Introduction to Machine Learning

Natural Language Processing: Jordan

Boyd-Graber
University of Maryland
NAÏVE BAYES AND LOGISTIC REGRESSION

Slides adapted from Hinrich Schütze and Lauren Hannah

By the end of today...

- You'll be able to frame many machine learning tasks as classification problems
- Apply logistic regression (given weights) to classify data
- Learn naïve bayes from data

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
- Examples are represented in this space.

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
- Examples are represented in this space.
- A fixed set of labels $y \in \mathbb{C}=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
- Examples are represented in this space.
- A fixed set of labels $y \in \mathbb{C}=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$
- The classes are human-defined for the needs of an application (e.g., spam vs. ham).

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
- Examples are represented in this space.
- A fixed set of labels $y \in \mathbb{C}=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$
- The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$

Probabilistic Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
- Examples are represented in this space.
- A fixed set of labels $y \in \mathbb{C}=\left\{c_{1}, c_{2}, \ldots, c_{J}\right\}$
- The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$

We learn a classifier γ that maps documents to class probabilities:

$$
\gamma:(x, y) \rightarrow[0,1]
$$

such that $\sum_{y} \gamma(x, y)=1$

Generative vs. Discriminative Models

Generative

Model joint probability $p(x, y)$ including the data x.

Naïve Bayes

- Uses Bayes rule to reverse conditioning $p(x \mid y) \rightarrow p(y \mid x)$
- Naïve because it ignores joint probabilities within the data distribution

Discriminative

Model only conditional probability $p(y \mid x)$, excluding the data x.

Logistic regression

- Logistic: A special mathematical function it uses
- Regression: Combines a weight vector with observations to create an answer
- General cookbook for building conditional probability distributions

A Classification Problem

- Suppose that I have two coins, C_{1} and C_{2}
- Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

```
C1: 0 1 1 1 1
C1: 1 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
C2: 0 0 1 1 0 1
C2: 1 0 0 0
```


A Classification Problem

- Suppose that I have two coins, C_{1} and C_{2}
- Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

```
C1: 0 1 1 1 1
C1: 1 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
C2: 0 0 1 1 0 1
C2: 1 0 0 0
```

- Now suppose I am given a new sequence, $0 \quad 0 \quad 1$; which coin is it from?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P\left(C_{1}\right), P\left(C_{2}\right)$
- Also easy to get $P\left(X_{i}=1 \mid C_{1}\right)$ and $P\left(X_{i}=1 \mid C_{2}\right)$
- By conditional independence,

$$
P\left(X=010 \mid C_{1}\right)=P\left(X_{1}=0 \mid C_{1}\right) P\left(X_{2}=1 \mid C_{1}\right) P\left(X_{2}=0 \mid C_{1}\right)
$$

- Can we use these to get $P\left(C_{1} \mid X=001\right)$?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P\left(C_{1}\right)=4 / 7, P\left(C_{2}\right)=3 / 7$
- Also easy to get $P\left(X_{i}=1 \mid C_{1}\right)$ and $P\left(X_{i}=1 \mid C_{2}\right)$
- By conditional independence,

$$
P\left(X=010 \mid C_{1}\right)=P\left(X_{1}=0 \mid C_{1}\right) P\left(X_{2}=1 \mid C_{1}\right) P\left(X_{2}=0 \mid C_{1}\right)
$$

- Can we use these to get $P\left(C_{1} \mid X=001\right)$?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P\left(C_{1}\right)=4 / 7, P\left(C_{2}\right)=3 / 7$
- Also easy to get $P\left(X_{i}=1 \mid C_{1}\right)=12 / 16$ and $P\left(X_{i}=1 \mid C_{2}\right)=6 / 18$
- By conditional independence,

$$
P\left(X=010 \mid C_{1}\right)=P\left(X_{1}=0 \mid C_{1}\right) P\left(X_{2}=1 \mid C_{1}\right) P\left(X_{2}=0 \mid C_{1}\right)
$$

- Can we use these to get $P\left(C_{1} \mid X=001\right)$?

A Classification Problem

Summary: have $P($ data \mid class $)$, want $P($ class \mid data $)$

Solution: Bayes' rule!

$$
\begin{aligned}
P(\text { class } \mid \text { data }) & =\frac{P(\text { data } \mid \text { class }) P(\text { class })}{P(\text { data })} \\
& =\frac{P(\text { data } \mid \text { class }) P(\text { class })}{\sum_{\text {class }=1}^{C} P(\text { data } \mid \text { class }) P(\text { class })}
\end{aligned}
$$

To compute, we need to estimate P (data|class), P (class) for all classes

Naive Bayes Classifier

This works because the coin flips are independent given the coin parameter. What about this case:

- want to identify the type of fruit given a set of features: color, shape and size
- color: red, green, yellow or orange (discrete)
- shape: round, oval or long+skinny (discrete)
- size: diameter in inches (continuous)

Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily independent:

Given category "apple," the color "green" has a higher probability given "size < 2":

$$
P(\text { green } \mid \text { size }<2 \text {, apple })>P(\text { green } \mid \text { apple })
$$

Naive Bayes Classifier

Using chain rule,

$$
\begin{aligned}
& P(\text { apple } \mid \text { green, round, size }=2) \\
& \quad=\frac{P(\text { green }, \text { round, size }=2 \mid \text { apple }) P(\text { apple })}{\sum_{\text {fruits }} P(\text { green, round, size }=2 \mid \text { fruit } j) P(\text { fruit } j)} \\
& \propto P(\text { green } \mid \text { round, size }=2, \text { apple }) P(\text { round } \mid \text { size }=2, \text { apple }) \\
& \quad \times P(\text { size }=2 \mid \text { apple }) P(\text { apple })
\end{aligned}
$$

But computing conditional probabilities is hard! There are many combinations of (color, shape, size) for each fruit.

Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

$$
\begin{aligned}
& P(\text { green } \mid \text { round, size }=2, \text { apple })=P(\text { green } \mid \text { apple }) \\
& P(\text { round } \mid \text { green, size }=2, \text { apple })=P(\text { round } \mid \text { apple }) \\
& P(\text { size }=2 \mid \text { green, round }, \text { apple })=P(\text { size }=2 \mid \text { apple })
\end{aligned}
$$

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "buy" $\mid y=$ SPAM $)$.

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "buy" $\mid y=$ SPAM $)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "buy" $\mid y=$ SPAM $)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

- Maximum likelihood (ML) estimate of the probability is:

$$
\begin{equation*}
\hat{\beta}_{i}=\frac{n_{i}}{\sum_{k} n_{k}} \tag{1}
\end{equation*}
$$

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "buy" $\mid y=$ SPAM $)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

- Maximum likelihood (ML) estimate of the probability is:

$$
\begin{equation*}
\hat{\beta}_{i}=\frac{n_{i}}{\sum_{k} n_{k}} \tag{1}
\end{equation*}
$$

- Is this reasonable?

The problem with maximum likelihood estimates: Zeros (cont)

- If there were no occurrences of "bagel" in documents in class SPAM, we'd get a zero estimate:

$$
\hat{P}(\text { "bagel"| SPAM })=\frac{T_{\text {SPAM, "bagel" }}}{\sum_{w^{\prime} \in V} T_{\text {SPAM }, w^{\prime}}}=0
$$

- \rightarrow We will get $P($ SPAM $\mid d)=0$ for any document that contains bagel!
- Zero probabilities cannot be conditioned away.

How do we estimate a probability?

- For many applications, we often have a prior notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

$$
\begin{equation*}
\beta_{\mathrm{MAP}}=\operatorname{argmax}_{\beta} f(x \mid \beta) g(\beta) \tag{2}
\end{equation*}
$$

How do we estimate a probability?

- For a multinomial distribution (i.e. a discrete distribution, like over words):

$$
\begin{equation*}
\beta_{i}=\frac{n_{i}+\alpha_{i}}{\sum_{k} n_{k}+\alpha_{k}} \tag{3}
\end{equation*}
$$

- α_{i} is called a smoothing factor, a pseudocount, etc.

How do we estimate a probability?

- For a multinomial distribution (i.e. a discrete distribution, like over words):

$$
\begin{equation*}
\beta_{i}=\frac{n_{i}+\alpha_{i}}{\sum_{k} n_{k}+\alpha_{k}} \tag{3}
\end{equation*}
$$

- α_{i} is called a smoothing factor, a pseudocount, etc.
- When $\alpha_{i}=1$ for all i, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).

How do we estimate a probability?

- For a multinomial distribution (i.e. a discrete distribution, like over words):

$$
\begin{equation*}
\beta_{i}=\frac{n_{i}+\alpha_{i}}{\sum_{k} n_{k}+\alpha_{k}} \tag{3}
\end{equation*}
$$

- α_{i} is called a smoothing factor, a pseudocount, etc.
- When $\alpha_{i}=1$ for all i, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).
- To geek out, the set $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ parameterizes a Dirichlet distribution, which is itself a distribution over distributions and is the conjugate prior of the Multinomial (don't need to know this).

The Naïve Bayes classifier

- The Naïve Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$
P(c \mid d) \propto P(c) \prod_{1 \leq i \leq n_{d}} P\left(w_{i} \mid c\right)
$$

The Naïve Bayes classifier

- The Naïve Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$
P(c \mid d) \propto P(c) \prod_{1 \leq i \leq n_{d}} P\left(w_{i} \mid c\right)
$$

The Naïve Bayes classifier

- The Naïve Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$
P(c \mid d) \propto P(c) \prod_{1 \leq i \leq n_{d}} P\left(w_{i} \mid c\right)
$$

- n_{d} is the length of the document. (number of tokens)
- $P\left(w_{i} \mid c\right)$ is the conditional probability of term w_{i} occurring in a document of class c
- $P\left(w_{i} \mid c\right)$ as a measure of how much evidence w_{i} contributes that c is the correct class.
- $P(c)$ is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with higher $P(c)$.

Maximum a posteriori class

- Our goal is to find the "best" class.
- The best class in Naïve Bayes classification is the most likely or maximum a posteriori (MAP) class c map :

$$
c_{\text {map }}=\arg \max _{c_{j} \in \mathbb{C}} \hat{P}\left(c_{j} \mid d\right)=\arg \max _{c_{j} \in \mathbb{C}} \hat{P}\left(c_{j}\right) \prod_{1 \leq i \leq n_{d}} \hat{P}\left(w_{i} \mid c_{j}\right)
$$

- We write \hat{P} for P since these values are estimates from the training set.

Naïve Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, recall the Naïve Bayes conditional independence assumption:

$$
P\left(d \mid c_{j}\right)=P\left(\left\langle w_{1}, \ldots, w_{n_{d}}\right\rangle \mid c_{j}\right)=\prod_{1 \leq i \leq n_{d}} P\left(X_{i}=w_{i} \mid c_{j}\right)
$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P\left(X_{i}=w_{i} \mid c_{j}\right)$.
Our estimates for these priors and conditional probabilities: $\hat{P}\left(c_{j}\right)=\frac{N_{c}+1}{N+|C|}$ and $\hat{P}(w \mid c)=\frac{T_{c w}+1}{\left(\sum_{w^{\prime} \in V} T_{c w^{\prime}}\right)+|V|}$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \lg is logarithm base 2 ; \ln is logarithm base e.

$$
\begin{equation*}
\lg x=a \Leftrightarrow 2^{a}=x \quad \ln x=a \Leftrightarrow e^{a}=x \tag{4}
\end{equation*}
$$

- Since $\lg (x y)=\lg (x)+\lg (y)$, we can sum log probabilities instead of multiplying probabilities.
- Since \lg is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$
\begin{array}{r}
c \text { map }=\arg \max _{c_{j} \in \mathbb{C}}\left[\hat{P}\left(c_{j}\right) \prod_{1 \leq i \leq n_{d}} \hat{P}\left(w_{i} \mid c_{j}\right)\right] \\
\arg \max _{c_{j} \in \mathbb{C}}\left[\ln \hat{P}\left(c_{j}\right)+\sum_{1 \leq i \leq n_{d}} \ln \hat{P}\left(w_{i} \mid c_{j}\right)\right]
\end{array}
$$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \lg is logarithm base 2 ; \ln is logarithm base e.

$$
\begin{equation*}
\lg x=a \Leftrightarrow 2^{a}=x \quad \ln x=a \Leftrightarrow e^{a}=x \tag{4}
\end{equation*}
$$

- Since $\lg (x y)=\lg (x)+\lg (y)$, we can sum log probabilities instead of multiplying probabilities.
- Since \lg is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$
\begin{array}{r}
c \text { map }=\arg \max _{c_{j} \in \mathbb{C}}\left[\hat{P}\left(c_{j}\right) \prod_{1 \leq i \leq n_{d}} \hat{P}\left(w_{i} \mid c_{j}\right)\right] \\
\arg \max _{c_{j} \in \mathbb{C}}\left[\ln \hat{P}\left(c_{j}\right)+\sum_{1 \leq i \leq n_{d}} \ln \hat{P}\left(w_{i} \mid c_{j}\right)\right]
\end{array}
$$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \lg is logarithm base 2 ; \ln is logarithm base e.

$$
\begin{equation*}
\lg x=a \Leftrightarrow 2^{a}=x \quad \ln x=a \Leftrightarrow e^{a}=x \tag{4}
\end{equation*}
$$

- Since $\lg (x y)=\lg (x)+\lg (y)$, we can sum log probabilities instead of multiplying probabilities.
- Since \lg is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$
\begin{array}{r}
c \text { map }=\arg \max _{c_{j} \in \mathbb{C}}\left[\hat{P}\left(c_{j}\right) \prod_{1 \leq i \leq n_{d}} \hat{P}\left(w_{i} \mid c_{j}\right)\right] \\
\arg \max _{c_{j} \in \mathbb{C}}\left[\ln \hat{P}\left(c_{j}\right)+\sum_{1 \leq i \leq n_{d}} \ln \hat{P}\left(w_{i} \mid c_{j}\right)\right]
\end{array}
$$

