
Network Motif Discovery Using Subgraph
Enumeration and Symmetry-Breaking

Joshua A. Grochow and Manolis Kellis

Computer Science and AI Laboratory, M.I.T.
Broad Institute of M.I.T. and Harvard

joshuag@cs.uchicago.edu, manoli@mit.edu

Abstract. The study of biological networks and network motifs can
yield significant new insights into systems biology. Previous methods of
discovering network motifs – network-centric subgraph enumeration and
sampling – have been limited to motifs of 6 to 8 nodes, revealing only
the smallest network components. New methods are necessary to identify
larger network sub-structures and functional motifs.

Here we present a novel algorithm for discovering large network motifs
that achieves these goals, based on a novel symmetry-breaking technique,
which eliminates repeated isomorphism testing, leading to an exponen-
tial speed-up over previous methods. This technique is made possible by
reversing the traditional network-based search at the heart of the algo-
rithm to a motif-based search, which also eliminates the need to store
all motifs of a given size and enables parallelization and scaling. Ad-
ditionally, our method enables us to study the clustering properties of
discovered motifs, revealing even larger network elements.

We apply this algorithm to the protein-protein interaction network
and transcription regulatory network of S. cerevisiae, and discover sev-
eral large network motifs, which were previously inaccessible to existing
methods, including a 29-node cluster of 15-node motifs corresponding to
the key transcription machinery of S. cerevisiae.

1 Introduction

1.1 Network Motifs

In the past decade, new technologies have enabled the observation and study of
networks of thousands and millions of nodes, such as social networks, computer
networks, and, notably, biological networks, including protein-protein interaction
networks [4,5,6], genetic regulatory networks [12,18], and metabolic networks [7].
In order to extract meaningful information from these vast and sometimes noisy
datasets, it is necessary to develop methods of computational analysis that are
both efficient and robust to errors in the underlying data.

Network motifs – patterns of connectivity that occur significantly more fre-
quently than expected – were introduced by Milo et al. [18] and provide one such
robust property of biological networks. Network motifs also provide an important
tool for understanding the modularity and the large-scale structure of networks

T. Speed and H. Huang (Eds.): RECOMB 2007, LNBI 4453, pp. 92–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Network Motif Discovery 93

[8,13,20,25]. The importance of network motifs as information-processing modules
has been modeled theoretically [12,21] and verified experimentally [8,13,20,25].
Network motifs also have numerous other applications: they have been used to
classify networks into “superfamilies” [17], they have been used in combination
with machine learning techniques to determine the most appropriate network
model for a given real-world network [16], and they have been used to determine
which properties to use in parsimony models of phylogeny [19].

Unfortunately, all of these applications are hampered by the limited size of
motifs discoverable by current methods. Exact counting methods have only been
reported to find motifs up to 4 nodes [18] and motif generalizations up to 6
nodes [10]. Subgraph sampling methods have found motifs up to 7 [9] and 8
nodes [1,16]. The statistical measures developed by Ziv et al. [26] are an impor-
tant step towards larger network structures, but unfortunately lack a one-to-one
correspondence with subgraphs, making them potentially difficult to interpret.
Motif generalizations [10] are another important step towards these goals, al-
though current methods are still limited to finding motif generalizations of only
6 nodes.

This current size limitation leaves many fundamental questions unanswered,
and significant additional insight could be gained by exploring larger subgraphs
and finding larger motifs. [1,10]. We should not expect a priori that the building
blocks of complex networks are as small as 4 nodes, or that the largest significant
structures and pathways contain only 8 nodes. What are the fundamental build-
ing blocks? How do they combine to form larger structures? [1,10] Do networks
which share the same building blocks also share the same combinations of these
blocks? [10] How can larger structures be used to distinguish between networks
of different types, or between proposed models for a given network? [1]

In this paper, we present a new approach for discovering network motifs. The
heart of our algorithm exhaustively assesses the significance of a single query
subgraph as a potential motif. This can then be applied to all subgraphs of a
given size to emulate the behavior of previous exhaustive algorithms, but with an
exponential speed-up due to a novel symmetry-breaking technique (which
is not feasible with previous methods). The symmetry-breaking technique also
allows us to write instances of a subgraph to disk as they are found, further
eliminating limitations due to memory usage. We are thus able to find
motifs of up to 15 nodes, to find all instances of subgraphs of 31 nodes, and
potentially even larger subgraphs. Although this work is motivated by biological
networks, and this paper focuses on the protein-protein interaction (PPI) net-
work and the transcription network of S. cerevisiae, our methods are applicable
to any network – directed or undirected – and thus to many different fields, even
outside the realm of biology.

In this section, we review previous work and give an overview of our algo-
rithm, outlining several novel techniques which apply both to our approach and
to previous approaches. In Sec. 2 we present our algorithm in detail. In Sec. 3
we present benchmarks comparing our approach to previous approaches. Addi-
tionally, we present data as to the effectiveness of the resulting improvements as

94 J.A. Grochow and M. Kellis

applied to both the transcription and PPI networks of S. cerevisiae. In Sec. 4,
we present some of the larger subgraphs we have discovered. Finally, in Sec. 5 we
discuss the significance of these contributions for the understanding of networks
in general.

1.2 Limitations of Network-Centric Approaches for Motif Discovery

Two basic techniques have been proposed for identifying network motifs: exact
counting [18] and subgraph sampling [1,9,16]. These methods attempt to de-
termine the significance of all or many subgraphs of a given size by comparing
their frequency in a given network to their frequency in a random ensemble of
networks with similar properties to the original. To determine which subgraphs
are motifs, subgraph sampling [1] is an effective and efficient approach, and has
been used to evaluate the significance of larger subgraphs than can be evaluated
by the exact counting method.

Most methods for finding DNA sequence motifs scan or sample a sequence pat-
tern from a genome. Similarly, previous techniques for finding network motifs
scan or sample subgraphs from a network, and count the number of occurrences
of each subgraph encountered. (This process is then repeated for each network
in a random ensemble resembling the initial network, and the counts are com-
pared.) For the discovery of DNA sequence motifs, this general methodology is
very efficient, because sequence motifs can be efficiently hashed based on their
content. Thus a single linear scan of the genome suffices to exhaustively count
all possible substrings of a given size, regardless of the size of the substrings.

In contrast, for the discovery of network motifs, enumerating all subgraphs of
a given size is in general exponential in the number of nodes of the subgraphs.
Additionally, there is no known efficient algorithm that correctly identifies two
graphs as isomorphic or not. (The graph isomorphism problem is not known to be
either in P or to be NP-complete.) This intrinsic difference in complexity between
discovering sequence motifs and discovering network motifs makes traditional
network-scanning methodologies inefficient for network motif discovery.

1.3 Distinguishing Features of the New Algorithm

To avoid these limitations of the traditional network-centric approaches, we have
taken a motif-centric approach which has several attractive features, outlined
here. Features 1-3 are specific to motif-centric methods, while features 4 and 5
can also benefit traditional network-centric methods.

(1) Searching for a single query graph. To avoid the increased complexity of
subgraph enumeration (in the absence of an appropriate hashing scheme) our al-
gorithm works by exhaustively searching for the instances of a single query graph
in a network. (To find all motifs of a given size we couple this search with sub-
graph enumeration, using McKay’s geng and directg tools [15]). Even though
the subgraph isomorphism problem – finding a given graph as a subgraph of a
larger network – is known to be NP-complete, several algorithmic improvements

Network Motif Discovery 95

enable this search to be carried out effectively in practice, even for subgraphs
up to 31 nodes (and potentially even more).

(2) Mapping instead of enumerating. Rather than enumerating all connected
subgraphs of a given size and testing to see whether each is isomorphic to the
query graph, our algorithm attempts to map the query graph onto the network
in all possible ways. We developed this technique for subgraph isomorphism
independently, but subsequently identified a prior use [23].

(3) Taking advantage of subgraph symmetries. We introduce a technique that
avoids spending time finding a subgraph more than once due to its symmetries.
This technique improves the speed of our method by a factor exponential in the
size of the query subgraph (Table 1). Moreover, since each instance is discovered
exactly once, our algorithm can write instances to disk as they are found, greatly
improving memory usage.

(4) Improved isomorphism testing. Our isomorphism test takes into account
the degree of each node, and the degrees of each node’s neighbors, leading to
marked improvements over current motif-finding algorithms, which use exhaus-
tive graph isomorphism tests.

(5) Subgraph hashing. When examining all subgraphs of a given size we hash
the graphs based on their degree sequences, which leads to a significant im-
provement in the number of isomorphism tests needed. In a directed network,
we group the query graphs based on their undirected isomorphism types, find all
instances, and then go back to the directed network and divide these instances
into their directed isomorphism types.

2 Description of the Algorithm

For clarity, we first present the basic mapping algorithm for subgraph isomor-
phism, without taking into account the symmetries of the query graph. In Sec. 2.2
we incorporate our symmetry-breaking technique into the algorithm. In the
pseudo-code, we identify statements used solely for symmetry-breaking by en-
closing them in square brackets. Finally, In Sec. 2.3 we incorporate our technique
into two new methods of finding motifs.

Throughout this section, G will denote the network being searched and H will
denote the query subgraph. We say that a node g of G can support a node h of
H if we cannot rule out a subgraph isomorphism from H into G which maps h
to g based on the degrees of h and g and the degrees of their neighbors. (Other
constraints could also be used here, but these two proved effective and simple
to implement.) This notion of support is used to exclude inconsistent candidate
maps during the backtracking search.

2.1 Finding a Given Subgraph (Subgraph Isomorphism)

We start by presenting the algorithm without symmetry-breaking. Note that
symmetry-breaking is not required for correctness of the algorithm.

96 J.A. Grochow and M. Kellis

FindSubgraphInstances(H,G):
Finds all instances of query graph H in network G

Start with an empty set of instances.
[Find Aut(H). Let HE be the equivalence representatives of H .]
[Find symmetry-breaking conditions C for H given HE and Aut(H).]
Order the nodes of G by increasing degree and
then by increasing neighbor degree sequence.
For each node g of G
For each node h of H [HE] such that g can support h
Let f be the partial map associating f(h) = g.
Find all isomorphic extensions of f [up to symmetry]
i.e. call IsomorphicExtensions(f ,H ,G[,C(h)]).
Add the images of these maps to the set of all instances.
Remove g from G.
Return the set of all instances.

FindSubgraphInstances includes the images of the maps in the list of
instances, thus merging all maps which differ only by a symmetry of H . (Without
symmetry-breaking, the algorithm spends additional time finding several distinct
maps to a single subgraph.)

IsomorphicExtensions is a backtracking search to find all isomorphisms
from H into G. As is standard in backtracking searches, the algorithm uses
the most constrained neighbor to eliminate maps that cannot be isomorphisms:
that is, the neighbor of the already-mapped nodes which is likely to have the
fewest possible nodes it can be mapped to. First we select the nodes with the
most already-mapped neighbors, and amongst those we select the nodes with
the highest degree and largest neighbor degree sequence.

For each call to IsomorphicExtensions, f is extended by a single node.
Each time an extension is made, the algorithm ensures that the newly mapped
node is appropriately connected to the already-mapped nodes. Thus when Iso-

morphicExtensions returns a map, it is guaranteed to be an isomorphism.
We have effectively pushed the isomorphism testing of previous exhaustive

methods into IsomorphicExtensions, which allows the isomorphism test to
abort early. The ability to abort early when finding instances of a particular
query graph presents significant savings over previous methods.

2.2 Exploiting Subgraph Symmetries to Speed Up the Search

Due to symmetries, a given subgraph of G may be mapped to a given query
graph H multiple times. For example, the subgraph in Fig. 1 can be mapped to
the same 6 nodes in 8 different ways. Thus a simple mapping-based search for
a query graph will find each instance of the query graph as many times as the
graph has symmetries. To avoid this, we compute and enforce several symmetry-
breaking conditions, which ensure that there is a unique map from the query
graph H to each instance of H in G, so that our search only spends time finding
each instance once.

Network Motif Discovery 97

IsomorphicExtensions(f,H,G[,C(h)]:
Finds all isomorphic extensions of partial map f : H → G [satisfying C(h)]
Start with an empty list of isomorphisms.
Let D be the domain of f .
If D = H , return a list consisting solely of f . (Or write to disk.)
Let m be the most constrained neighbor of any d ∈ D
(constrained by degree, neighbors mapped, etc.)
For each neighbor n of f(D)
If there is a neighbor d ∈ D of m such that n is not neighbors with f(d),
or if there is a non-neighbor d ∈ D of m such that n is neighbors with f(d)
[or if assigning f(m) = n would violate a symmetry-breaking condition in C(h)],
then continue with the next n.
Otherwise, let f ′ = f on D, and f ′(m) = n.
Find all isomorphic extensions of f ′.
Append these maps to the list of isomorphisms.
Return the list of isomorphisms.

The symmetries of a graphH are known as automorphisms (self-isomorphisms),
and the group of automorphisms of H is denoted Aut(H). For a set A of automor-
phisms, two nodes are said to be “A-equivalent” if there is some automorphism
in A which maps one to the other, or simply “equivalent” if A = Aut(H). We de-
note the A-equivalence of two nodes n1, n2 by n1 ∼A n2. This equivalence relation
partitions the nodes of H into equivalence classes. Since starting a map from two
equivalent nodes is unnecessary and wasteful, FindSubgraphInstances uses a
set consisting of one representative from each equivalence class of H .

The symmetry-breaking conditions are based on labellings of the nodes of H
by integers, represented as maps from H → Z. Let � : G → Z be a labelling
of the nodes of G by distinct integers. Then each map f : H → G generates a
labelling L : H → Z, given by L(n) = �(f(n)) for nodes n ∈ H . Thus, conditions
on labellings of H translate into restraints on maps from H into G.

Given a set of conditions C, we say an automorphism α preserves the condi-
tions C if, given a labelling L1 of H which satisfies C, the corresponding labelling
L2 : H → Z given by L2(n) = L1(α(n)) also satisfies C. We are thus search-
ing for conditions C such that the only automorphism which preserves C is the
identity. This ensures there will be exactly one map from H onto each of its
instances in G which satisfies the conditions.

To find these conditions, we pick an Aut(H)-equivalence class {n0, . . . , nk} of
nodes of H , and we impose the condition L(n0) < min(L(n1), . . . , L(nk)). Any
automorphism must send n0 to one of the ni, since these are all of the nodes
equivalent to n0. But to preserve this condition, an automorphism must send
n0 to itself. Then we continue recursively, replacing Aut(H) with the set A of
automorphisms which send n0 to itself. For example, see Fig. 1.

Because FindSubgraphInstances starts with a particular node, we can
consider that node already fixed. (Note that the version of FindSubgraphIn-

stances which uses symmetry-breaking only iterates over a set of equivalence
class representatives, and not over all nodes of H .) Thus for each representative

98 J.A. Grochow and M. Kellis

A

B
CD

E

F

none

A

B
CD

E

F

C < D

A

B
CD

E

F

C < D; E < F

A

B
CD

E

F

C < D; E < F ; A < B

Fig. 1. Finding conditions that will break all the symmetries of a 6-node graph. White
nodes are fixed by any automorphism preserving the indicated conditions, and other
nodes are shaded according to their equivalence class under the automorphisms which
preserve the indicated conditions.

used by FindSubgraphInstances, SymmetryConditions must generate a
series of symmetry-breaking conditions which start by fixing that node.

To find the automorphisms of H , we use IsomorphicExtensions without
symmetry-breaking, which returns an exhaustive list of all isomorphisms from
H to itself. To find the automorphisms which fix a node or a set of nodes, the
algorithm filters this list in a single pass.

Finding the automorphisms of a graph is thought to be computationally ex-
pensive1, but in practice we have found this is far from the bottleneck in motif-
finding algorithms. We were able to exhaustively find the automorphisms of all
11,117 8-node undirected graphs in under 30 seconds on a standard laptop, and
McKay’s tools [14] can find all the automorphisms of very large graphs very
rapidly (e.g. some graphs with thousands of nodes and millions of automor-
phisms, in less than one second on a standard laptop).

SymmetryConditions:
Finds symmetry-breaking conditions for H given HE ,Aut(H)
Let M be an empty map from equivalence representatives to sets of conditions.
For each n ∈ HE

Let C be an empty set of conditions.
n′ ← n, and A ← Aut(H).
Do until |A| = 1:
Add “label(n′) < min{label(m)|m ∼A n′ and m �= n′}” to C.
A ← {f ∈ A|f(n′) = n′}.
Find the largest A-equivalence class E.
Pick n′ ∈ E arbitrarily.
Let M(n) = C.
Return M .

2.3 Subgraph Evaluation and Network Motif Discovery

To find network motifs we enumerate candidate subgraphs H (exhaustively or
by sampling), and evaluate each candidate based on its instances.

1 Finding graph automorphisms is at least as hard as determining if two graphs are
isomorphic. Like the graph isomorphism problem, the graph automorphism problem
is not known to be either in P or to be NP-complete.

Network Motif Discovery 99

Evaluating candidate subgraphs. We find all instances of a query graph H in
the network G, as well as in a random ensemble of networks with the same degree
distribution and same distribution of 3-node subgraphs as G.2 We evaluate the
overrepresentation of the query graph H based on the z-score of its abundance
in G against the distribution of its abundance in the random ensemble, as in
[18,21].

Exhaustive subgraph enumeration. Our method can be used to find all
instances of subgraphs of a given size, similar to previous exhaustive methods.
To do this, we generate all non-isomorphic graphs of a particular size using
McKay’s geng and directg tools [15]. Then for each graph, we evaluate its
significance as above.

Subgraph sampling. Our method can also be used in combination with sub-
graph sampling. We sample connected subgraphs (usually relatively large, com-
pared to previous network motifs: 10, 15, or 20 nodes) by picking a node at
random, and taking a random walk until we have as many nodes as desired [16].
Then we assess the significance of this subgraph as above.

Sampling subgraphs to find anti-motifs. Some studies have also consid-
ered anti-motifs: subgraphs which are significantly underrepresented compared
to randomized versions of the network. To use a sampling method to find anti-
motifs, it might be more fruitful to sample initial subgraphs from the random
ensemble rather than the network being studied. Anti-motifs will be more preva-
lent in the ensemble than in the target network, and thus are more likely to be
discovered by sampling from the ensemble.

3 Results and Evaluation

We applied our algorithm to the PPI network (1379 nodes, 2493 edges) [4] and
transcription network (685 nodes, 1052 edges) [2] of S. cerevisiae and compared
its performance to previous methods of motif disccovery.

Comparison with previous methods: time. We compare the time require-
ments of our method to those of Milo et al. [18] (Fig. 2). We make this compari-
son on the undirected PPI network of S. cerevisiae [4], by exhaustively counting
subgraphs up to 7 nodes.

We implemented both our algorithm and two versions of the Milo et al. al-
gorithm [18]: both as originally presented [18], and also by additionally hashing
subgraphs by their degree sequence (Sec. 1.3). Fig. 2 shows that our algorithm
provides an exponential improvement in time, even compared to the modified
version of the previous algorithm [18].
2 Although Shen-Orr et al.[21] use a model in which the distribution of (n − 1)-node

subgraphs is preserved when looking for n-node motifs, they only applied this to the
case n = 4, and we have found it computationally infeasible to preserve this distri-
bution for n > 4. Nonetheless, we have found it fruitful to preserve the distribution
of 3-node subgraphs, regardless of n.

100 J.A. Grochow and M. Kellis

 1

 10

 100

 1000

 10000

 100000

 3 4 5 6 7

T
im

e
(s

)

Nodes

x1.3
x3.0

x7.4

x18

x>15

Milo et al.
Milo (w/ hash)

Grochow-Kellis

Fig. 2. The runtimes of the original algorithm of Milo et al. [18], an improved version
of their algorithm, and our new algorithm, as applied to the undirected PPI network
of S. cerevisiae [4]. The speed-up from the original algorithm of Milo et al. [18] to our
algorithm is indicated. (Note: the values for 7 nodes for the two variants of Milo et al.’s
algorithm are underestimates: the program ran out of memory before finishing.)

Comparison with previous methods: space. Our method gains an expo-
nential memory advantage over previous exhaustive methods by not keeping a
list of previously visited subgraphs. In the previous exact counting method [18],
a list of the subgraphs encountered at each node is necessary in order to avoid
duplication, even when the instances of the subgraphs are not desired as output.
Thus the space required by the previous method is proportional to the number of
subgraphs of a given size going through a given node, which can be exponential
in the size of the subgraphs. Because our method does not need to keep such a
list, its asymptotic memory requirements are determined by the maximum depth
of recurion of IsomorphicExtensions, which is linear in the size of the query
graph. Our method thus uses exponentially less space than previous exhaustive
methods.

Disk usage. Furthermore, our algorithm uses no more memory to find a list of all
instances than to simply count the instances. Since each instance is encountered
exactly once, it can be written to disk and removed from active memory as soon
as it is encountered, using effectively no additional memory.

Improvement due to symmetry-breaking. The main reason for these im-
provements is our novel symmetry-breaking technique. Symmetry-breaking en-
sures that each instance is discovered exactly once, so our method does not have
to check a list of the subgraphs previously encountered at a node in order to
avoid duplicate counting, while the previous method of exact counting does.
Table 1 quantifies this contribution explicitly, showing that the average number
of automorphisms of graphs weighted by their occurences in the PPI network
and regulatory network of yeast – i.e. the savings gained by symmetry-breaking –
appears to grow exponentially.

Network Motif Discovery 101

Table 1. The number of subgraphs encountered by our algorithm with and without
symmetry-breaking (including multiple encounters for the version without symmetry-
breaking). The improvement factor is exactly the average number of automorphisms
of subgraphs of the associated size.

Undirected PPI Network Directed Regulatory Network

N
od

es

Total
Subgraphs
Searched

With
Symmetry-
Breaking

Improvement
Total

Subgraphs
Searched

With
Symmetry-
Breaking

Improvement

3 3.7×104 1.1×104 ×3.13 2.6×104 1.3×104 ×2.02
4 4.0×105 7.0×104 ×5.77 9.7×105 1.8×105 ×5.41
5 4.4×106 4.1×105 ×10.9 4.4×107 2.5×106 ×18.0
6 5.1×107 2.3×106 ×22.2 2.3×109 3.2×107 ×73.3
7 5.7×108 1.2×107 ×46.3 1.3×1011 4.0×108 ×334
8 6.4×109 6.6×107 ×96.2 — — —

4 Discovered Motifs and Their Biological Significance

Discovered motifs. We exhaustively evaluated all candidate motifs and anti-
motifs up to 7 nodes in the PPI network of S. cerevisiae[4] (1379 nodes, 2493
edges). We used a random ensemble of networks with the same degree distribu-
tion and the same distribution of 3-node subgraphs as the PPI network.3 The
most significant subgraphs tend to be motifs rather than anti-motifs: using a
z-score cutoff of 4.0, only 3 of the 54 significant subgraphs of size at most 7 were
anti-motifs. Two of the motifs were trees, and the most dense motif had 18 edges.
Most of the significant graphs were of moderate density: the mean number of
edges for 7-node motifs and anti-motifs is 11.49 ± 2.89.

Large discovered motifs. We also discovered larger motifs by first sampling
connected subgraphs from the PPI network of S. cerevisiae, and then assessing
their significance using our method. We sampled approximately 100 connected
subgraphs of 15 and 20 nodes, and found several motifs. One such 15-node motif
(Fig. 3) represents a common connectivity pattern found within the transcrip-
tional machinery of S. cerevisiae (see discussion below).

Clustering of discovered motifs and larger network structures. We
noted that almost all of the larger subgraphs we evaluated have large numbers
of overlapping instances, which become apparent since our method reports all
network instances of a discovered motif. To quantify this property, we developed
a subgraph clustering score, based on the number of subgraph instances overlap-
ping a given node, averaged over all nodes in any subgraph instance. We applied
this score to evaluate the clustering properties of all discovered motifs, and we
found that indeed some of the most abundant motifs show striking clustering
properties.

3 See footnote 2.

102 J.A. Grochow and M. Kellis

�
�

�

�
�

�

�
�

�

�
�

�

CLP1, YPR115W, PRP2
RLM1, RIM15, ECM22
RAP1, YAP6, TAO3

PRP40, UME6, ASK10

TAF10 TAF6

TAF11

TAF2,
TAF13

TAF1

TAF14 TAF7

ADA1, ADA2
ADA3, ADA4
ADA5, TRA1
SPT3, SPT7

SPT8

Fig. 3. A motif of 15 nodes and 34 edges (left). An edge from a group of nodes to a
node n indicates that each node in the group is connected to n. This motif appears
27,720 times in the PPI network of S. cerevisiae[4], and does not appear at all in
random ensembles which preserve the degree distribution and the distribution of 3-
node subgraphs. All 27,720 instances are clustered into a total of 29 nodes (right),
corresponding to the cellular transcription machinery.

The clustered instances frequently reveal important larger network structures.
For example, the 15-node motif of Fig. 3 occurs 27,720 times in a single sub-
network of 29 nodes, part of the core transcription machinery of S. cerevisiae.
This includes a complete 11-node graph (including the two central hubs) cor-
responding to the SAGA complex, and consisting almost entirely of chromatin
modification and histone acetylation factors an 8-node core (shared by all in-
stances of the 15-node motif) corresponding to the TFIID complex, and 12 at-
tachments, which are known activators and suppressors of these two complexes
[11]. Similarly, the subgraph of 20 nodes shown in Fig. 4 occurs 5,020 times in a
total of 31 nodes, enriched in cell-cycle regulation.

The role of combinatorial effects. The extreme clustering properties of the
most abundant motifs appear to result from combinatorial connectivity patterns
prevalent in larger network structures. For example, all 27,720 instances of the
15-node motif in Fig. 3 result by choosing 3 attachments from the left and 4
attachments from the the bottom of Fig. 3 (

(12
3

)(9
4

)
= 27, 720), and similarly for

the 5,020 instances of the 20-node subgraph in Fig. 4. Additionally, in the random
ensemble, these combinatorially appearing structures occur either thousands of
times, or not at all – they almost never occur just a few or a few hundred times.

Although motif clustering has previously been observed [3] and demonstrated
analytically [24], previous motifs studied do not have enough nodes to exhibit
the extreme combinatorial clustering we observed for large subgraphs (at least 15
nodes). The magnitude of this combinatorial clustering effect brings into question
the current definition of network motif, when applied to larger structures. We
propose that additional statistics, either alone or in combination, might be well-
suited to identify larger meaningful network structures: our subgraph clustering
score, the total number of nodes covered by all instances of the query graph, the

Network Motif Discovery 103

�� �� �� ��

SGT1, SKP2
CTF13, UFO1

YLR352W,HRT3

SKP1 CDC53

BIR1

CBF2
CLN2
CLN1
CLN3

CDC28

CLB5
SIC1

CKS1
CLB3

CLB2

CLB1
CLB4
CLB6
CAK1
MPT5

CDC34
CDC4

MET30

GRR1

MET4, MET28

CBF1

Fig. 4. A subgraph of 20 nodes and 27 edges (left). An edge from a group of nodes to a
node n indicates that each node in the group is connected to n. This subgraph appears
5,020 times in the PPI network of S. cerevisiae [4]. All 5,020 instances are clustered
into a total of 31 nodes (right), enriched in cell-cycle regulation.

total number of edges, and the weighting of the number of nodes/edges based
on the number of overlapping instances. All of these statistics can be easily
calculated using our algorithm, since it finds and stores all motif instances, and
these will be the subject of future studies.

5 Discussion

We presented a novel approach to the discovery of network motifs, based on
a solution to the subgraph isomorphism problem that uses a new symmetry-
breaking technique, an improved isomorphism test, and hashing based on degree
sequences. Several of the techniques presented in our algorithm can also be used
in previous algorithms, and lead to significant improvements.

We implemented our algorithm and used it to find significant structures of 15
and 20 nodes in the PPI network and the regulatory network of S. cerevisiae,
where previous methods had been limited to motifs of 6 and 8 nodes. Using our
approach to motif-finding, we re-discovered the cellular transcription machinery
– as a 29-node cluster of 15-node motifs – based solely on the structure of the
protein interaction network.

Previous methods of motif discovery were network-centric, and could therefore
not take advantage of subgraph symmetries. By using a motif-centric algorithm
instead, we are able to use symmetry-breaking to get an exponential improvement.

5.1 Applications and Advantages of the New Method

(1) Finding larger motifs. Our improvements have enabled the exhaustive dis-
covery of motifs up to 7 nodes. To find even larger motifs, we sample a connected
subgraph as in [16], and then find all its instances and assess its significance us-
ing our method. This technique has enabled us to find motifs up to 15 nodes
and examine subgraphs up to 31 nodes.

(2) Querying a particular subgraph. Our method can be used to query whether
a particular subgraph is significant, whereas previous methods can only do this

104 J.A. Grochow and M. Kellis

by examining all subgraphs of the same size, which quickly becomes prohibitive
for even moderate sizes. This technique could be used to explore in silico the
prevalence of a subgraph of interest, identified experimentally (e.g. known path-
ways), computationally (e.g. motif generalizations [10]), or genetically.

(3) Exploring motif clustering. Because our algorithm finds all instances of a
given subgraph, it can be used to explore how these instances cluster together
to form larger structures. For example, after finding a 15-node motif, we were
able to determine that all of its 27,720 instances clustered in 29 nodes (Fig. 3).

(4) Time and space. Our method, applied to all subgraphs of a given size,
takes exponentially less time than previous methods, even when we implement
the previous method with our hashing scheme (Sec. 3). Additionally, there are
essentially no space limitations on our method: since each instance is found
exactly once due to our symmetry-breaking technique, it can be written to disk
and removed from active memory as soon as it is found.

(5) Parallelization. Our method is more easily parallelizable than previous
motif-finding methods, since each subgraph can be counted on a separate pro-
cessor. We have found this attribute to be very useful, and we believe other
researchers will as well, as cluster computing becomes commonplace in the com-
putational biology community.

5.2 Clustering Properties of Large Subgraphs and Motifs

We revealed that larger subgraphs tend to cluster together combinatorially – that
is, all instances share a significant core of nodes, and each instance represents a
choice of attachments to these core nodes. This combinatorial clustering brings
into question the relevance of the standard definition of network motif for large
subgraphs of 15 nodes or more. We proposed several statistics which may be
more appropriate in this domain.

Finally, we mention that the statistics of Ziv et al. [26] may not suffer from
these combinatorial effects. The main drawback of these statistics is their lack of
one-to-one correspondence with subgraphs. In combination with our algorithm,
however, the large subgraphs encompassed by these statistics could be further
explored, allowing for a clearer interpretation of the most significant statistics.

Moving forward, we expect the network motifs and methodology presented
here will open a window into the large structures and global organization of
biological and other networks.

Acknowledgements. The authors would like to thank Pouya Kheradpour, Mike
Lin, Matt Rasmussen, Alex Stark, and Radek Szklarczyk (all at the M.I.T. Com-
puter Science and AI Laboratory) for many useful and interesting discussions.

All algorithms were implemented in Java using the Java Universal Networks
and Graphs (JUNG) framework [22]. Our software is available on request.
McKay’s geng and directg tools [15] were used to enumerate all graphs of
a given size. Much of the computational work was carried out on the compute
cluster at the Broad Institute of M.I.T. and Harvard.

This work was supported in part by startup funds from Professor Kellis.

Network Motif Discovery 105

References

1. K. Baskerville and M. Paczuski. Subgraph ensembles and motif discovery using a
new heuristic for graph isomorphism, 2006. arxiv.org:q-bio/0606023.

2. M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S.
Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza,
J. E. Lew-Smith, M. Tillberg, and J. I. Garrels. Ypd(tm), pombepd(tm), and
wormpd(tm): model organism volumes of the bioknowledge(tm) library, an inte-
grated resource for protein information. Nucleic Acids Res., 29:75–79, 2001.

3. R. Dobrin, Q. K. Beg, A.-L. Barabási, and Z. N. Oltvai. Aggregation of topo-
logical motifs in the Escherichia coli transcriptional regulatory network. BMC
Bioinformatics, 5:10, Jan 2004.

4. J.-D. J. Han, N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz, L. V. Zhang,
D. Dupuy, A. J. M. Walhout, M. E. Cusick, F. P. Roth, and M. Vidal. Evidence for
dynamically organized modularity in the yeast protein-protein interaction network.
Nature, 430(6995):88–93, Jul 2004.

5. A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman. Towards an integrated
protein-protein interaction network: a relational markov network approach. J.
Comp. Bio., 13:145–164, 2006.

6. H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai. Centrality and lethality of
protein networks. Nature, 411, 2001.

7. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The large-scale
organization of metabolic networks. Nature, 407, 2000.

8. S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M. G.
Surette, and U. Alon. Ordering genes in a flagella pathway by analysis of expression
kinetics from living bacteria. Science, 292(5524):2080–2083, Jun 2001.

9. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics,
20(11):1746–1758, Jul 2004. Evaluation Studies.

10. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Topological generalizations of
network motifs. Phys. Rev. E, 70:031909, 2004.

11. T. I. Lee and R. A. Young. Transcription of eukaryotic protein-coding genes. Annu.
Rev. Genet., 34:77–137, 2000.

12. S. Mangan and U. Alon. Structure and function of the feed-forward loop network
motif. PNAS, 100(21):11980–11985, Oct 2003.

13. S. Mangan, A. Zaslaver, and U. Alon. The coherent feedforward loop serves as a
sign-sensitive delay element in transcription networks. J. Mol. Biol., 334(2):197–
204, Nov 2003.

14. B. D. McKay. Practical graph isomorphism. In Proceedings of the Tenth Manitoba
Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man.,
1980), volume 30, pages 45–87, 1981. http://cs.anu.edu.au/∼bdm/nauty/.

15. B. D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26:306–324,
1998.

16. M. Middendorf, E. Ziv, and Chris H. Wiggins. Inferring network mechanisms: the
Drosophila melanogaster protein interaction network. PNAS, 102(9):3192–3197,
Mar 2005.

17. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Shef-
fer, and U. Alon. Superfamilies of evolved and designed networks. Science,
303(5663):1538–1542, Mar 2004.

106 J.A. Grochow and M. Kellis

18. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
Oct 2002.

19. T. M. Przytycka. An important connection between network motifs and parsimony
models. In RECOMB 2006, pages 321–335, 2006.

20. M. Ronen, R. Rosenberg, B. I. Shraiman, and U. Alon. Assigning numbers to
the arrows: parameterizing a gene regulation network by using accurate expression
kinetics. Proc Natl Acad Sci U S A, 99(16):10555–10560, Aug 2002.

21. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcrip-
tional regulation network of Escherichia coli. Nature Genetics, 31(1):64–68, May
2002.

22. JUNG Framework Development Team. Jung: The java universal network/graph
framework, 2005.

23. J. R. Ullman. An algorithm for subgraph isomorphism. J. Assoc. Comp. Mach.,
23(1):31–42, Jan 1976.

24. A. Vazquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. N. Oltvai, and A.-L. Barabasi.
The topological relationship between the large-scale attributes and local interaction
patterns of complex networks. PNAS, 101(52):17940–17945, Dec 2004.

25. A. Zaslaver, A. E. Mayo, R. Rosenberg, P. Bashkin, H. Sberro, M. Tsalyuk, M. G.
Surette, and U. Alon. Just-in-time transcription program in metabolic pathways.
Nature Genetics, 36(5):486–491, May 2004.

26. E. Ziv, R. Koytcheff, M. Middendorf, and C. Wiggins. Systematic identification of
statistically significant network measures. Phys. Rev. E, 71:016110, 2005.

	Introduction
	Network Motifs
	Limitations of Network-Centric Approaches for Motif Discovery
	Distinguishing Features of the New Algorithm

	Description of the Algorithm
	Finding a Given Subgraph (Subgraph Isomorphism)
	Exploiting Subgraph Symmetries to Speed Up the Search
	Subgraph Evaluation and Network Motif Discovery

	Results and Evaluation
	Discovered Motifs and Their Biological Significance
	Discussion
	Applications and Advantages of the New Method
	Clustering Properties of Large Subgraphs and Motifs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

