial-time Turing reduction R� such that if f is a
complete invariant for GI then Rf is a canonical form for GI. In particular, GI ∈ Ker(FP) ⇐⇒
GI ∈ CF(FP).

Proof. Suppose f is a complete invariant for GI, and let G be a graph. If v ∈ V (G), let Gv denote G
with v individualized (colored, say, red, and then converted from a colored graph to an undirected
graph via the standard many-one equivalence between colored graph isomorphism and GI). For
each vertex of G, run f(Gv). Let v0 be the vertex of G minimizing f(Gv). Give v0 the label zero.
Repeat the process inductively, fixing v0, and using a different “color” for individualization at each
stage.

In fact, we see that an analogous result also holds for any NP-complete equivalence problem.
If R is such a problem, then any complete invariant for R provides a solution for R, and thus any
complete invariant for R is NP-hard. Since the first canonical form for R can be computed with an
NP oracle, the first canonical form problem for R Cook-reduces to the complete invariant problem.
Note that unlike GI, the reduction here is not uniform in the complete invariant.

Since GI also shares this property, we ask the following question:

Open Question 3.14. Is it the case that for every equivalence problem R ∈ NP\P, the canonical
form problem Cook-reduces to the complete invariant problem? That is, is it the case that for
every R ∈ NP\P and every complete invariant f for R, there is a polynomial-time reduction M�

such that Mf is a canonical form for R? Note that there is no restriction on the complexity of f
or the resulting canonical form Mf .

We believe an answer to this question either way would provide interesting information regarding
the structure of NP.

We should mention that an expected linear-time canonical form for GI was discovered by Babai
and Kučera [BK79], the expectation being taken over the uniform distribution on inputs of a
given size (note that the input size of graphs on n vertices is O(n2)). Questions about expected
polynomial-time canonical forms may prove interesting, but we do not consider them here.
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3.2 Understanding Function Classes

Studying function classes can shed light on complexity classes of equivalence problems, and vice
versa.

If f is a complete invariant for R and there is a function g such that fgf = f , then gf is a
canonical form for R. Conversely, if c is a canonical form for R, then c2 = c, so g = id is as above.
Indeed, a canonical form is nothing more than an idempotent complete invariant. Thus we have
shown:

Proposition 3.15. A relation R has a canonical form if and only if it has a complete invariant f
and there is a function g such that fgf = f .

Although the g in the proposition is slightly weaker than a right inverse for f , any right inverse
for f obviously satisfies the property of g. Hence answers to questions about function inversion
imply results about complexity classes of equivalence problems. In particular, if NPMV ⊆c NPSV

then every honest FP function has an inverse in NPSV, so Ker(honest FP) ⊆ CF(NPSV). Blass and
Gurevich [BG84b] showed a partial converse to this result, restated here as Theorem 4.7.

In contrast to this, it is possible that there are functions that cannot be easily inverted, yet
their kernels have canonical forms. For example, if one-one one-way functions exist, the kernel of
any such function is the relation of equality, which has a trivial canonical form.

Although many function classes behave much like their language class counterparts, a notable
exception concerns variations of the class PNP in which the oracle access is restricted in various
ways. PNP

tt is the class of all languages that are ≤P
tt-reducible to an NP oracle. PNP[log] denotes the

class of languages that are Cook-reducible to a language in NP by a Cook reduction that makes at
most O(logn) queries on inputs of length n. Both of the following statements can be proved using
the same elementary argument:

PNP[log] ⊆ PNP
tt ⊆ PNP and FPNP[log] ⊆ FPNP

tt ⊆ FPNP.

Selman [Sel94] showed that FPNP
tt = FPNP if and only if PNP

tt = PNP, so the larger two function
classes are related in the same manner as the larger two language classes. However, in the case
of the smaller two language classes, PNP[log] = PNP

tt [Wag87, Hem87, BH91], yet for the function
classes, FPNP[log] = FPNP

tt implies NP = RP and P = UP [Sel94]1. Given the comments above, it is
possible that studying CF(FPNP[log]), Ker(FPNP[log]), CF(FPNP

tt ), and Ker(FPNP
tt ) could shed further

light on these classes.

3.3 Chain Conditions on Languages

The following discussion was the genesis of this thesis. A chain condition is a condition on as-
cending or descending chains A1 ( A2 ( A3 ( · · · of sub-objects of some mathematical object.
Chain conditions have been quite successful in mathematics, particularly in algebra. For example,
the ascending chain condition on a ring R is that there is no infinite strictly ascending chain of
ideals of R; rings satisfying this condition are called Noetherian, and rings satisfying the analo-
gous descending chain condition are called Artinian. In group theory, the definitions of nilpotent

1Selman [Sel94] actually showed that FP
NP[log] = FP

NP
tt implies P = FewP, where FewP is the class of NP problems

with at most poly(n) witnesses for inputs of length n. We mention this only for completeness; we will not mention
FewP hereafter.
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and solvable groups are defined by requiring that particular chains of subgroups must end in the
trivial subgroup. What would a chain condition look like on a language, from the point of view of
complexity theory?

The first question is which notion of sub-object to use. If we consider all subsets, most chain
conditions become trivial. One possibility is to consider subsets in a certain complexity class. For
example:does any NP-complete problem have an infinite, strictly ascending chain of subsets each
of which is in P. If we allow finite differences, then the answer is trivially “yes.” So a strictly
ascending chain might be a set of languages L1 (∗ L2 (∗ · · · where each Li ∈ P and (∗ denotes
that Li ⊂ Li+1 and Li+1\Li is infinite. However, it is again easy to construct such chains, so this
notion did not seem particularly fruitful.

A natural way to extend the notion of an ideal in a ring or a normal subgroup in a group is
to consider sub-objects that are the kernels of morphisms. Although the kernel of a function is in
general an equivalence relation, in algebra, this equivalence relation is often entirely determined by
a sub-object, which is also called the kernel of the function. For example, if ϕ : G → H is a group
homomorphism, then {g ∈ G : ϕ(g) = 1} is a normal subgroup of G, and completely defines the
equivalence relation Ker(ϕ) (indeed, this subgroup is denoted Ker(ϕ)).

In the case of complexity theory, a natural notion of morphism is a polynomial-time computable
function. In thinking about chains of such equivalence relations, we were naturally led to the initial
question of this thesis: is every polynomial-time decidable equivalence relation the kernel of some
polynomial-time function?

4 Complexity Classes of Equivalence Relations

In this section we present new results on complexity classes of equivalence relations, except for
new oracle separations, which we present in Section 5. In Section 4.1 we review the previously
known results, including oracle separations, and results that follow from combinations of previous
results but that have not been announced before. In Section 4.2 we present new consequences of
the collapses of various classes of equivalence relations. In Section 4.3 we present several problems
that are believed to be hard, but if the classes of equivalence relation collapse, become easy. We
also define the notion of kernel reduction; any kernel-complete problem for PEq lies in Ker if and
only if Ker = PEq, so any kernel-complete problem is a natural candidate for problems in PEq\Ker.

4.1 Previous Results

Here we recall the previous results most relevant to our work. Most of the results in this section
are from Blass and Gurevich [BG84a, BG84b]. We are not aware of any other prior work in this
area. However, results in other areas of computational complexity that have been obtained since
1984 can be used as black boxes to extend their results, which we do here.

If R ∈ PEq, then the language R′ = {(x, y) : (∃z)[z ≤lex y and (x, z) ∈ R]} is in NP, and can
be used to perform a binary search for the first canonical form for R. Hence, PEq ⊆ LexEqFPNP.
The first result shows that this containment is tight:

Theorem 4.1 ([BG84a] Theorem 1). There is an equivalence relation R ∈ CF whose first canonical
form is in FPNP = F∆2P and is ∆2P-hard, that is, it is essentially ∆2P-complete.

Note that the above proof that PEq ⊆ LexEqFPNP relativizes, so all four polynomial-time
classes of equivalence relations are equal in any world where P = NP, in particular, relative to any
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PSPACE-complete oracle. The next result gives relativized worlds in which Ker 6= PEq, CF 6= Ker,
and LexEq 6= CF, though these worlds cannot obviously be combined.

Theorem 4.2 ([BG84a] Theorem 2). Of the four equivalence problems defined above, none is
Cook-reducible to the next in line. In particular:

a. There is an equivalence relation R /∈ Ker(FPR), i. e., Ker(FPR) 6= PREq.

b. There is a function f ∈ FP such that Ker(f) /∈ CF(FPf), i. e., CF(FPf) 6= Ker(FPf).

c. There is an idempotent function f ∈ FP such that Ker(f) /∈ LexEqFPf , i. e., LexEqFPf 6=
CF(FPf).

The above theorem is proved by diagonalization. The proof of Theorem 4.2a in [BG84a] con-
structs an R with at most one nontrivial equivalence class at each length. The following extension
of this result, giving an upper bound on R, is achieved by ensuring that R has exactly one nontrivial
equivalence class of each length:

Theorem 4.3 ([BG84a] Theorem 3). There is an equivalence relation R ∈ LexEqNPSVR
t that is

not in Ker(FPR). In other words, PREq ∩ LexEqNPSVR
t * Ker(FPR).

Note that the relationship between Ker(FP) and LexEqNPSVt is unclear in either direction;
Corollary 4.8, below, suggests that neither class is contained in the other. However, Ker(FP) ⊆
Ker(NPSVt), and one consequence of the above theorem is a relativized world in which Ker(FP) 6=
PEq ∩ Ker(NPSVt).

The final result we mention in this direction is from Blass and Gurevich’s second paper:

Theorem 4.4 ([BG84b] Theorem 5). There is an equivalence relation R /∈ Ker(NPSVR
t ), i. e.,

PREq * Ker(NPSVR
t ).

In the following results, Blass and Gurevich [BG84b] showed that collapses of various classes of
equivalence problems are equivalent to more standard complexity-theoretic hypotheses.

Theorem 4.5 ([BG84b] Theorem 1). The following statements are equivalent:

1. NPEq ⊆ coNPEq

2. coNPEq ⊆ NPEq

3. CF(FP) ⊆ LexEqNPSVt

4. NP = coNP

Proof [BG84b]. To show that (1), (2), and (4) are equivalent, consider a language A ∈ NP (resp.,
A ∈ coNP). The equivalence follows easily by considering the equivalence relation generated by
setting, for all x,

x ∈ A ⇐⇒ 1x ∼ 0x.

Next we show that if NP = coNP, then PEq ⊆ LexEqNPSVt, a stronger statement than (3). Let
R ∈ PEq. Then the language R′ = {x : (∃y)[y <lex x and (x, y) ∈ R]} is in NP. Note that x ∈ R′

if and only if x is not the first member of its equivalence class. Since NP = coNP by assumption,

17



the language of strings that are the first member of their equivalence class is also in NP. Hence the
first canonical form function is in NPSVt.

Finally we show that (3) implies (4). Let R be the equivalence relation constructed in The-
orem 4.1. The first canonical form for R is ∆2P-hard, but by assumption lies in NPSVt. Hence
languages in coNP ⊆ ∆2P can be recognized by an NPSVt function, and thus NP = coNP. Blass
and Gurevich [BG84b] also gave a more direct proof of this implication.

Theorem 4.6. The following statements are equivalent:

1. LexEqNPSVt ⊆ PEq

2. NPSVt ⊆ FP

3. P = NP ∩ coNP

Proof. The equivalence of (1) and (3) is exactly the statement of Theorem 2 from Blass and Gurevich
[BG84b]. The equivalence of (2) and (3) follows from the fact that NPSVt = FPNP∩coNP, which was
essentially shown in [Sel94, HNOS94].

Some definitions are required before stating the next theorem. The shrinking property for NP

is the statement that, for any two sets A,B ∈ NP, there are subsets A′ ⊆ A and B′ ⊆ B such that
A′ and B′ are disjoint and A ∪B = A′ ∪B′. The uniformization principle for NP is the statement
that NPMV ⊆c NPSV. Blass and Gurevich [BG84b] introduced both of these principles, based on
analogous principles of the same name in computability theory and descriptive complexity theory.
The original definition of the uniformization principle was stated somewhat differently, however,
since function classes such as NPSV had not yet become standard, even though they were introduced
by Book, Long, and Selman [BLS84] one issue before [BG84b].

Theorem 4.7 ([BG84b] Theorem 3). The following statements are equivalent:

1. Ker(FP)= ⊆ CF(NPSVt)

2. NP has the shrinking property

3. NPMV ⊆c NPSV, i. e., the uniformization principle holds for NP

Finally, here we collect the results on the relationship between Ker(FP) and LexEqNPSVt:

Corollary 4.8. If Ker(FP) ⊆ LexEqNPSVt then NP = coNP and NPMV ⊆c NPSV. If LexEqNPSVt ⊆
Ker(FP) then P = NP ∩ coNP.

Proof. The first statement follows from Theorems 4.5 and 4.7. The second statement follows from
Theorem 4.6.

Corollary 4.9. Ker(FP) = LexEqNPSVt if and only if P = NP if and only if NPSV = PF.

Proof. The first equivalence follows from the previous corollary. The second equivalence was first
announced in [Sel94].
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Hemaspaandra, Naik, Ogihara, and Selman [HNOS94] showed that if NPMV ⊆c NPSV then
SAT ∈ (NP∩ coNP)/poly. At the time, they showed that this implied PH = Σ2P; shortly therefater
Köbler and Watanabe [KW95] improved the collapse to PH = ZPPNP. Combined with Theorem 4.7,
this immediately implies a result that has not been announced previously:

Corollary 4.10. If CF = Ker then PH = ZPPNP.

4.2 New Collapses

Blass and Gurevich’s [BG84b] proof that Ker(FP)= ⊆ CF(NPSVt) =⇒ NPMV ⊆c NPSV essentially
shows the following slightly stronger result. We reproduce the core of the proof here:

Theorem 4.11. If CF = Ker then NPMVg ⊆c NPSVg.

Proof. Let f ∈ NPMVg, let M be a nondeterministic polynomial-time transducer computing f , and
let V be a polynomial-time decider for graph(f). If CF = Ker, then the equivalence relation

Ker(V ) = {((x, y), (x, y′)) : V (x, y) = V (x, y′)}

has a canonical form c ∈ FP. Then the following machine computes a refinement of f in NPSVg:
simulate M(x). On each branch, if the output would be y, accept if and only if c(x, y) = (x, y).
Hence f ∈c NPSVg.

Remark 4.12. Similar to the original result [BG84b], we can weaken the assumption of this
theorem to Ker(FP)p ⊆ CF(NPSVt), without modifying the proof. ⊳

Remark 4.13. Although this result follows from Blass and Gurevich’s proof [BG84b], this result
does not follow directly from their result, as NPMV ⊆c NPSV is not known to imply NPMVg ⊆c

NPSVg. ⊳

Corollary 4.14. If CF = Ker then NP = UP and PH = ZPPNP.

Proof. Here we reproduce the proof that NPMVg ⊆c NPSVg implies NP = UP, originally due
to Selman [Sel94, GS88]. Let L ∈ NP and let V be a polynomial-time verifier for L, that is,
x ∈ L ⇐⇒ (∃py)[V (x, y)]. Let f be the partial multi-valued function defined by

set-f(x) = {(x, y) : V (x, y)}.

Then graph(f) = V ∈ P, so f ∈ NPMVg. By assumption, then, f has a refinement f ′ ∈ NPSVg.
Let V ′ be a polynomial-time decider for graph(f ′). Then L is the projection of V ′ onto the first
coordinate, and V ′ allows at most one witness for each x ∈ L. Thus L ∈ UP.

The second claim — that PH = ZPPNP — is exactly Corollary 4.10.

Remark 4.15. Note that Corollary 4.10 does not imply NP = UP, as neither of the statements
PH = ZPPNP and NP = UP is known to imply the other. Indeed, it is still an open question as to
whether NP = UP implies any collapse of PH whatsoever. ⊳

The next new result we present gives a new connection between complexity classes of equivalence
problems and quantum and probabilistic computation:

Theorem 4.16. † If Ker = PEq then UP ⊆ BQP. If CF = PEq then UP ⊆ RP.
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Proof. Suppose Ker = PEq. Let L be a language in UP and let V be a nondeterminstic polynomial-
time machine with at most one accepting path for each input, such that x ∈ L ⇐⇒ (∃y)[|y| ≤
p(|x|) and V (x, y) = 1] for some polynomial p. Consider the relation

RL = {((a, x), (a, y)) : x = y or |x| = |y| and V (a, x⊕ y) = 1}

where ⊕ denotes bitwise exclusive-or. Clearly RL ∈ PEq, so by hypothesis RL has a complete
invariant f ∈ FP. Since L ∈ UP, for each a ∈ L there is a unique string wa such that V (a,wa) = 1.
Define fa(x) = f(a, x). Then for all distinct x and x′, fa(x) = fa(x

′) if and only if x ⊕ x′ = wa.
Given a and fa, and the fact that fa is either injective or two-to-one in the manner described,
finding wa or determining that there is no such string is exactly Daniel Simon’s problem, which is
in BQP [Sim94].

Now suppose further that CF = PEq. Then we may take f to be not only a complete invariant
but further a canonical form for RL. On input a, the following algorithm decides L in polynomial
time with bounded error: for each length ℓ ≤ p(|a|), pick a string x of length ℓ at random, compute
f((a, x)) = (a, y), and compute V (a, x⊕y). If V (a, x⊕y) = 1 for any length ℓ, output 1. Otherwise,
output 0. If a /∈ L then this algorithm always returns 0. If a ∈ L and 0ℓ is a’s witness, then the
algorithm always returns 1. If a ∈ L and 0ℓ is not a’s witness, then y 6= x, and hence the answer is
correct, with probability 1/2.

Corollary 4.17. † If CF = PEq then NP = UP = RP and in particular, PH = BPP.

Proof. If CF = PEq then it follows directly from Theorems 4.11 and 4.16 that NP = UP ⊆ RP.
Thus NP = RP, since RP ⊆ NP without any assumptions. Furthermore, it follows that PH ⊆ BPP

[Zac88], and since BPP ⊆ PH [Lau83, Sip83], the two are equal.

The collapse inferred here is stronger than that of Corollary 4.10, since BPP ⊆ ZPPNP [Sip83] 2.
However, this result is incomparable to Corollary 4.10 since it also makes the stronger assumption
CF = PEq, rather than only assuming CF = Ker.

4.2.1 Groupy witnesses for NP problems

We would like to extend the first half of Theorem 4.16 from UP to NP to give stronger evidence
that Ker 6= PEq, but the technique does not apply to arbitrary problems in NP. However, if an NP

problem’s witnesses satisfy a certain group-like condition, then Theorem 4.16 may be extended to
that problem.

Let L ∈ NP and let V be a polynomial-time verifier for L. By padding if necessary, we may
suppose that for each a ∈ L, a’s witnesses all have the same length. Suppose there is a polynomial-
time length-restricted group structure on Σ∗, that is, a function f ∈ FP such that for each length

n, Σn is given a group structure defined by xy−1 def
= f(x, y). Then

RL = {((a, x), (a, y)) : x = y or V (a, xy−1) = 1}

2In fact, what Sipser [Sip83] shows, as a corollary to a theorem of Gács, is that BPP ⊆ RP
NP

∩ coRP
NP. The proof

that RP ∩ coRP = ZPP relativizes, so RP
NP

∩ coRP
NP = ZPP

NP. The result BPP ⊆ ZPP
NP has subsequently been

re-proven by several different techniques.
Despite the Sipser-Gács result, Zachos and Heller’s paper [ZH86] is often cited with the first proof that BPP ⊆

ZPP
NP.

Goldreich and Zuckerman [GZ97] gave another proof that BPP ⊆ ZPP
NP by showing that MA ⊆ ZPP

NP.
More recently, Cai [Cai07] shows that S

P
2 ⊆ ZPP

NP. Combined with the result by Canetti [Can96] and Russell and
Sundaram [RS95] that BPP ⊆ S

P
2 , this gives yet another proof that BPP ⊆ ZPP

NP.
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is an equivalence relation if and only if a’s witnesses are a subgroup of this group structure, or a
subgroup less the identity. The technique of Theorem 4.16 then reduces L to the hidden subgroup
problem over the family of groups defined by f .

The hidden subgroup problem, or HSP, for a group G is: given generators for G, an oracle
computing the operation (x, y) 7→ xy−1, a set X, and a function f : G → X such that Ker(f) is
the partition given by the cosets of some subgroup H ≤ G, find a generating set for H [Kit95].
Hidden subgroup problems have played a central role in quantum algorithms. Integer factoring
and the discrete logarithm problem both easily reduce to Abelian HSPs. The first polynomial-time
quantum algorithm for these problems was discovered by Shor [Sho94]; Kitaev [Kit95] then noticed
that Shor’s algorithm in fact solves all Abelian HSPs. The shortest vector problem in a lattice
reduces to the dihedral HSP, which is solvable in subexponential quantum time [Kup05]. The
graph isomorphism reduces to the HSP for the symmetric group, but it is still unknown whether
any nontrivial quantum algorithm exists for GI.

In addition to the HSP for Abelian groups, the HSPs for several families of non-Abelian groups
are also in BQP [IMS03, FIM+03, GSVV04].

The proof of Theorem 4.16 showed that if Ker = PEq then every language in UP reduces to
Daniel Simon’s problem. We can now see that Simon’s problem is in fact the HSP for (Z/2Z)n,
where the hidden subgroup has order 2. Simon [Sim94] gave a zero-error expected polynomial time
quantum algorithm for this problem, putting it in ZQP ⊆ BQP. This result was later improved
by Brassard and Høyer [BH97] to a worst-case polynomial time quantum algorithm, that is, in the
class EQP (sometimes referred to as just QP).

This discussion motivates the following definition, results, and open question:

Definition 4.18. † Let L ∈ NP. For each a letW (a) denote a’s witnesses; without loss of generality,
by padding if necessary, assume that W (a) ⊆ Σn for some n. The language L has groupy witnesses
if there are functions mul, gen,dec ∈ FP such that for each a ∈ L:

1. let G(a) = {x ∈ Σn : dec(a, x) = 1}; then for all x, y ∈ G(a), defining xy−1 def
= mul(a, x, y)

gives a group structure to G(a);

2. gen(a) = (g1, g2, . . . , gk) is a generating set for G(a); and

3. W (a) is a subgroup of G(a), or a subgroup less the identity.

The following two results are corollaries to the proof, rather than the result, of Theorem 4.16.

Corollary 4.19. † If Ker = PEq and a language L ∈ NP has groupy witnesses in a family of groups
G, then L Cook-reduces to the hidden subgroup problem for the family G. Briefly: L ≤P

T HSP (G).

Proof. Let L ∈ NP, let W and G be as in the definition of groupy witnesses, and let V be a
polynomial-time verifier for L such that the witnesses accepted by V on input a are exactly the
strings in W (a). Then the equivalence relation

RL = {((a, x), (a, y)) : x = y, or V (a, xy−1) = 1, or both x /∈ G(a) and y /∈ G(a)}

is in PEq, since membership in G(a) can be decided in polynomial time by the algorithm dec
guaranteed in the definition of groupy witnesses, and xy−1 can be computed by the polynomial-
time algorithm mul guaranteed in the definition of groupy witnesses. By hypothesis, RL has
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a complete invariant f . The function f and the generating set gen(a) are a valid instance of the
hidden subgroup problem. If a /∈ L, then f is injective, and the hidden subgroup is trivial. If a ∈ L,
then the hidden subgroup is W (a). Therefore L reduces to the hidden subgroup problem.

Corollary 4.20. † If Ker = PEq and the language L has Abelian groupy witnesses, then L ∈ BQP.

Corollary 4.21. † Every language in UP has Abelian groupy witnesses.

Open Question 4.22. Are there NP-complete problems with Abelian groupy witnesses? Assuming
P 6= NP, are there any problems in NP\UP with Abelian groupy witnesses?

4.3 New Hard Problems

4.3.1 Hard problems from NP-complete problems

By the technique in the proof of Theorem 4.11, any NP-complete problem L can be transformed
into an equivalence relation R ∈ Ker such that R /∈ CF unless NP = UP.

4.3.2 Factoring integers

Proposition 4.23. † If CF = Ker then integers can be factored in probabilistic polynomial time.

Proof. Suppose we wish to factor an integer N . We may assume N is not prime, since primality
can be determined in polynomial time [AKS04], but even much weaker machinery lets us do so in
probabilistic polynomial time [SS77, Rab80], which is sufficient here. By hypothesis, the kernel of
the Rabin function x 7→ x2 (mod N):

RN = {(x, y) : x2 ≡ y2 (mod N)}

has a canonical form f ∈ FP.
Randomly choose x ∈ Z/NZ and let y = f(x). Then x2 ≡ y2 (mod N); equivalently, (x −

y)(x+ y) ≡ 0 (mod N). If y 6≡ ±x (mod N), then since neither x− y nor x+ y is ≡ 0 (mod N),
gcd(N, x− y) is a nontrivial factor z of N . Let r(N) be the least number of distinct square roots
modulo N . Then Prx[y 6≡ ±x] ≥ 1− 2

r(N) . Since N is composite and odd without loss of generality,

r(N) ≥ 4. Thus Prx[y 6≡ ±x] = Prx[the algorithm finds a factor of N ] ≥ 1
2 . Recursively call the

algorithm on N/z.

4.3.3 Collision-free hash functions

Collision-free hash functions are a useful cryptographic primitive (see, e. g., [BSnP95]). Proposi-
tion 4.23 suggests a more general connection between the collapse CF = Ker and the existence of
collision-free hash functions.

A collection of collision-free hash functions is a collection of functions {hi : i ∈ I} for some
I ⊆ Σ∗ where hi : Σ|i|+1 → Σ|i| are

1. Easily accessible: there is an efficient, i. e., probabilistic polynomial-time, algorithm G such
that G(1n) ∈ Σn ∩ I;

2. Easy to evaluate: there is an efficient algorithm E such that E(i, w) = hi(w); and
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3. Collision-free: for all efficient algorithms A and all polynomials p there is a length N such
that n > N implies:

Pr
i=G(1n)

(x,y)=A(i)

[x 6= y and hi(x) = hi(y)] <
1

p(n)
.

It is not known whether collections of collision-free hash functions exist, though their existence
is known to follow from other cryptographic assumptions (see, e. g., [Dam88]). Many proposed
collections of collision-free hash functions, such as MD5 or SHA, can be evaluated deterministically,
that is, E ∈ FP.

Proposition 4.24. † If CF = Ker then collision-free hash functions that can be evaluated in deter-
ministic polynomial time do not exist.

Proof. The equivalence relation {((i, x), (i, y)) : E(i, x) = E(i, y)} has a canonical form f ∈ FP by
hypothesis. As in the proof of Proposition 4.23, the canonical form f can be used by a randomized
algorithm to find collisions in hi with non-negligible probability: choose x at random, and if f(x) 6=
x then a collision has been found.

Since hi maps Σ|i|+1 → Σ|i|, there are at most 2|i| − 1 singleton classes in R = Ker(hi).
If x lies in an equivalence class of size at least 2, then Prx[f(x) 6= x|#[x]R ≥ 2] ≥ 1

2 . Thus

Prx[f(x) 6= x] = Prx[f(x) 6= x|#[x]R ≥ 2] Prx[#[x]R ≥ 2] ≥ 1
2

(

1
2 + 1

2|i|+1

)

> 1
4 .

4.3.4 Cospectral mates

Determining whether two graphs have the same spectrum is simple linear algebra, hence the relation
of graph cospectrality, Cospec, is in Ker. Finding non-isomorphic cospectral graphs, called cospectral
mates, is an active area of research (see §13.2 of Brouwer and Haemers [BH], and references therein).
However, no polynomial-time canonical form, nor even expected polynomial-time canonical form
(see the end of Section 3.1.1) is known for Cospec. Graph cospectrality is thus a natural equivalence
problem that may lie in Ker\CF.

4.3.5 Subgroup equivalence

The subgroup equality problem is: given two subsets {g1, . . . , gt}, {h1, . . . , hs} of a groupG determine
if they generate the same subgroup. The group membership problem is: given a group G and
group elements g1, . . . , gt, x, determine whether or not x ∈ 〈g1, . . . , gt〉 (here 〈 · · · 〉 denotes group
generation, not tuple encoding). A solution to the group membership problem yields a solution to
the subgroup equality problem, by determining whether each hi lies in 〈g1, . . . , gt〉 and vice versa.
However, a solution to the group membership problem does not obviously yield a complete invariant
for the subgroup equivalence problem. Thus subgroup equivalence problems are a potential source
of candidates for problems in PEq\Ker.

Fortunately or unfortunately, the subgroup equivalence problem for permutation groups on
{1, . . . , n} has a polynomial-time canonical form, via a simple modification [Bab08] of the classic
techniques of Sims [Sim70, Sim71]. The analysis showing that these techniques yield polynomial-
time algorithms was not initially obvious, but was eventually performed by Furst, Hopcroft, and
Luks [FHL80] and Knuth [Knu91]. Knuth [Knu91] gave further historical remarks at the end of his
paper.
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4.3.6 Boolean function congruence

Two Boolean functions f and g are congruent if the inputs to f can be permuted and possibly
negated to make f equivalent to g. If f and g are given by formulae ϕ and ψ, respectively, deciding
whether ϕ and ψ define congruent functions is Karp equivalent to the formula isomorphism problem,
discussed here in Section 3.1. If f and g are given by their complete truth tables, however, Luks
[Luk99] gives a polynomial time algorithm for deciding whether or not they are congruent. Yet
no polynomial-time complete invariant for Boolean function congruence is known. Hence function
congruence is a candidate problem in PEq\Ker.

4.3.7 Complete problems?

Equivalence problems that are P-complete under NC or L reductions may lie in PEq\Ker due to
their inherent difficulty. However, we currently have no reason to believe that P-completeness is
related to complexity classes of equivalence problems. Towards this end, we introduce a natural
notion of reduction for equivalence problems:

Definition 4.25. † An equivalence relation R kernel-reduces to an equivalence relation S, denoted
R ≤P

ker S, if there is a function f ∈ FP such that

x ∼R y ⇐⇒ f(x) ∼S f(y)

Note that R ∈ Ker if and only if R kernel-reduces to the relation of equality. Also note that if
R ≤P

ker S via f , then R ≤P
m S via (x, y) 7→ (f(x), f(y)), leading to the question:

Open Question 4.26. Are kernel reduction are Karp reduction different? Are they different on
PEq? In other words, are there two equivalence relations R and S (in PEq?) such that R ≤P

m S
but R 6≤P

ker S?

An equivalence relation R ∈ PEq is PEq-complete if every S ∈ PEq kernel-reduces to R. For
any PEq-complete R, R ∈ Ker if and only if Ker = PEq if and only if the relation of equality is
PEq-complete. Unlike NP-completeness, however, the notion of PEq-completeness does not become
trivial if Ker = PEq: the relation of equality does not kernel-reduce to the trivial relation. This
shows that if P = NP then kernel reduction and Karp reduction are distinct on PEq. More generally,
if R ≤ker S, then S cannot have fewer equivalence classes than R, even without a complexity bound
on the reduction; a complexity bound further implies a relationship between the densities of the
two relations.

Open Question 4.27. Are there PEq-complete equivalence problems?

5 Oracles

We make extensive use of generic oracles for various notions of genericity, i. e., forcing. For an
overview of these techniques and their use in complexity theory, see [FFKL03]. Similar to [FFKL03],
when we say

Let O be an X-generic oracle ...

it should be read
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Let O = A⊕B where A is PSPACE-complete and B is an X-generic oracle relative
to A...

For some of these results, we will need a new notion of genericity: transitive genericity. A
transitive condition σ is a Cohen condition satisfying

1. Length restriction: 〈x, y〉 ∈ σ only if |x| = |y|, and

2. Transitivity: 〈x, y〉 ∈ σ and 〈y, z〉 ∈ σ implies 〈x, z〉 ∈ σ.

It follows from the general results of [FFKL03] that transitive generic oracles exist.

Theorem 5.1. † There are oracles A, B, and C relative to which P 6= NP and

CF(FPA) 6= Ker(FPA) 6= PAEq,

CF(FPB)p = Ker(FPB)p and Ker(FPB) 6= PBEq

We break most of the proof into three lemmata. The proofs of Lemmata 5.3 and 5.4 are
straightforward adaptations of the proofs in [BG84a] to generic oracles. The proof of Lemma 5.5
is new. We start by restating a useful combinatorial lemma:

Lemma 5.2 ([BG84a] Lemma 1). Let G be a directed graph on 2k vertices such that the out-degree
of each vertex is strictly less than k. Then there are two nonadjacent vertices in G.

Lemma 5.2 can be proved by a simple counting argument.

Lemma 5.3. There is a (transitive generic) oracle relative to which Ker 6= PEq.

Proof. Let τ be a transitive condition, and let τ denote the minimal transitive oracle extending
τ , that is, (a, a) ∈ τ for every a ∈ Σ∗, but the only pairs (x, y) ∈ τ are those in τ . Let M be a
polynomial-time oracle transducer running in time p(|x|). Let n be a length such that p(n) < 2n−1

and τ is not defined on (a, b) for any strings a and b of length > n. If there are distinct strings x
and y of length n such that M τ (x) = M τ (x), then extend τ to length p(n) as τ . Then x 6∼τ y but
M τ (x) = M τ (y).

Otherwise, M τ (x) 6= M τ (y) for every two distinct strings x and y. Say that x affects y if M
queries τ about (x, y) or (y, x) in the computation of M τ (y). Let G be a digraph on the strings
of length n, where there is a directed edge from x to y if x affects y. By the condition on n, the
out-degree of each vertex is at most 2n−1. Since there are 2n vertices, Lemma 5.2 implies that there
are two strings x and y of length n such that neither affects the other. Put (x, y) and (y, x) into τ .
Thus M τ (x) 6= M τ (y) but x ∼τ y.

Thus there is a transitive generic oracle O such that Ker 6= PEq relative to O.

Lemma 5.4. There is a (Cohen generic) oracle relative to which CF 6= Ker.

Proof. We describe the oracle O over the alphabet {0, 1, 2} for simplicity. Let readO : Σ∗ → Σ∗

denote the oracle function

readO(x) = O(x01)O(x011) · · ·O(x01k−1)
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where k is the least value such that O(x01k) = 2. Note that the bits used by readO on input x are
disjoint from those used by readO on any input y 6= x. Let RO = Ker(readO).

Let τ be a Cohen condition, and let τ denote the oracle extending τ which has value 2 outside
dom(τ). Let M be a polynomial-time oracle transducer running in time p(|x|). Let n be a length
such that p(n) < 2n−1 and readτ (x) is the empty string ε for all strings of length ≥ n. For a string
x of length n, let τx denote the minimal extension of τ such that readτx is the identity on all strings
of length n except readτx(x) = 1n+1. Note that readτx is injective on strings of length n, so its
kernel at length n is the relation of equality. In particular, any canonical form for Rτx must be the
identity on strings of length n.

If there is an x of length n such that M τx(x) 6= x, then M τx(x) is not the identity on strings of
length n, so M τx is not a canonical form for Rτx . Extend τ to τx.

Otherwise, M τx(x) = x for all x of length n. Find x and y of length n such that M τx(x) does
not query the oracle about y and M τy(y) does not query the oracle about x. This is possible by
Lemma 5.2, as in the proof of Lemma 5.3. Then update τ so that readτ (x) = readτ (y). Again,
M τ cannot be a canonical form for Rτ .

Thus there is a Cohen generic oracle relative to which CF 6= Ker.

Lemma 5.5. † If A is PSPACE-complete and O has at most one string of each length tower(k)
and no other strings, then relative to A⊕O, CF(FP)p = Ker(FP)p.

Proof. Relativize to a base PSPACE-complete oracle. Let O have at most one string of each length
tower(k), and no other strings. Let f be an oracle transducer running in polynomial time p(|x|),
let R = Ker(fO), and suppose that R is polynomially bounded by q. That is, if (x, y) ∈ R then
|x| ≤ q(|y|). For any input x of sufficient length, all elements of O except possibly one have length
either ≤ log p(|x|), in which case they can be found rapidly, or > q(p(|x|)) in which case they cannot
be queried by f on any input y ∼ x. Following a technique used in [BF99], we call this one element
the “cookie” for this equivalence class.

For the remainder of this proof, “minimum,” “least,” etc. will be taken with respect to the
standard length-lexicographic ordering.

We show how to efficiently compute a canonical form for R. Let Ry denote the inverse image
of y under fO, which is an R-equivalence class. Let

By = {x : fO(x) = y and fO(x) does not query the cookie},

ry = minRy, and by = minBy. A canonical form for R is

g(x) =

{

by if By 6= ∅

ry otherwise,

where y = fO(x). Now we show that g is in fact in FPO. On input x, the computation of g proceeds
as follows:

1. Find all elements of O of length at most log p(|x|). Any further queries to O of length
≤ log p(|x|) will be simulated without queries by using this data.

2. Compute y = fO(x).
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3. If the cookie was queried, then all further queries to O will be simulated without queries
using this data. Using the power of PSPACE, determine whether or not By = ∅. If By = ∅,
find and output ry. If By 6= ∅, find and output by.

4. If the cookie was not queried, then x ∈ By, so By 6= ∅. Use the power of PSPACE to find
the least z such that f(z) = y, answering 0 to any queries made by f to strings of length ℓ
between log p(|x|) ≤ ℓ ≤ q(p(|x|)).

5. Run fO(z). If fO(z) = y, then z = by, so output z. Otherwise, fO(z) queried the cookie, so
no further oracle queries need be made. Using the power of PSPACE, find and output by.

Proof of Theorem 5.1. (CF 6= Ker 6= PEq) Let A = A0 ⊕ A1 where A0 is transitive generic and
A1 is Cohen generic. The constructions in the proofs of Lemmata 5.3 and 5.4 go through mutatis
mutandis.

(CFp = Kerp and Ker 6= PEq) Let B be a transitive UP-generic oracle. Then the proof of
Lemmata 5.3 and 5.5 go through.

Open Question 5.6. Does CF = Ker imply P = NP? Or is there an oracle relative to which
CF = Ker but nonetheless P 6= NP? Further, is there an oracle relative to which P 6= NP but
CF = Ker = PEq?

Open Question 5.7. Is there an oracle relative to which CF 6= Ker = PEq?

6 Future Work

In this thesis, we developed new connections between complexity classes of equivalence relations
and probabilistic and quantum computation. We extended previous collapse results, gave new
oracles for these classes, and provided several natural problems that are candidate witnesses for
the distinctness of these complexity classes of equivalence relations.

Here we present several directions for future work. We collect the open problems listed through-
out this thesis for convenience, and present several other possible directions.

In textual order:

(3.14) Is it the case that for every equivalence problem R ∈ NP\P, the canonical form problem
Cook-reduces to the complete invariant problem?

(4.22) Are there NP-complete problems with Abelian groupy witnesses? Assuming P 6= NP, are
there any problems in NP\UP with Abelian groupy witnesses?

(4.26) Are kernel-reduction are Karp-reduction different? Are they different on PEq? In other words,
are there two equivalence relations R and S (in PEq?) such that R ≤P

m S but R 6≤P
ker S?

(4.27) Are there PEq-complete equivalence problems?

(5.6) Does CF = Ker imply P = NP? Or is there an oracle relative to which CF = Ker but
nonetheless P 6= NP? Further, is there an oracle relative to which P 6= NP but CF = Ker =
PEq?
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(5.7) Is there an oracle relative to which CF 6= Ker = PEq?

Here are some further directions for future researh, in no particular order:

• Is LEq contained in CF(FLNL)? Is it contained in CF(FP)? In Ker(FP)? We note that the
straightforward binary search technique used to show PEq ⊆ LexEqFPNP does not work in
logarithmic space. Jenner and Torán [JT97] showed that the lexicographically minimal (or
maximal – in this case the same technique works) solution of any NL search problem can be
computed in FLNL. However, the notion of an NL search problem is based on the following
characterization of NL due to Lange [Lan86]: a language A is in NL if and only if there is a
logspace machine M(x, ~y) that reads is second input in one direction only, indicated by “~y”,
such that

x ∈ A ⇐⇒ (∃py)[M(x, ~y) = 1]

Without the one-way restriction, this definition would give a characterization of NP rather
than NL. An NL search problem is then: given such a machine M and input x, find a y
such that M(x, ~y) = 1. Any equivalence relation that can be decided by such a machine is in
LexEqFLNL, but it is not clear that this captures all of LEq.

• Does CF(FL) = Ker(FL) imply NL = UL? Note that NL = UL if and only if FLNL ⊆ ♯L [AJ93].

• Does CF(FL) = LEq imply UL ⊆ RL? A positive answer to this question and the previous one
would give very strong evidence that CF(FL) 6= LEq, as significant progress has been made
towards showing L = RL [RTV05].

• Study expected polynomial-time canonical forms (see the end of Section 3.1.1). If every
R ∈ Ker(FP) has an expected polynomial-time canonical form, does PH collapse?

• What is the exact relationship between CF(FPNP[log]), Ker(FPNP[log]), CF(FPNP
tt ), and Ker(FPNP

tt )?
In particular, is Ker(FPNP[log]) ⊆ CF(FPNP

tt ) (see Section 3.2)?

• Find a class of groups for which the group membership problem is in P but no efficient
complete invariant is known for the subgroup equivalence problem (see Section 4.3.5).

• If Ker = PEq, does PH collapse?

• LexEqFPΣiP ?
= CF(FPΣiP)

?
= Ker(FPΣiP)

?
= PΣiPEq. If Ker(FPΣiP) = PΣiPEq does PH collapse?

• Study counting classes of equivalence relations. For an equivalence relation R, the associated
counting function is f(x) = #[x]R.

• Study complexity classes of lattices, partial orders, and total orders.
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[Bab08] László Babai, Canonical generators for permutation groups, May 2008, personal com-
munication.

[BCKT96] Nader H. Bshouty, Richard Cleve, Sampath Kannan, and Christino Tamon, Oracles
and queries that are sufficient for exact learning, J. Comput. System Sci. 52 (1996),
421–433.
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