

Topic Models

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

Why topic models?

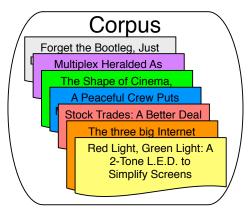
- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes
- Unsupervised

Roadmap

- What are topic models
- How to know if you have good topic model
- How to go from raw data to topics

Conceptual Approach

From an **input corpus** and number of topics $K \rightarrow$ words to topics



Conceptual Approach

From an input corpus and number of topics $K \to \mathbf{words}$ to topics

TOPIC 1

computer, technology, system, service, site, phone, internet. machine

TOPIC 2

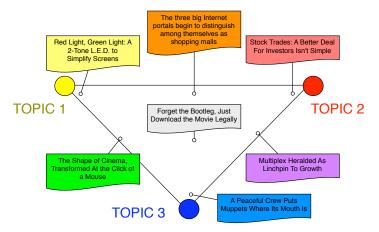
sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

Conceptual Approach

For each document, what topics are expressed by that document?



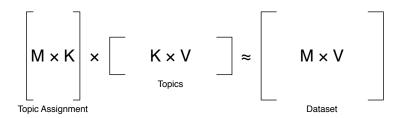
Topics from Science

$_{ m human}$	evolution	disease	computer
genome	evolutionary	host	models
dna	species	bacteria	information
genetic	organisms	diseases	$_{ m data}$
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	$\operatorname{control}$	model
$_{ m map}$	living	infectious	parallel
information	diversity	$_{ m malaria}$	$\overline{\mathrm{methods}}$
genetics	group	parasite	$_{ m networks}$
mapping	new	parasites	software
$\operatorname{project}$	two	united	new
sequences	common	tuberculosis	simulations

Why should you care?

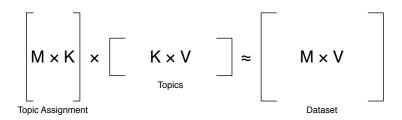
- Neat way to explore / understand corpus collections
 - E-discovery
 - Social media
 - Scientific data
- NLP Applications
 - Word Sense Disambiguation
 - Discourse Segmentation
 - Machine Translation
- Psychology: word meaning, polysemy
- Inference is (relatively) simple

Matrix Factorization Approach



- K Number of topics
- M Number of documents
- V Size of vocabulary

Matrix Factorization Approach



- K Number of topics
- M Number of documents
- V Size of vocabulary

- If you use singular value decomposition (SVD), this technique is called latent semantic analysis.
- Popular in information retrieval.

Alternative: Generative Model

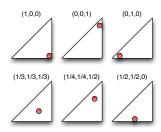
- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference
- Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

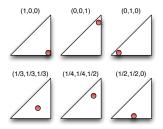
Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation



Multinomial Distribution

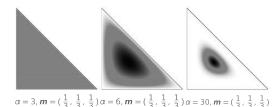
- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation



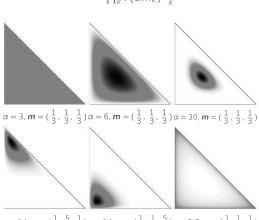
Come from a Dirichlet distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

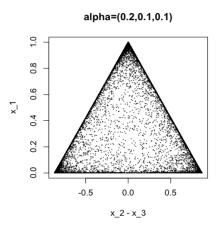
$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$



$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$



$$\alpha = 14$$
, $\mathbf{m} = (\frac{1}{7}, \frac{5}{7}, \frac{1}{7}) \alpha = 14$, $\mathbf{m} = (\frac{1}{7}, \frac{1}{7}, \frac{5}{7}) \alpha = 2.7$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$



• If $\vec{\phi} \sim \text{Dir}((\alpha), \vec{w} \sim \text{Mult}((\phi), \text{ and } n_k = |\{w_i : w_i = k\}| \text{ then } n_k = |\{w_i : w_i = k\}|$

$$p(\phi|\alpha, \vec{w}) \propto p(\vec{w}|\phi)p(\phi|\alpha) \tag{1}$$

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

• If $\vec{\phi} \sim \text{Dir}((\alpha), \vec{w} \sim \text{Mult}((\phi), \text{ and } n_k = |\{w_i : w_i = k\}| \text{ then } \vec{\phi} = |\{w_i : w_i = k\}| \text{ then$

$$p(\phi|\alpha, \vec{w}) \propto p(\vec{w}|\phi)p(\phi|\alpha) \tag{1}$$

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this **posterior** has the same form as the **prior**

TOPIC 1

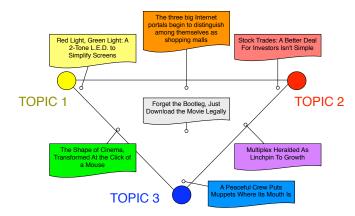
computer, technology, system, service, site, phone, internet. machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater. production, star, director, stage



computer. technology, system. service, site. phone. internet. machine

sell, sale. store, product. husiness advertising. market. consumer

play, film, movie, theater, production. star, director. stage

Hollywood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer. technology, system. service, site. phone. internet. machine

sell, sale. store, product. business. advertising. market. consumer

play, film, movie, theater, production. star, director. stage

Hollwood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer. technology, system. service, site. phone. internet. machine

sell, sale. store, product. husiness advertising. market. consumer

play, film, movie, theater, production. star, director. stage

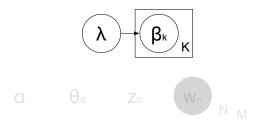
Holywood studies are preparing to let people download and we electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer. technology, system. service, site. phone. internet. machine

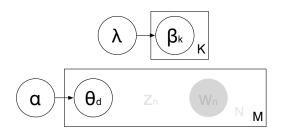
sell, sale. store, product. business. advertising. market. consumer

play, film, movie, theater, production. star, director. stage

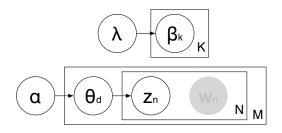
Holwood studies are preparing to let people download and two electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...



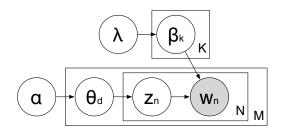
• For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ



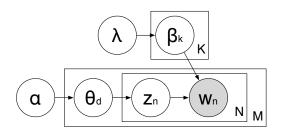
- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α



- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1,...,N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .



- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1,...,N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .



- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

Topic Models: What's Important

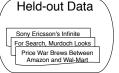
- Topic models
 - Topics to word types
 - Documents to topics
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of
- pLSI, probabilistic version of LSA

Topic Models: What's Important

- Topic models (latent variables)
 - Topics to word types
 - Documents to topics
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Evaluation

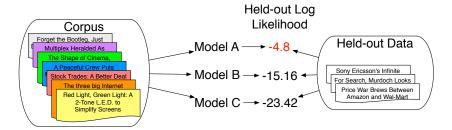




$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too (Wallach et al. 2009)

Evaluation



Measures predictive power, not what the topics are

$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too (Wallach et al. 2009)

TOPIC 1

computer, technology, system, service, site. phone, internet, machine

TOPIC 2

sell, sale, store, product, business. advertising, market. consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

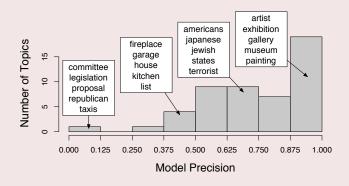
1 / 10 crash	accident	board	agency	tibetan	safety
2 / 10 commercial	network	television	advertising	viewer	layoff
3 / 10 arrest	crime	inmate	pitcher	prison	death
4 / 10 hospital	doctor	health	care	medical	tradition

1/10	Reveal additional response					
crash	accident	board	agency	tibetan	safety	
2 / 10						
commercial	network	television	advertising	viewer	layoff	
3 / 10						
arrest	crime	inmate	pitcher	prison	death	
4 / 10						
hospital	doctor	health	care	medical	tradition	

- Order of words was shuffled.
- Which intruder was selected varied
- Model precision: percentage of users who clicked on intruder

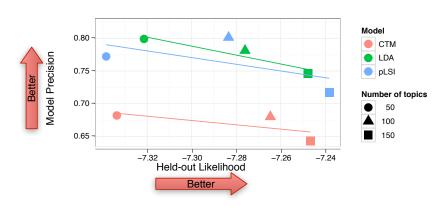
Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics



Interpretability and Likelihood

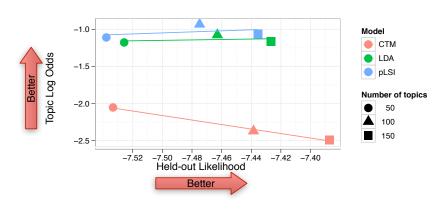
Model Precision on New York Times



within a model, higher likelihood \neq higher interpretability

Interpretability and Likelihood

Topic Log Odds on Wikipedia



across models, higher likelihood \neq higher interpretability

Evaluation Takeaway

- Measure what you care about
- If you care about prediction, likelihood is good
- If you care about a particular task, measure that

Evaluation