

Constituency Parsing

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
INTRO / CHART PARSING

A More Grounded Syntax Theory

- A central question in linguistics is how do we know when a sentence is grammatical?
- Chomsky's generative grammars attempted to mathematically formalize this question
- Linguistic phrases contained a universal, hierarchical structure formalized as parse trees

A More Grounded Syntax Theory

- A central question in linguistics is how do we know when a sentence is grammatical?
- Chomsky's generative grammars attempted to mathematically formalize this question
- Linguistic phrases contained a universal, hierarchical structure formalized as parse trees
- Today
- A formalization
- Foundation of all computational syntax
- Learnable from data

Context Free Grammars

Definition

- N : finite set of non-terminal symbols
- Σ : finite set of terminal symbols
- R: productions of the form $X \rightarrow Y_{1} \ldots Y_{n}$, where $X \in N$, $Y \in(N \cup \Sigma)$
- S: a start symbol within N

Context Free Grammars

Definition

- N : finite set of non-terminal symbols
- Σ : finite set of terminal symbols
- R: productions of the form $X \rightarrow Y_{1} \ldots Y_{n}$, where $X \in N$, $Y \in(N \cup \Sigma)$
- S: a start symbol within N

Context Free Grammars

Definition

- N : finite set of non-terminal symbols
- Σ : finite set of terminal symbols
- R: productions of the form $X \rightarrow Y_{1} \ldots Y_{n}$, where $X \in N$, $Y \in(N \cup \Sigma)$
- S: a start symbol within N

Context Free Grammars

Definition

- N : finite set of non-terminal symbols
- Σ : finite set of terminal symbols
- R: productions of the form $X \rightarrow Y_{1} \ldots Y_{n}$, where $X \in N$, $Y \in(N \cup \Sigma)$
- S: a start symbol within N

Flexibility of CFG Productions

- Unary rules: $\mathrm{nn} \rightarrow$ "man"
- Mixing terminals and nonterminals on RHS:
- np \rightarrow "Congress" Vt "the" "pooch"
- np \rightarrow "the"nn
- Empty terminals
$\square \mathrm{np} \rightarrow \epsilon$
\square adj $\rightarrow \epsilon$

Derivations

- A derivation is a sequence of strings $s_{1} \ldots s_{T}$ where
- $s_{1} \equiv S$, the start symbol
- $s_{T} \in \Sigma^{*}$: i.e., the final string is only terminals
- $s_{i}, \forall i>1$, is derived from s_{i-1} by replacing some non-terminal X in s_{i-1} and replacing it by some β, where $x \rightarrow \beta \in R$.

Derivations

- A derivation is a sequence of strings $s_{1} \ldots s_{T}$ where
- $s_{1} \equiv S$, the start symbol
- $s_{T} \in \Sigma^{*}$: i.e., the final string is only terminals
- $s_{i}, \forall i>1$, is derived from s_{i-1} by replacing some non-terminal X in s_{i-1} and replacing it by some β, where $x \rightarrow \beta \in R$.
- Example: parse tree

Example Derivation

Productions		
$s \rightarrow n p$ vp	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
$v p \rightarrow$ AdvP vz	$\mathrm{np} \rightarrow$ AdjP nn	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	$v z \rightarrow$ "sat"
!	:	:

$s_{1}=$
S

Example Derivation

Productions		
$s \rightarrow n p$ vp	$n \mathrm{n} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
$v p \rightarrow$ AdvP vz	$\mathrm{np} \rightarrow \mathrm{AdjP} \mathrm{nn}$	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	$v z \rightarrow$ "sat"
	:	
$s_{2}=$	S	

Productions

$s \rightarrow n p$ vp	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
$\mathrm{vp} \rightarrow$ AdvP vz	$\mathrm{np} \rightarrow$ AdjP nn	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	vz \rightarrow "sat"
:	!	:

$s_{3}=$

Productions

$\rightarrow \mathrm{np}$ vp	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
vp \rightarrow AdvP vz	$\mathrm{np} \rightarrow$ AdjP nn	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	vz \rightarrow "sat"
	!	

$s_{4}=$

Productions

$\rightarrow \mathrm{np} \mathrm{vp}$	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
vp \rightarrow AdvP vz	$\mathrm{np} \rightarrow$ AdjP nn	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	vz \rightarrow "sat"
	:	

$s_{5}=$

Productions

$\rightarrow \mathrm{np} \mathrm{vp}$	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
$\mathrm{vp} \rightarrow$ AdvP vz	$\mathrm{np} \rightarrow$ AdjP nn	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow " $\mathrm{an}^{\prime \prime}$
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
vz \rightarrow "barked"	$v z \rightarrow$ "ran"	vz \rightarrow "sat"
	:	

$s_{6}=$

Productions

$s \rightarrow n p$ vp	$\mathrm{np} \rightarrow$ Det nn	$\mathrm{vp} \rightarrow \mathrm{vz}$
$v p \rightarrow$ AdvP vz	$\mathrm{np} \rightarrow \mathrm{AdjP} \mathrm{nn}$	$\mathrm{np} \rightarrow$ pro
Det \rightarrow "the"	Det \rightarrow " ${ }^{\prime \prime}$	Det \rightarrow "an"
$\mathrm{nn} \rightarrow$ "dot"	$\mathrm{nn} \rightarrow$ "cat"	$\mathrm{nn} \rightarrow$ "mouse"
$v z \rightarrow$ "barked"	$v z \rightarrow$ "ran"	$v z \rightarrow$ "sat"
:	:	:

$s_{7}=$

Example Derivation

Ambiguous Yields
The yield of a parse tree is the collection of terminals produced by the parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that could have produced that sequence of terminals: $T_{G}(s)$.

Example Derivation

Ambiguous Yields
The yield of a parse tree is the collection of terminals produced by the parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that could have produced that sequence of terminals: $T_{G}(s)$.

Ambiguity

Example sentence: "The man saw the dog with the telescope"

- Grammatical: $T_{G}(s)>0$
- Ambiguous: $T_{G}(s)>1$

- Which should we prefer?

Ambiguity

Example sentence: "The man saw the dog with the telescope"

- Grammatical: $T_{G}(s)>0$
- Ambiguous: $T_{G}(s)>1$

- Which should we prefer?
- One is more probable than the other
- Add probabilities!

Goals

- What we want is a probability distribution over possible parse trees $t \in T_{G}(s)$

$$
\begin{equation*}
\forall t, p(t) \geq 0 \quad \sum_{t \in T_{G}(s)} p(t)=1 \tag{1}
\end{equation*}
$$

- Rest of this lecture:
- How do we define the function $p(t)$ (paramterization)
- How do we learn $p(t)$ from data (estimation)
- Given a sentence, how do we find the possible parse trees (parsing / decoding)

Parametrization

- For every production $\alpha \rightarrow \beta$, we assume we have a function $q(\alpha \rightarrow \beta)$
- We consider it a conditional probability of β (LHS) being derived from α (RHS)

$$
\begin{equation*}
\sum_{\alpha \rightarrow \beta \in R: \alpha=X} q(\alpha \rightarrow \beta)=1 \tag{2}
\end{equation*}
$$

- The total probability of a tree $t \equiv\left\{\alpha_{1} \rightarrow \beta_{1} \ldots \alpha_{n} \rightarrow \beta_{n}\right\}$ is

$$
\begin{equation*}
p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \boldsymbol{\beta}_{i}\right) \tag{3}
\end{equation*}
$$

Estimation

- Get a bunch of grad students to make parse trees for a million sentences
- Mitch Markus: Penn Treebank (Wall Street Journal)
- To compute the conditional probability of a rule,

$$
\begin{aligned}
q(\mathrm{np} \rightarrow & \rightarrow \text { Det adj } n n) \approx \\
& \frac{\text { Count }(\mathrm{np} \rightarrow \text { Det adj } \mathrm{nn})}{\operatorname{Count}(\mathrm{np})}
\end{aligned}
$$

- Where "Count" is the number of times that derivation appears in the sentences

Estimation

- Get a bunch of grad students to make parse trees for a million sentences
- Mitch Markus: Penn Treebank (Wall Street Journal)
- To compute the conditional probability of a rule,

$$
\begin{aligned}
q(\mathrm{np} \rightarrow & \rightarrow \text { Det adj } n \mathrm{n}) \approx \\
& \frac{\text { Count }(\mathrm{np} \rightarrow \text { Det adj nn) }}{\operatorname{Count}(\mathrm{np})}
\end{aligned}
$$

- Where "Count" is the number of times that derivation appears in the sentences
- Why no smoothing?

Dynamic Programming

- Like for dependency parsing, we build a chart to consider all possible subtrees
- First, however, we'll just consider whether a sentence is grammatical or not
- Build up a chart with all possible derivations of spans
- Then see entry with start symbol over the entire sentence: those are all grammatical parses

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules
Given sentence \vec{w} of length N, grammar (N, Σ, R, S) Initialize array $C[s, t, n]$ as array of booleans, all false (\perp)

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules
Given sentence \vec{w} of length N, grammar (N, Σ, R, S) Initialize array $C[s, t, n]$ as array of booleans, all false (\perp) for $i=0 \ldots N$ do
for For each production $r_{j} \equiv N_{a} \rightarrow w_{i}$ do set $C[i, i, a] \leftarrow \top$

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules
Given sentence \vec{w} of length N, grammar (N, Σ, R, S)
Initialize array $C[s, t, n]$ as array of booleans, all false (\perp)
for $i=0 \ldots N$ do
for For each production $r_{j} \equiv N_{a} \rightarrow w_{i}$ do set $C[i, i, a] \leftarrow T$
for $I=2 \ldots n$ (length of span) do
for $s=1 \ldots N-I+1$ (start of span) do for $k=1 \ldots I-1$ (pivot within span) do for each production $r \equiv \alpha \rightarrow \beta \gamma$ do

$$
\begin{aligned}
& \text { if } \neg C[s, s+I, \alpha] \text { then } \\
& \quad C[s, s+I, \alpha] \leftarrow C[s, s+k-1, \beta] \wedge C[s+k, s+I, \gamma]
\end{aligned}
$$

Chart Parsing

Complexity?

- Chart has n^{2} cells

Complexity?

- Chart has n^{2} cells
- Each cell has n options

Complexity?

- Chart has n^{2} cells
- Each cell has n options
- Times the number of productions $|G|$

Complexity?

- Chart has n^{2} cells
- Each cell has n options
- Times the number of productions $|G|$
- Thus, $O\left(n^{3}|G|\right)$

How to deal with PCFG ambiguity

- In addition to keeping track of non-terminals in cell, also include max probability of forming non-terminal from sub-trees

$$
C[s, s+k, \alpha] \leftarrow \max (C[s, s+k, \alpha], C[s, s+I-1, \beta] \cdot C[s+I, s+k, \gamma])
$$

- The score associated with S in the top of the chart is the best overall parse-tree (given the yield)

Recap

- Hierarchical syntax model: context free grammar
- Probabilistic interpretation: learn from data to solve ambiguity
- In class (next time):
- Work through example to resolve ambiguity
- Scoring a sentence

A pcfg

Assume the following grammar

s	\rightarrow	np	vp	1.0	v	\rightarrow	sleeps	0.4
vp	\rightarrow	v	np	0.7	v	\rightarrow	saw	0.6
vp	\rightarrow	vp	pp	0.2	nn	\rightarrow	man	0.1
vp	\rightarrow	v		0.1	nn	\rightarrow	woman	0.1
np	\rightarrow	dt	nn	0.2	nn	\rightarrow	telescope	0.3
np	\rightarrow	np	pp	0.8	nn	\rightarrow	dog	0.5
pp	\rightarrow	p	np	1.0	dt	\rightarrow	the	1.0
					p	\rightarrow	with	0.6
					p	\rightarrow	in	0.4

Evaluating the probability of a sentence

What is the probability of the parse

Evaluating the probability of a sentence

$\underbrace{1.0}_{\text {det } \rightarrow \text { the }} \cdot \underbrace{0.5}_{n \rightarrow \operatorname{dog}} \cdot \underbrace{1.0}_{v \rightarrow \text { sleeps }} \cdot \underbrace{0.1}_{v p \rightarrow v} \cdot \underbrace{0.2}_{n p \rightarrow d t n} \cdot \underbrace{1.0}_{s \rightarrow n p v p}=0.002$

Span 0

1. $C[8,8, \mathrm{nn}]=\ln (0.3)=-1.2$
2. $C[7,7, \mathrm{dt}]=\ln (1.0)=0.0$
3. $C[6,6, p]=\ln (0.6)=-0.51$
4. $C[5,5, \mathrm{nn}]=\ln (0.5)=-0.69$
5. $C[4,4, \mathrm{dt}]=\ln (1.0)=0.0$
6. $C[3,3, v]=\ln (0.6)=-.51$
7. $C[3,3, \mathrm{vp}]=\ln (0.6)+\ln (0.1)=-2.8$
8. $C[2,2, \mathrm{nn}]=\ln (0.1)=-2.3$
9. $C[1,1, \mathrm{dt}]=\ln (1.0)=0.0$

Span 1

1. $C[1,2, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[1,1, \mathrm{DT}]}+\ln (\underbrace{-2.3}_{\mathrm{C}[2,2, \mathrm{NN}]})+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dt} \mathrm{n}})=-2.3+-1.6=-3.9$

Span 1

1. $C[1,2, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[1,1, \mathrm{DT}]}+\ln (\underbrace{-2.3}_{\mathrm{C}[2,2, \mathrm{NN}]})+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dt} \mathrm{n}})=-2.3+-1.6=-3.9$
2. $C[4,5, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[4,4, \mathrm{DT}]}+\underbrace{-.69}_{\mathrm{C}[5,5, \mathrm{NN}]}+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dtn}})=-0.69+-1.6=-2.3$

Span 1

1. $C[1,2, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[1,1, \mathrm{DT}]}+\ln (\underbrace{-2.3}_{\mathrm{C}[2,2, \mathrm{NN}]})+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dt} \mathrm{n}})=-2.3+-1.6=-3.9$
2. $C[4,5, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[4,4, \mathrm{DT}]}+\underbrace{-.69}_{\mathrm{C}[5,5, \mathrm{NN}]}+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dt} \mathrm{n}})=-0.69+-1.6=-2.3$
3. $C[7,8, \mathrm{np}]=\underbrace{0.0}_{\mathrm{C}[7,7, \mathrm{DT}]}+\underbrace{-1.2}_{\mathrm{C}[8,8, \mathrm{NN}]}+\ln (\underbrace{0.2}_{\mathrm{np} \rightarrow \mathrm{dt} \mathrm{n}})=-1.2+-1.6=-2.8$

Span 2

1. $C[1,3, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-2.8}_{\mathrm{C}[3,3, \mathrm{VP}]}+\ln (\underbrace{1.0}_{\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp}})=-6.7$

Span 2

1. $C[1,3, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-2.8}_{\mathrm{C}[3,3, \mathrm{VP}]}+\ln (\underbrace{1.0}_{\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp}})=-6.7$
2. $C[3,5, \mathrm{vp}]=\underbrace{-0.5}_{\mathrm{C}[3,3, \mathrm{~V}]}+\underbrace{-2.3}_{\mathrm{C}[4,5, \mathrm{NP}]}+\ln (\underbrace{0.7}_{\mathrm{vp} \rightarrow \mathrm{vnp}})=-2.8-0.36=-3.2$

Span 2

1. $C[1,3, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-2.8}_{\mathrm{C}[3,3, \mathrm{VP}]}+\ln (\underbrace{1.0}_{\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp}})=-6.7$
2. $C[3,5, \mathrm{vp}]=\underbrace{-0.5}_{\mathrm{C}[3,3, \mathrm{~V}]}+\underbrace{-2.3}_{\mathrm{C}[4,5, \mathrm{NP}]}+\ln (\underbrace{0.7}_{\mathrm{vp} \rightarrow \mathrm{vnp}})=-2.8-0.36=-3.2$
3. $C[6,8, \mathrm{pp}]=\underbrace{-0.51}_{\mathrm{C}[6,6, \mathrm{P}]}+\underbrace{-2.8}_{\mathrm{C}[7,8, \mathrm{NP}]}+\ln (\underbrace{1.0}_{\mathrm{pp} \rightarrow \mathrm{p} \mathrm{np}})=-3.3+-1.6=-3.3$

Span 4

1. $C[1,5, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-3.2}_{\mathrm{C}[3,5, \mathrm{VP}]}+\ln (\underbrace{1.0}_{\mathrm{s} \rightarrow \mathrm{np} v p})=-7.1$

Span 4

1. $C[1,5, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-3.2}_{\mathrm{C}[3,5, \mathrm{VP}]}+\ln (\underbrace{1.0}_{\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp}})=-7.1$
2. $C[4,8, \mathrm{np}]=\underbrace{-2.3}_{\mathrm{C}[4,5, \mathrm{NP}]}+\underbrace{-3.3}_{\mathrm{C}[6,8, \mathrm{PP}]}+\ln (\underbrace{0.8}_{\mathrm{np} \rightarrow \mathrm{np}})=-5.6+-0.2=-5.8$

Span 5

$$
\begin{align*}
& C[3,8, \mathrm{vp}]=\max (\tag{4}\\
& \underbrace{-3.2}_{\mathrm{C}[3,5, \mathrm{VP}]}+\underbrace{-3.3}_{\mathrm{C}[6,8, \mathrm{PP}]}+\underbrace{-1.6}_{\mathrm{vp} \rightarrow \mathrm{vp} \mathrm{pp}}, \tag{5}\\
& \underbrace{-0.5}_{\mathrm{C}[3,3, \mathrm{~V}]}+\underbrace{-5.8}_{\mathrm{C}[4,8, \mathrm{NP}]}+\underbrace{-.36}_{\mathrm{vp} \rightarrow \mathrm{vnp}}) \tag{6}\\
& \quad=\max (-8.1,-6.7)=-6.7 \tag{7}
\end{align*}
$$

Span 7

1. $C[1,8, \mathrm{~s}]=\underbrace{-3.9}_{\mathrm{C}[1,2, \mathrm{NP}]}+\underbrace{-6.7}_{\mathrm{C}[3,8, \mathrm{VP}]}=-10.6$
