Representation Learning

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
UPDATE EXAMPLES

Dataset

- Two types of words
- Vehicles
- Fruits
- Learn a representation with two dimensions
- Word2Vec skipgram negative sampling
- $\alpha=1.0$ (bad choice in practice!)
- We'll do update for one positive and one negative sample
- Note: much of word2vec magic is sampling negative words, you'll have to take my word for it

Word

ambulance	-0.228	0.099
apple	0.078	0.217
backhoe	-0.086	0.138
banana	0.046	0.195
crane	-0.220	0.153
firetruck	0.039	-0.047
lemon	0.008	-0.043
strawberry	0.202	-0.081

$$
\begin{align*}
z & =w_{\text {focus }}^{\top} \cdot c_{s} \tag{1}\\
E_{s} & = \begin{cases}1-\sigma(z), & \text { if } s \text { postive example } \\
0-\sigma(z), & \text { if } s \text { negative example }\end{cases} \tag{2}\\
\Delta \vec{w}_{\text {focus }} & =\alpha E_{s} \vec{c}_{s} \tag{3}\\
\Delta \vec{c}_{s} & =\alpha E_{s} \vec{w}_{\text {focus }} \tag{4}
\end{align*}
$$

$$
\alpha=0.1
$$

POS (focus: banana, sample: lemon)

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=0.10 \cdot 0.500 \cdot(0.000,0.000)=$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=0.10 \cdot 0.500 \cdot(0.000,0.000)=(0.000,0.000)$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=0.10 \cdot 0.500 \cdot(0.000,0.000)=(0.000,0.000)$
- $\Delta c_{\text {lemon }}=\alpha e \cdot m_{\text {banana }}=$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=0.10 \cdot 0.500 \cdot(0.000,0.000)=(0.000,0.000)$
- $\Delta c_{\text {lemon }}=\alpha e \cdot m_{\text {banana }}=0.10 \cdot 0.500 \cdot(0.046,0.195)=$

POS (focus: banana, sample: lemon)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {lemon }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=1.0-\pi=1.0-\sigma(0.000)=0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {lemon }}=0.10 \cdot 0.500 \cdot(0.000,0.000)=(0.000,0.000)$
- $\Delta c_{\text {lemon }}=\alpha e \cdot m_{\text {banana }}=0.10 \cdot 0.500 \cdot(0.046,0.195)=(0.002,0.010)$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=0.10 \cdot-0.500 \cdot(0.000,0.000)=$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=0.10 \cdot-0.500 \cdot(0.000,0.000)=$ (-0.000,-0.000)

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot C_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=0.10 \cdot-0.500 \cdot(0.000,0.000)=$ (-0.000,-0.000)
- $\Delta c_{\text {firetruck }}=\alpha e \cdot w_{\text {banana }}=$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=0.10 \cdot-0.500 \cdot(0.000,0.000)=$ (-0.000,-0.000)
- $\Delta c_{\text {firetruck }}=\alpha e \cdot w_{\text {banana }}=0.10 \cdot-0.500 \cdot(0.046,0.195)=$

NEG (focus: banana, sample: firetruck)

- $z=w_{\text {banana }}^{\top} \cdot c_{\text {firetruck }}=0.046 * 0.000+0.195 * 0.000=0.000$
- $e=0.0-\pi=0.0-\sigma(0.000)=-0.500$
- $\Delta w_{\text {banana }}=\alpha e \cdot c_{\text {firetruck }}=0.10 \cdot-0.500 \cdot(0.000,0.000)=$ (-0.000,-0.000)
- $\Delta c_{\text {firetruck }}=\alpha e \cdot w_{\text {banana }}=0.10 \cdot-0.500 \cdot(0.046,0.195)=$ (-0.002,-0.010)

Word		
ambulance	-0.228	0.099
apple	0.078	0.217
backhoe	-0.086	0.138
banana	0.046	0.195
crane	-0.220	0.153
firetruck	0.039	-0.047
lemon	0.008	-0.043
strawberry	0.202	-0.081

$$
\alpha=0.1
$$

Much later ...

Vectors are starting to take shape

Word

ambulance	-0.906	0.107
apple	0.992	0.780
backhoe	-0.902	0.459
banana	1.286	0.573
crane	-1.119	0.399
firetruck	-0.830	0.094
lemon	0.750	-0.289
strawberry	1.174	-0.379

Context

ambulance	-0.927	-0.090
apple	0.973	-0.923
backhoe	-0.984	-0.379
banana	0.634	-0.486
crane	-1.258	-0.188
firetruck	-1.224	-0.060
lemon	1.087	-0.081
strawberry	1.054	0.410

$$
\begin{align*}
z & =w_{\text {focus }}^{\top} \cdot c_{s} \tag{5}\\
E_{s} & = \begin{cases}1-\sigma(z), & \text { if } s \text { postive example } \\
0-\sigma(z), & \text { if } s \text { negative example }\end{cases} \tag{6}\\
\Delta \vec{w}_{\text {focus }} & =\alpha E_{s} \vec{c}_{s} \tag{7}\\
\Delta \vec{c}_{s} & =\alpha E_{s} \vec{w}_{\text {focus }} \tag{8}
\end{align*}
$$

$$
\alpha=0.1
$$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=0.10 \cdot 0.314 \cdot(-0.984,-0.379)=$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=0.10 \cdot 0.314 \cdot(-0.984,-0.379)=$ (-0.031,-0.012)

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=0.10 \cdot 0.314 \cdot(-0.984,-0.379)=$ (-0.031,-0.012)
- $\Delta c_{\text {backhoe }}=\alpha e \cdot w_{\text {firetruck }}=$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=0.10 \cdot 0.314 \cdot(-0.984,-0.379)=$ (-0.031,-0.012)
- $\Delta c_{\text {backhoe }}=\alpha e \cdot w_{\text {firetruck }}=0.10 \cdot 0.314 \cdot(-0.830,0.094)=$

POS (focus: firetruck, sample: backhoe)

- $z=w_{\text {firetruck }}^{\top} \cdot C_{\text {backhoe }}=-0.830 *-0.984+0.094 *-0.379=0.780$
- $e=1.0-\pi=1.0-\sigma(0.780)=0.314$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {backhoe }}=0.10 \cdot 0.314 \cdot(-0.984,-0.379)=$ (-0.031,-0.012)
- $\Delta c_{\text {backhoe }}=\alpha e \cdot w_{\text {firetruck }}=0.10 \cdot 0.314 \cdot(-0.830,0.094)=$ (-0.026, 0.003)

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=0.10 \cdot-0.736 \cdot(-1.258,-0.188)=$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=0.10 \cdot-0.736 \cdot(-1.258,-0.188)=$ (0.093, 0.014)

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=0.10 \cdot-0.736 \cdot(-1.258,-0.188)=$ (0.093, 0.014)
- $\Delta c_{\text {crane }}=\alpha e \cdot w_{\text {firetruck }}=$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=0.10 \cdot-0.736 \cdot(-1.258,-0.188)=$ (0.093, 0.014)
- $\Delta c_{\text {crane }}=\alpha e \cdot w_{\text {firetruck }}=0.10 \cdot-0.736 \cdot(-0.830,0.094)=$

NEG (focus: firetruck, sample: crane)

- $z=w_{\text {firetruck }}^{\top} \cdot c_{\text {crane }}=-0.830 *-1.258+0.094 *-0.188=1.025$
- $e=0.0-\pi=0.0-\sigma(1.025)=-0.736$
- $\Delta w_{\text {firetruck }}=\alpha e \cdot c_{\text {crane }}=0.10 \cdot-0.736 \cdot(-1.258,-0.188)=$ (0.093, 0.014)
- $\Delta c_{\text {crane }}=\alpha e \cdot w_{\text {firetruck }}=0.10 \cdot-0.736 \cdot(-0.830,0.094)=$ (0.061,-0.007)

Word		
ambulance	-0.906	0.107
apple	0.992	0.780
backhoe	-0.902	0.459
banana	1.286	0.573
crane	-1.119	0.399
firetruck	-0.833	0.086
lemon	0.750	-0.289
strawberry	1.174	-0.379

$$
\alpha=0.1
$$

Word Vectors

Context Vectors

