
Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and Mohamad Alkhouja. Mr. LDA: A Flexible Large Scale Topic
Modeling Package using Variational Inference in MapReduce. ACM International Conference on World Wide Web,
2012, 10 pages.

@inproceedings{Zhai:Boyd-Graber:Asadi:Alkhouja-2012,
Author = {Ke Zhai and Jordan Boyd-Graber and Nima Asadi and Mohamad Alkhouja},
Url = {docs/mrlda.pdf},
Booktitle = {ACM International Conference on World Wide Web},
Title = {{Mr. LDA}: A Flexible Large Scale Topic Modeling Package using Variational Inference in MapReduce},
Year = {2012},
Location = {Lyon, France},
}

Links:

• Code [http://mrlda.cc]
• Slides [http://cs.colorado.edu/~jbg/docs/2012_www_slides.pdf]

Downloaded from http://cs.colorado.edu/~jbg/docs/mrlda.pdf

1

http://www.umiacs.umd.edu/~zhaike/
http://mrlda.cc
http://mrlda.cc
http://cs.colorado.edu/~jbg/docs/2012_www_slides.pdf
http://cs.colorado.edu/~jbg/docs/2012_www_slides.pdf
http://cs.colorado.edu/~jbg/docs/mrlda.pdf

Mr. LDA: A Flexible Large Scale Topic Modeling Package
using Variational Inference in MapReduce

Ke Zhai
Computer Science

University of Maryland
College Park, MD, USA
zhaike@cs.umd.edu

Jordan Boyd-Graber
iSchool and UMIACS
University of Maryland
College Park, MD, USA

jbg@umiacs.umd.edu

Nima Asadi
Computer Science

University of Maryland
College Park, MD, USA
nima@cs.umd.edu

Mohamad Alkhouja
iSchool

University of Maryland
College Park, MD, USA
khouja@umd.edu

ABSTRACT
Latent Dirichlet Allocation (LDA) is a popular topic modeling tech-
nique for exploring document collections. Because of the increasing
prevalence of large datasets, there is a need to improve the scal-
ability of inference for LDA. In this paper, we introduce a novel
and flexible large scale topic modeling package in MapReduce (Mr.
LDA). As opposed to other techniques which use Gibbs sampling,
our proposed framework uses variational inference, which easily fits
into a distributed environment. More importantly, this variational
implementation, unlike highly tuned and specialized implementa-
tions based on Gibbs sampling, is easily extensible. We demonstrate
two extensions of the models possible with this scalable framework:
informed priors to guide topic discovery and extracting topics from
a multilingual corpus. We compare the scalability of Mr. LDA
against Mahout, an existing large scale topic modeling package. Mr.
LDA out-performs Mahout both in execution speed and held-out
likelihood.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering—topic mod-
els, scalability, mapreduce

1. INTRODUCTION
Because data from the web are big and noisy, algorithms that

process large document collections cannot solely depend on human
annotations. One popular technique for navigating large unanno-
tated document collections is topic modeling, which discovers the
themes that permeate a corpus. Topic modeling is exemplified by La-
tent Dirichlet Allocation (LDA), a generative model for document-
centric corpora [1]. It is appealing for noisy data because it requires
no annotation and discovers, without any supervision, the thematic
trends in a corpus. In addition to discovering which topics exist in a
corpus, LDA also associates documents with these topics, revealing
previously unseen links between documents and trends over time.
Although our focus is on text data, LDA is widely used in com-
puter vision [2, 3], computational biology [4, 5], and computational
linguistics [6, 7].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

In addition to being noisy, data from the web are big. The MapRe-
duce framework for large-scale data processing [8] is simple to learn
but flexible enough to be broadly applicable. Designed at Google
and open-sourced by Yahoo, Hadoop MapReduce is one of the
mainstays of industrial data processing and has also been gaining
traction for problems of interest to the academic community such
as machine translation [9], language modeling [10], and grammar
induction [11].

In this paper, we propose a parallelized LDA algorithm in the
MapReduce programming framework (Mr. LDA).1 Mr. LDA relies
on variational inference, as opposed to the prevailing trend of us-
ing Gibbs sampling. We argue for using variational inference in
Section 2. Section 3 describes how variational inference fits nat-
urally into the MapReduce framework. In Section 4, we discuss
two specific extensions of LDA to demonstrate the flexibility of the
proposed framework. These are an informed prior to guide topic
discovery and a new inference technique for discovering topics in
multilingual corpora [12]. Next, we evaluate Mr. LDA’s ability to
scale in Section 5 before concluding with Section 6.

2. SCALING OUT LDA
In practice, probabilistic models work by maximizing the log-

likelihood of observed data given the structure of an assumed prob-
abilistic model. Less technically, generative models tell a story of
how your data came to be with some pieces of the story missing;
inference fills in the missing pieces with the best explanation of the
missing variables. Because exact inference is often intractable (as it
is for LDA), complex models require approximate inference.

2.1 Why not Gibbs Sampling?
One of the most widely used approximate inference techniques

for such models is Markov chain Monte Carlo (MCMC) sampling,
where one samples from a Markov chain whose stationary distribu-
tion is the posterior of interest [20, 21]. Gibbs sampling, where the
Markov chain is defined by the conditional distribution of each la-
tent variable, has found widespread use in Bayesian models [20, 22,
23, 24]. MCMC is a powerful methodology, but it has drawbacks.
Convergence of the sampler to its stationary distribution is difficult
to diagnose, and sampling algorithms can be slow to converge in
high dimensional models [21].

1Download the code at http://mrlda.cc.

Framework Inference Likelihood Asymmetric Hyperparameter Informed MultilingualComputation α Prior Optimization β Prior
Mallet [13] Multi-thread Gibbs

√ √ √ × √
GPU-LDA [14] GPU Gibbs & V.B.

√ × × × ×
Async-LDA [15] Multi-thread Gibbs

√ × √ × ×
N.C.L. [16] Master-Slave V.B. ∼ × × × ×
pLDA [17] MPI & MapReduce Gibbs ∼ × × × ×

Y!LDA [18] Hadoop Gibbs
√ √ √ × ×

Mahout [19] MapReduce V.B.
√ × × × ×

Mr. LDA MapReduce V.B.
√ √ √ √ √

Table 1: Comparison among different approaches. Mr. LDA supports all of these features, as compared to existing distributed or
multi-threaded implementations. (∼ - not available from available documentation.)

Blei, Ng, and Jordan presented the first approximate inference
technique for LDA based on variational methods [1], but the col-
lapsed Gibbs sampler proposed by Griffiths and Steyvers [23] has
been more popular in the community because it is easier to imple-
ment. However, such methods inevitably have intrinsic problems
that lead to difficulties in moving to web-scale: shared state, ran-
domness, too many short iterations, and lack of flexibility.

Shared State.
Unless the probabilistic model allows for discrete segments to

be statistically independent of each other, it is difficult to conduct
inference in parallel. However, we want models that allow special-
ization to be shared across many different corpora and documents
when necessary, so we typically cannot assume this independence.

At the risk of oversimplifying, collapsed Gibbs sampling for LDA
is essentially multiplying the number of occurrences of a topic in
a document by the number of times a word type appears in a topic
across all documents. The former is a document-specific count, but
the latter is shared across the entire corpus. For techniques that
scale out collapsed Gibbs sampling for LDA, the major challenge is
keeping these second counts for collapsed Gibbs sampling consistent
when there is not a shared memory environment.

Newman et al. [25] consider a variety of methods to achieve
consistent counts: creating hierarchical models to view each slice
as independent or simply syncing counts in a batch update. Yan et
al. [14] first cleverly partition the data using integer programming
(an NP-Hard problem). Wang et al. [17] use message passing to
ensure that different slices maintain consistent counts. Smola and
Narayanamurthy [18] use a distributed memory system to achieve
consistent counts in LDA, and Ahmed et al. [26] extend the approach
more generally to latent variable models.

Gibbs sampling approaches to scaling thus face a difficult dilemma:
completely synchronize counts, which can compromise scaling, or
allow for inconsistent counts, which could negatively impact the
quality of inference. In contrast to some engineering work-arounds,
variational inference provides a mathematical solution of how to
scale inference for LDA. By assuming a variational distribution
that treats documents as independent, we can parallelize inference
without a need for synchronizing counts (as required in collapsed
Gibbs sampling).

Randomness.
By definition, Monte Carlo algorithms depend on randomness.

However, MapReduce implementations assume that every step of
computation will be the same, no matter where or when it is run.
This allows MapReduce to have greater fault-tolerance, running
multiple copies of computation subcomponents in case one fails or
takes too long. This is, of course, easily fixed (e.g. by seeding a

random number generator in a shard-dependent way), but it adds
another layer of complication to the algorithm. Variational inference,
given an initialization, is deterministic, which is more in line with
MapReduce’s system for ensuring fault tolerance.

Many Short Iterations.
A single iteration of Gibbs sampling for LDA with K topics

is very quick. For each word, the algorithm performs a simple
multiplication to build a sampling distribution of length K, samples
from that distribution, and updates an integer vector. In contrast,
each iteration of variational inference is difficult; it requires the
evaluation of complicated functions that are not simple arithmetic
operations directly implemented in an ALU (these are described in
Section 3).

This does not mean that variational inference is slower, how-
ever. Variational inference typically requires dozens of iterations to
converge, while Gibbs sampling requires thousands (determining
convergence is often more difficult for Gibbs sampling). Moreover,
the requirement of Gibbs sampling to keep a consistent state means
that there are many more synchronizations required to complete
inference, increasing the complexity of the implementation and
the communication overhead. In contrast, variational inference re-
quires synchronization only once per iteration (dozens of times for
a typical corpus); in a naïve Gibbs sampling implementation, infer-
ence requires synchronization after every word in every iteration
(potentially billions of times for a moderately-sized corpus).

Extension and Flexibility.
Compared to Mr. LDA, many Gibbs samplers are highly tuned

specifically for LDA, which restricts extensions and enhancements,
one of the key benefits of the statistical approach. The techniques
to improve inference for collapsed Gibbs samplers [27] typically
reduce flexibility; the factorization of the conditional distribution is
limited to LDA’s explicit formulation. Adapting such tricks beyond
LDA requires repeating the analysis to refactorize the conditional
distribution. In Section 4.1 we add an informed prior to topics’ word
distribution, which guides the topics discovered by the framework
to psychologically plausible concepts. In Section 4.2, we adapt Mr.
LDA to learn multilingual topics.

2.2 Variational Inference
An alternative to MCMC is variational inference. Variational

methods, based on techniques from statistical physics, use optimiza-
tion to find a distribution over the latent variables that is close to
the posterior of interest [28, 29]. Variational methods provide effec-
tive approximations in topic models and nonparametric Bayesian
models [30, 31, 32]. We believe that it is well-suited to MapReduce.

βk
K

zn

wn

θdα

M
Nd

ηk

(a) LDA

MNd

θdγd

znφn

Kβkλk

(b) Variational

Figure 1: Graphical model of LDA and the mean field varia-
tional distribution. Each latent variable, observed datum, and
parameter is a node. Lines between represent possible statis-
tical dependence. Shaded nodes are observations; rectangular
plates denote replication; and numbers in the bottom right of
a plate show how many times plates’ contents repeat. In the
variational distribution (right), the latent variables θ, β, and
z are explained by a simpler, fully factorized distribution with
variational parameters γ, λ, and φ. The lack of inter-document
dependencies in the variational distribution allows the paral-
lelization of inference in MapReduce.

Variational methods enjoy clear convergence criterion, tend to
be faster than MCMC in high-dimensional problems, and provide
particular advantages over sampling when latent variable pairs are
not conjugate. Gibbs sampling requires conjugacy, and other forms
of sampling that can handle non-conjugacy, such as Metropolis-
Hastings, are much slower than variational methods.

With a variational method, we begin by positing a family of dis-
tributions q ∈ Q over the same latent variables Z with a simpler
dependency pattern than p, parameterized by Θ. This simpler dis-
tribution is called the variational distribution and is parameterized
by Ω, a set of variational parameters. With this variational family in
hand, we optimize the evidence lower bound (ELBO),

L = Eq [log (p(D|Z)p(Z|Θ))]− Eq [log q(Z)] (1)

a lower bound on the data likelihood. Variational inference fits
the variational parameters Ω to tighten this lower bound and thus
minimizes the Kullback-Leibler divergence between the variational
distribution and the posterior.

The variational distribution is typically chosen by removing prob-
abilistic dependencies from the true distribution. This makes in-
ference tractable and also induces independence in the variational
distribution between latent variables. This independence can be en-
gineered to allow parallelization of independent components across
multiple computers.

Maximizing the global parameters in MapReduce can be handled
in a manner analogous to EM [33]; the expected counts (of the vari-
ational distribution) generated in many parallel jobs are efficiently
aggregated and used to recompute the top-level parameters.

2.3 Related Work
Nallapati, Cohen and Lafferty [16] extended variational inference

for LDA to a parallelized setting. Their implementation uses a
master-slave paradigm in a distributed environment, where all the
slaves are responsible for the E-step and the master node gathers
all the intermediate outputs from the slaves and performs the M-
step. While this approach parallelizes the process to a small-scale

distributed environment, the final aggregation/merging showed an
I/O bottleneck that prevented scaling beyond a handful of slaves
because the master has to explicitly read all intermediate results
from slaves.

Mr. LDA addresses these problems by parallelizing the work done
by a single master (a reducer is only responsible for a single topic)
and relying on the MapReduce framework, which can efficiently
marshal communication between compute nodes. Building on the
MapReduce framework also provides advantages for reliability and
monitoring not available in an ad hoc parallelization framework.

The MapReduce [8] framework was originally inspired from
the map and reduce functions commonly used in functional pro-
gramming. It adopts a divide-and-conquer approach. Each mapper
processes a small subset of data and passes the intermediate results
as key value pairs to reducers. The reducers receive these inputs
in sorted order, aggregate them, and produce the final result. In
addition to mappers and reducers, the MapReduce framework al-
lows for the definition of combiners and partitioners. Combiners
perform local aggregation on the key value pairs after map function.
Combiners help reduce the size of intermediate data transferred and
are widely used to optimize a MapReduce process. Partitioners
control how messages are routed to reducers.

Mahout [19], an open-source machine learning package, provides
a MapReduce implementation of variational inference LDA, but it
lacks features required by mature LDA implementations such as
supplying per-document topic distributions and optimizing hyper-
parameters (for an explanation of why this is essential for model
quality, see Wallach et al.’s “Why Priors Matter” [34]). Without per-
document topic distributions, many of the downstream applications
of LDA (e.g. document clustering) become more difficult.

Table 1 provides a general overview and comparison of features
among different approaches for scaling LDA. Mr. LDA is the only
implementation which supports all listed capabilities in a distributed
environment.

3. MR. LDA
LDA assumes the following generative process to create a corpus

of M documents with Nd words in document d using K topics.

1. For each topic index k ∈ {1, . . .K}, draw topic distribution
βk ∼ Dir(ηk)

2. For each document d ∈ {1, . . .M}:
(a) Draw document’s topic distribution θd ∼ Dir(α)
(b) For each word n ∈ {1, . . . Nd}:

i. Choose topic assignment zd,n ∼ Mult(θd)
ii. Choose word wd,n ∼ Mult(βzd,n)

In this process, Dir() represents a Dirichlet distribution, and Mult()
is a multinomial distribution. α and β are parameters.

The mean-field variational distribution q for LDA breaks the
connection between words and documents

q(z, θ, β) =
∏

k

Dir(βk |λk)
∏

d

Dir(θd | γd)Mult(zd,n |φd,n),

and when used in Equation 1 yields updates that optimize L, the
lower bound on the likelihood. In the sequel, we take these updates
as given, but interested readers can refer to the appendix of Blei et
al. [1]. Variational EM alternates between updating the expectations
of the variational distribution q and maximizing the probability of
the parameters given the “observed” expected counts.

The remainder of the paper focuses on adapting these updates
into the MapReduce framework and challenges of working at a
large scale. We focus on the primary components of a MapReduce

Algorithm 1 Mapper

Input:
KEY - document ID d ∈ [1, C], where C = |C|.
VALUE - document content.

Configure
1: Load in α’s, λ’s and γ’s from distributed cache.
2: Normalize λ’s for every topic.

Map
1: Initialize a zero V ×K-dimensional matrix φ.
2: Initialize a zero K-dimensional row vector σ.
3: Read in document content ‖w1, w2, . . . , wV ‖
4: repeat
5: for all v ∈ [1, V] do
6: for all k ∈ [1,K] do
7: Update φv,k =

λv,k∑
v
λv,k
· exp Ψ (γd,k).

8: end for
9: Normalize φv , set σ = σ + wvφv,∗

10: end for
11: Update row vector γd,∗ = α+ σ.
12: until convergence
13: for all k ∈ [1,K] do
14: for all v ∈ [1, V] do
15: Emit 〈k, v〉 : wvφv,k.
16: end for
17: Emit 〈4, k〉 :

(
Ψ (γd,k)−Ψ

(∑K
l=1 γd,l

))
. {Section 3.4}

18: Emit 〈k, d〉 : γd,k to file.
19: end for
20: Aggregate L to global counter. {ELBO, Section 3.5}

algorithm: the mapper, which processes a single unit of data (in this
case, a document); the reducer, which processes a single view of
globally shared data (in this case, a topic parameter); the partitioner,
which distributes the workload to reducers; and the driver, which
controls the overall algorithm. The interconnections between the
components of Mr. LDA are depicted in Figure 2.

3.1 Mapper: Update φ and γ

Each document has associated variational parameters γ and φ.
The mapper computes the updates for these variational parameters
and uses them to create the sufficient statistics needed to update
the global parameters. In this section, we describe the computation
of these variational updates and how they are transmitted to the
reducers.

Given a document, the updates for φ and γ are

φv,k ∝ Eq [βv,k] · eΨ(γk), γk = αk +
V∑

v=1

φv,k,

where v ∈ [1, V] is the term index and k ∈ [1,K] is the topic
index. In this case, V is the size of the vocabulary V and K denotes
the total number of topics. The expectation of β under q gives an
estimate of how compatible a word is with a topic; words highly
compatible with a topic will have a larger expected β and thus higher
values of φ for that topic.

Algorithm 1 illustrates the detailed procedure of the Map function.
In the first iteration, mappers initialize variables, e.g. seed λ with
the counts of a single document. For the sake of brevity, we omit
that step here; in later iterations, global parameters are stored in
distributed cache – a synchronized read-only memory that is shared

Algorithm 2 Reducer

Input:
KEY - key pair 〈pleft, pright〉.
VALUE - an iterator I over sequence of values.

Reduce
1: Compute the sum σ over all values in the sequence I. σ is

un-normalized λ if pleft 6= 4 and α sufficient statistics (refer to
Section 3.4 for more details) otherwise.

2: Emit 〈pleft, pright〉 : σ.

among all mappers [35] – and retrieved prior to mapper execution
in a configuration step.

A document is represented as a term frequency sequence ~w =
‖w1, w2, . . . , wV ‖, where wi is the corresponding term frequency
in document d. For ease of notation, we assume the input term
frequency vector ~w is associated with all the terms in the vocabulary,
i.e., if term ti does not appear at all in document d, wi = 0.

Because the document variational parameter γ and the word
variational parameter φ are tightly coupled, we impose a local con-
vergence requirement on γ in the Map function. This means that the
mapper alternates between updating γ and φ until γ stops changing.

3.2 Partitioner: Evenly Distribute Workloads
The Map function in Algorithm 1 emits sufficient statistics for

updating the topic variational distribution λ. These sufficient statis-
tics are keyed by a composite key set 〈pleft, pright〉. These keys can
take two forms: tuple of topic and word identifier or, when the value
represents the sufficient statistics for α updating, a unique value4
and a topic identifier.

A partitioner is required to ensure that messages from the mappers
are sent to the appropriate reducers. Each reducer is responsible
for updating the per-topic variational parameter associated with a
single topic indexed by k. This is accomplished by ensuring the
partitioner sorts on topic only. A consequence of this is that any
reducers beyond the number of topics is superfluous. Given that the
vast majority of the work is in the mappers, this is typically not an
issue for LDA.

3.3 Reducer: Update λ

The Reduce function updates the variational parameter λ associ-
ated with each topic. It requires aggregation over all intermediate φ
vectors

λv,k = ηv,k +
C∑

d=1

(
w(d)
v φ

(d)
v,k

)
,

where d ∈ [1, C] is the document index and w
(d)
v denotes the

number of appearances of term v in document d. Similarly, C is the
number of documents. Although the variational update for λ does
not include a normalization, the expectation Eq [β] requires the λ
normalizer. In Mr. LDA, the λv,k parameters are distributed to all
mappers, and the normalization is taken care of by the mappers in a
configuration step prior to every iteration.

To improve performance, we use combiners to facilitate the aggre-
gation of sufficient statistics in mappers before they are transferred
to reducers. This decreases bandwidth and saves the reducer compu-
tation.

3.4 Driver: Update α

Effective inference of topic models depends on learning not just
the latent variables β, θ, and z but also estimating the hyperparame-

ters, particularly α. The α parameter controls the sparsity of topics
in the document distribution and is the primary mechanism that
differentiates LDA from previous models like pLSA and LSA; not
optimizing α risks learning suboptimal topics [34].

Updating hyperparameters is also important from the perspective
of equalizing differences between inference techniques; as long as
hyperparameters are optimized, there is little difference between the
output of inference techniques [36].

The driver program marshals the entire inference process. On
the first iteration, the driver is responsible for initializing all the
model parameters (K, V , C, η, α); the number of topics K is
user specified; C and V , the number of documents and types, is
determined by the data; the initial value of α is specified by the user;
and λ is randomly initialized or otherwise seeded.

The driver updates α after each MapReduce iteration. We use a
Newton-Raphson method which requires the Hessian matrix and the
gradient,

αnew = αold −H−1(αold) · g(αold),

where the Hessian matrixH and α gradient are, respectively, as

H(k, l) =δ(k, l)CΨ′ (αk)− CΨ′
(∑K

l=1 αl
)
,

g(k) =C

(
Ψ

(
K∑

l=1

αl

)
−Ψ (αk)

)

︸ ︷︷ ︸
computed in driver

+
C∑

d=1

Ψ (γd,k)−Ψ

(
K∑

l=1

γd,l

)

︸ ︷︷ ︸
computed in mapper

︸ ︷︷ ︸
computed in reducer

.

The Hessian matrix H depends entirely on the vector α, which
changes during updating α. The gradient g, on the other hand, can
be decomposed into two terms: the α-tokens (i.e., Ψ

(∑K
l=1 αl

)
−

Ψ (αk)) and the γ-tokens (i.e.,
∑C
d=1 Ψ (γd,k)−Ψ

(∑K
l=1 γd,l

)
).

We can remove the dependence on the number of documents in the
gradient computation by computing the γ-tokens in mappers. This
observation allows us to optimize α in the MapReduce environment.

Because LDA is a dimensionality reduction algorithm, there are
typically a small number of topics K even for a large document
collection. As a result, we can safely assume the dimensionality of
α,H, and g are reasonably low, and additional gains come from the
diagonal structure of the Hessian [37]. Hence, the updating of α is
efficient and will not create a bottleneck in the driver.

3.5 Likelihood Computation
The driver monitors the ELBO to determine whether inference

has converged. If not, it restarts the process with another round of
mappers and reducers. To compute the ELBO we expand Equation 1,

which gives us

L(γ, φ, λ;α, η) =
C∑

d=1

Φ(α)

︸ ︷︷ ︸
driver

+
C∑

d=1

(Ld(γ, φ) + Ld(φ)− Φ(γ)︸ ︷︷ ︸
computed in mapper

)

︸ ︷︷ ︸
computed in reducer

+
K∑

k=1

Φ(η∗,k)

︸ ︷︷ ︸
driver / constant

−
K∑

k=1

Φ(λ∗,k)︸ ︷︷ ︸
reducer︸ ︷︷ ︸

driver

where

Φ(µ) = log Γ
(∑

i=1 µi
)
−
∑

i=1

log Γ (µi)

+
∑

i

(µi − 1)
(

Ψ (µi)−Ψ
(∑

j µj

))
.

Ld(γ, φ) =
K∑

k=1

V∑

v=1

φv,kwv
[
Ψ (γk)−Ψ

(∑K
i=1 γi

)]
,

Ld(φ) =

V∑

v=1

K∑

k=1

φv,k

(
V∑

i=1

wi log
λi,k∑
j λj,k

− log φv,k

)
,

Almost all of the terms that appear in the likelihood term can be
computed in mappers; the only term that cannot are the terms that
depend on α, which is updated in the driver, and the variational
parameter λ, which is shared among all documents. All terms that
depend on α can be easily computed in the driver, while the terms
that depend on λ can be computed in each reducer.

Thus, computing the total likelihood proceeds as follows: each
mapper computes its contribution to the likelihood bound L, and
emits a special key that is unique to likelihood bound terms and
then aggregated in the reducer; the reducers add topic-specific terms
to the likelihood; these final values are then combined with the
contribution from α in the driver to compute a final likelihood
bound.

3.6 Structural Optimization
In examining Mr. LDA’s performance, the two largest perfor-

mance limitations were the large number of intermediate values
being generated by the mappers and the time it takes for mappers to
read in the current variational parameters during during the mapper
configuration phase.

Reducer Caching.
Recall that reducers sum over φ contributions and emit the λ

variational parameters, but mappers require a normalized form to
compute the expectation with of the topic with respect to the varia-
tional distribution. To improve the normalization step, we compute
the sum of the λ variational parameters in the reducer [38, 39], and
then emit this sum before we emit the other λ terms.

Although this requires O(V) additional memory, it is strictly less
than the memory required by mappers, so it in practice improves
performance by allowing mappers to more quickly begin processing
data.

File Merge.
Loading files in the distributed cache and configuring every map-

per and reducer is another bottleneck for this framework. This is
especially true if we launch a large number of reducers every iter-
ation — this will result in a large number of small outputs, since

Document Map: Update γ, φ

Test
Likelihood

Convergence

Parameters

Reducer

Document Map: Update γ, φ

Document Map: Update γ, φ

Document Map: Update γ, φ

Reducer

Reducer

Write λ

Sufficient
Statistics for
λ Update

Driver: Update α

Write α

Hessian
Terms

Distributed Cache

Figure 2: Workflow of Mr. LDA. Each iteration is broken into
three stages: computing document-specific variational param-
eters in parallel mappers, computing topic-specific parameters
in parallel reducers, and then updating global parameters in
the driver, which also monitors convergence of the algorithm.
Data flow is managed by the MapReduce framework: sufficient
statistics from the mappers are directed to appropriate reduc-
ers, and new parameters computed in reducers are distributed
to other computation units via the distributed cache.

Mr. LDA is designed to distribute workload equally. These par-
tial results would waste space if they are significantly smaller than
HDFS block size. Moreover, they cause a overhead in file transfer
through distributed cache. To alleviate this problem, we merge all
relevant output before sending them to distributed cache for the next
iteration.

4. FLEXIBILITY OF MR. LDA
In this section, we highlight the flexibility of Mr. LDA to accom-

modate extensions to LDA. These extensions are possible because
of the modular nature of Mr. LDA’s design.

4.1 Informed Prior
The standard practice in topic modeling is to use a same sym-

metric prior (i.e. ηv,k is the same for all topics k and words v).
However, the model and inference presented in Section 3 allows
for topics to have different priors. Thus, users can incorporate prior
information into the model.

For example, suppose we wanted to discover how different psy-
chological states were expressed in blogs or newspapers. If this
were our goal, we might create priors that captured psychological
categories to discover how they were expressed in a corpus. The
Linguistic Inquiry and Word Count (LIWC) dictionary [40] defines
68 categories encompassing psychological constructs and personal
concerns. For example, the anger LIWC category includes the
words “abuse,” “jerk,” and “jealous;” the anxiety category includes
“afraid,” “alarm,” and “avoid;” and the negative emotions category
includes “abandon,” “maddening,” and “sob.” Using this dictionary,
we built a prior η as follows:

ηv,k =

{
10, if v ∈ LIWC categoryk
0.01, otherwise

,

M

NLd K

N1d K
β1,kz1n w1n

θdα

βL,kzLn wLn

... ...

Figure 3: Graphical model for polylingual LDA [12]. Each doc-
ument has words in multiple languages. Inference learns the
topics across languages that have cooccurring words in the cor-
pus. The modular inference of Mr. LDA allows for inference for
this model to be accomplished by the same framework created
for monolingual LDA.

where ηv,k is the informed prior for word v of topic k. This is
accomplished via a slight modification of the reducer (i.e. to make
it aware of the values of η) and leaving the rest of the system
unchanged.

4.2 Polylingual LDA
In this section, we demonstrate the flexibility of Mr. LDA by

showing how its modular design allows for extending LDA beyond
a single language. PolyLDA [12] assumes a document-aligned
multilingual corpus. For example, articles in Wikipedia have links
to the version of the article in other languages; while the linked
documents are ostensibly on the same subject, they are usually
not direct translations, and are often written with a culture-specific
focus.

PolyLDA assumes that a single document has words in multiple
languages, but each document has a common, language agnostic
per-document distribution θ (Figure 3). Each topic also has different
facets for language; these topics end up being consistent because of
the links across language encoded in the consistent themes present
in documents.

Because of the modular way in which we implemented inference,
we can perform multilingual inference by embellishing each data
unit with a language identifier l and change inference as follows:

• Updating λ happens l times, once for each language. The
updates for a particular language ignores expected counts of
all other languages.
• Updating φ happens using only the relevant language for a

word.
• Updating γ happens as usual, combining the contributions of

all languages relevant for a document.

From an implementation perspective, PolyLDA is a collection
of monolingual Mr. LDA computations sequenced appropriately.
Mr. LDA’s approach of taking relatively simple computation units,
allowing them to scale, and preserving simple communication be-
tween computation units stands in contrast to the design choices
made by approaches using Gibbs sampling.

For example, Smola and Narayanamurthy [18] interleave the topic
and document counts during the computation of the conditional
distribution using Yao et al.’s “binning” approach [27]. While this
improves performance, changing any of the modeling assumptions
would potentially break this optimization.

In contrast, Mr. LDA’s philosophy allows for easier development
of extensions of LDA. While we only discuss two extensions here,

other extensions are possible. For example, implementing super-
vised LDA [41] only requires changing the computation of φ and a
regression; the rest of the model is unchanged. Implementing syn-
tactic topic models [42] requires changing the mapper to incorporate
syntactic dependencies.

5. EXPERIMENTS
We implemented Mr. LDA using Java with Hadoop 0.20.1 and

ran all experiments on a cluster containing 16 physical nodes; each
node has 16 2.4GHz cores, and has been configured to run a max-
imum of 6 map and 3 reduce tasks simultaneously. The cluster
is usually under a heavy, heterogeneous load. In this section, we
document the speed and likelihood comparison of Mr. LDA against
Mahout LDA, another large scale topic modeling implementation
based on variational inference. We report results on three datasets:

• TREC document collection (disks 4 and 5 [43]), newswire
documents from the Financial Times and LA Times. It con-
tains more than 300k distinct types over half a million doc-
uments. We remove types appearing fewer than 20 times,
reducing the vocabulary size to approximately 60k.
• The BlogAuthorship corpus [44], which contains about 10

million blog posts from American users. In contrast to the
newswire-heavy TREC corpus, the BlogAuthorship corpus is
more personal and informal. Again, terms in fewer than 20
documents are excluded, resulting in 53k distinct types.
• Paired English and German Wikipedia articles (more than half

a million in each language). As before, we ignore terms ap-
pearing in fewer than 20 documents, resulting in 170k English
word types and 210k German word types. While each pair
of linked documents shares a common subject (e.g. “George
Washington”), they are usually not direct translations. The
document pair mappings were established from Wikipedia’s
interlingual links.

5.1 Informed Priors
In this experiment, we build the informed priors from LIWC [40]

introduced in Section 4.1. We feed the same informed prior to
both the TREC dataset and BlogAuthorship corpus. Throughout
the experiments, we set the number of topics to 100, with a subset
guided by the informed prior.

Table 2 shows topics for both TREC and BlogAuthorship. The
prior acts as a seed, causing words used in similar contexts to be-
come part of the topic. This is important for computational social
scientists who want to discover how an abstract idea (represented
by a set of words) is actually expressed in a corpus. For example,
public news media (i.e. news articles like TREC) connect positive
emotions to entertainment, such as music, film and TV, whereas
social media (i.e. blog posts) connect it to religion. The Anxiety
topic in news relates to middle east, but in blogs it focuses on illness,
e.g. bird flu. In both corpora, Causation was linked to science and
technology.

Using informed priors can discover radically different words.
While LIWC is designed for relatively formal writing, it can also
discover Internet slang such as “lol” (“laugh out loud”) in Affective
Process category. As a result, an informed prior might be helpful in
aligning existing lexical resources with corpora with sparse and/or
out-of-dictionary vocabularies, e.g., Twitter data.

On the other hand, some discovered topics do not have a clear
relationship with the initial LIWC categories, such as the abbrevi-
ations and acronyms in Discrepancy category. In other cases, the
LIWC categories were different enough from the dataset that model

chose not to use topics with ill-fitting priors, e.g. the Cognitive
Process category.

5.2 Polylingual LDA
As discussed in Section 4.2, Mr. LDA’s modular design allows us

to consider models beyond vanilla LDA. To the best of our knowl-
edge, we believe this is the first framework for variational inference
for polylingual LDA [12], scalable or otherwise. In this experiment,
we fit 50 topics to paired English and German Wikipedia articles.
We let the program run for 33 iterations with 100 mappers and 50
reducers. Table 3 lists down some words from a set of randomly
chosen topics.

The results listed indicates a general equivalent topic layout for
both English and German corpus. For example, topic about Europe
(“french”, “paris”, “russian” and “moscow”) in English is matched
with the topic in German (“frankreich”, “paris”, “russischen” and
“moskau”). Similar behavior was observed for other topics.

The topics discovered by polylingual LDA are not exact matches,
however. For example, the second to last column in Table 3is about
North America, but the English words focus on Canada, while the
corresponding German topic focuses on the United States. Similarly,
the forth last column in English contains keywords like “hong”,
“kong” and “korean”, which did not appear in the top 10 words in
German. Since this corpus is not a direct translation, these discrep-
ancies might due to a different perspectives, different editorial styles,
or different cultural norms.

5.3 Scalability
To measure the scalability and accuracy of Mr. LDA, we compare

Mr. LDA with Mahout [19], another large scale topic modeling
package based on variational inference. We use Mahout-0.4 as
our baseline measure, with a comparable settings in Mr. LDA —
we set the memory limit for every mapper and reducer to 2-GB,
and start the hyper-parameter α from 1. Mr. LDA continuously
updates vector α in the driver program, whereas Mahout does not.
All experiments are carried out with 100 mapper instances and 20
reducer instances.

In these set of experiments, we use 90% of the entire TREC cor-
pus as training data, and the rest as our testing data. We then plot the
held-out log-likelihood of the test dataset against the training time.
Our empirical results show that, with identical data and hardware,
Mr. LDA out-performs Mahout LDA.

Both models had identical input and both models ran for 40 itera-
tions. The held-out likelihood was computed using the variational
distribution obtained after every iteration. Figure 4 shows the result
for 50 topics. Mr. LDA runs faster than Mahout. In addition, Mr.
LDA yields a better held-out likelihood than Mahout, probably as a
consequence of hyper-parameter updating.

When we double the total number of topics to 100, the difference
in processing time is magnified. Mr. LDA converges faster than
Mahout, again due to the hyper-parameter updating.

6. CONCLUSION AND FUTURE WORK
Understanding large text collections such as those generated by

social media requires algorithms that are unsupervised and scalable.
In this paper, we present Mr. LDA, which fulfills both of these
requirements. Beyond text, LDA is continually being applied to new
fields such as music [45] and source code [46]. All of these domains
struggle with the scale of data, and Mr. LDA could help them better
cope with large data.

Mr. LDA represents a viable alternative to the existing scalable
mechanisms for inference of topic models. Its design easily ac-
commodates other extensions, as we have demonstrated with the

Affective
Processes

Negative
Emotions

Positive
Emotions

Anxiety Anger Sadness Cognitive
Process

Insight Causation Discrepancy Tentative Certainty

O
ut

pu
t

fr
om

T
R

E
C

book fire film al polic stock coalit un technolog pound hotel art
life hospit music arab drug cent elect bosnia comput share travel italian
love medic play israel arrest share polit serb research profit fish itali
like damag entertain palestinian kill index conflict bosnian system dividend island artist
stori patient show isra prison rose anc herzegovina electron group wine museum
man accid tv india investig close think croatian scienc uk garden paint
write death calendar peac crime fell parliament greek test pre design exhibit
read doctor movie islam attack profit poland yugoslavia equip trust boat opera

O
ut

pu
t

fr
om

B
lo

g

easili sorri lord bird iraq level god system sa pretty film
dare crappi prayer diseas american weight christian http ko davida actor
truli bullshit pray shi countri disord church develop ang croydon robert
lol goddamn merci infect militari moder jesus program pa crossword william
needi messi etern blood nation miseri christ www ako chrono truli
jealousi shitti truli snake unit lbs religion web en jigsaw director
friendship bitchi humbl anxieti america loneli faith file lang 40th charact
betray angri god creatur force pain cathol servic el surrey richard

Table 2: Twelve Topics Discovered from TREC (top) and BlogAuthorship (bottom) collection with LIWC-derived informed prior.
The model associates TREC documents containing words like “arab”, “israel”, “palestinian” and “peace” with Anxiety. In the blog
corpus, however, the model associates words like “iraq”,“america*”, “militari”, “unit”, and “force” with the Anger category.

E
ng

lis
h

game opera greek league said italian soviet french japanese album york professor
games musical turkish cup family church political france japan song canada berlin
player composer region club could pope military paris australia released governor lied
players orchestra hugarian played childern italy union russian australian songs washington germany
released piano wine football death catholic russian la flag single president von
comics works hungary games father bishop power le zealand hit canadian worked
characters symphony greece career wrote roman israel des korea top john studied
character instruments turkey game mother rome empire russia kong singer served published
version composers ottoman championship never st republic moscow hong love house received
play performed romania player day ii country du korean chart county member

G
er

m
an

y

spiel musik ungarn saison frau papst regierung paris japan album new berlin
spieler komponist turkei gewann the rom republik franzosischen japanischen the staaten universitat
serie oper turkischen spielte familie ii sowjetunion frankreich australien platz usa deutschen
the komponisten griechenland karriere mutter kirche kam la japanische song vereinigten professor
erschien werke rumanien fc vater di krieg franzosische flagge single york studierte
gibt orchester ungarischen spielen leben bishof land le jap lied washington leben
commics wiener griechischen wechselte starb italien bevolkerung franzosischer australischen titel national deutscher
veroffentlic komposition istanbul mannschaft tod italienischen ende russischen neuseeland erreichte river wien
2 klavier serbien olympischen kinder konig reich moskau tokio erschien county arbeitete
konnen wien osmanischen platz tochter kloster politischen jean sydney a gouverneur erhielt

Table 3: Extracted Polylingual Topics from the Wikipedia Corpus. While topics are generally equivalent (e.g. on “computer games”
or “music”), some regional differences are expressed. For example, the “music” topic in German has two words referring to “Vienna”
(“wiener” and “wien”), while the corresponding concept in English does not appear until the 15th position.

addition of informed priors and multilingual topic modeling, and
the ability of variational inference to support non-conjugate distri-
butions allows for the development of a broader class of models
than could be built with Gibbs samplers alone. Mr. LDA, however,
would benefit from many of the efficient, scalable data structures
that improved other scalable statistical models [47]; incorporating
these insights would further improve performance and scalability.

While we focused on LDA, the approaches used here are appli-
cable to many other models. Variational inference is an attractive
inference technique for the MapReduce framework, as it allows
the selection of a variational distribution that breaks dependencies
among variables to enforce consistency with the computational con-
straints of MapReduce. Developing automatic ways to enforce
those computational constraints and then automatically derive infer-
ence [48] would allow for a greater variety of statistical models to
be learned efficiently in a parallel computing environment.

Variational inference is also attractive for its ability to handle
online updates. Mr. LDA could be extended to more efficiently
handle online batches in streaming inference [49], allowing for even
larger document collections to be quickly analyzed and understood.

7. ACKNOWLEDGMENTS
The authors would also like to thank Dr. Jimmy Lin for valuable

comments throughout this project and making data available for the
experiments. This research was supported by NSF grant #1018625.
Jordan Boyd-Graber is also supported by the Army Research Labo-
ratory through ARL Cooperative Agreement W911NF-09-2-0072.
Any opinions, findings, conclusions, or recommendations expressed
are the authors’ and do not necessarily reflect those of the sponsors.

8. REFERENCES
[1] D. M. Blei, A. Ng, and M. Jordan, “Latent Dirichlet

allocation,” Journal of Machine Learning Research, vol. 3, pp.
993–1022, 2003.

[2] F. Rob, L. Fei-Fei, P. Pietro, and Z. Andrew, “Learning object
categories from Google’s image search.” in International
Conference on Computer Vision, 2005.

[3] C. Wang, D. Blei, and L. Fei-Fei, “Simultaneous image
classification and annotation,” in Computer Vision and Pattern
Recognition, 2009.

[4] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing,
“Mixed membership stochastic blockmodels,” Journal of
Machine Learning Research, vol. 9, pp. 1981–2014, 2008.

0 0.5 1 1.5 2 2.5

x 10
4

−111

−108

−105

−102

−100

Mahout

Mr. LDA

Figure 4: Training Time vs. Held-out Likelihood on 50 top-
ics. This figure shows the accumulated training time of the
model against the held-out likelihood over Mr. LDA and Ma-
hout. The time and held-out likelihood are measured over 40
iterations with 50 topics. Markers indicate the finishing point
of a iteration. Mr. LDA out-performs Mahout both in speed
and performance.

[5] D. Falush, M. Stephens, and J. K. Pritchard, “Inference of
population structure using multilocus genotype data: linked
loci and correlated allele frequencies.” Genetics, vol. 164,
no. 4, pp. 1567–1587, 2003.

[6] J. Boyd-Graber and P. Resnik, “Holistic sentiment analysis
across languages: Multilingual supervised latent Dirichlet
allocation,” in Proceedings of Emperical Methods in Natural
Language Processing, 2010.

[7] T. L. Griffiths, M. Steyvers, D. M. Blei, and J. B. Tenenbaum,
“Integrating topics and syntax,” in Proceedings of Advances in
Neural Information Processing Systems, 2005.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in Symposium on Operating
System Design and Implementation, San Francisco, California,
2004, pp. 137–150.

[9] C. Dyer, A. Cordova, A. Mont, and J. Lin, “Fast, easy and
cheap: Construction of statistical machine translation models
with MapReduce,” in Workshop on SMT (ACL 2008),
Columbus, Ohio, 2008.

[10] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, “Large
language models in machine translation,” in Proceedings of
Emperical Methods in Natural Language Processing, 2007.

[11] S. B. Cohen and N. A. Smith, “Shared logistic normal
distributions for soft parameter tying in unsupervised grammar
induction,” in Conference of the North American Chapter of
the Association for Computational Linguistics, 2009.

[12] D. Mimno, H. Wallach, J. Naradowsky, D. Smith, and
A. McCallum, “Polylingual topic models,” in Proceedings of
Emperical Methods in Natural Language Processing, 2009,
IR, p. 880–889.

[13] A. K. McCallum, “Mallet: A machine learning for language
toolkit,” 2002, http://www.cs.umass.edu/ mccallum/mallet.

[14] F. Yan, N. Xu, and Y. Qi, “Parallel inference for latent
dirichlet allocation on graphics processing units,” in
Proceedings of Advances in Neural Information Processing
Systems, 2009, pp. 2134–2142.

0 1 2 3 4 5

x 10
4

−110

−105

−100

−95

−90

Mahout

Mr. LDA

Figure 5: Training Time vs. Held-out Likelihood on 100 topics.
Similar to Figure 4, this figure shows the accumulated training
time of the model against the held-out likelihood for Mr. LDA
and Mahout over 40 iterations, but for 100 topics. Markers
indicate the finishing point of a iteration.

[15] A. Asuncion, P. Smyth, and M. Welling, “Asynchronous
distributed learning of topic models,” in Proceedings of
Advances in Neural Information Processing Systems, 2008.

[16] R. Nallapati, W. Cohen, and J. Lafferty, “Parallelized
variational EM for latent Dirichlet allocation: An
experimental evaluation of speed and scalability,” in ICDMW,
2007.

[17] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y. Chang,
“PLDA: parallel latent Dirichlet allocation for large-scale
applications,” in International Conference on Algorithmic
Aspects in Information and Management, 2009.

[18] A. J. Smola and S. Narayanamurthy, “An architecture for
parallel topic models,” International Conference on Very
Large Databases, vol. 3, 2010.

[19] A. S. Foundation, I. Drost, T. Dunning, J. Eastman,
O. Gospodnetic, G. Ingersoll, J. Mannix, S. Owen, and
K. Wettin, “Apache Mahout,” 2010,
http://mloss.org/software/view/144/.

[20] R. M. Neal, “Probabilistic inference using Markov chain
Monte Carlo methods,” University of Toronto, Tech. Rep.
CRG-TR-93-1, 1993.

[21] C. Robert and G. Casella, Monte Carlo Statistical Methods,
ser. Springer Texts in Statistics. New York, NY:
Springer-Verlag, 2004.

[22] Y. W. Teh, “A hierarchical Bayesian language model based on
Pitman-Yor processes,” in Proceedings of the Association for
Computational Linguistics, 2006.

[23] T. L. Griffiths and M. Steyvers, “Finding scientific topics,”
Proceedings of the National Academy of Sciences, vol. 101,
no. Suppl 1, pp. 5228–5235, 2004.

[24] J. R. Finkel, T. Grenager, and C. D. Manning, “The infinite
tree,” in Proceedings of the Association for Computational
Linguistics, 2007.

[25] D. Newman, A. Asuncion, P. Smyth, and M. Welling,
“Distributed Inference for Latent Dirichlet Allocation,” in
Proceedings of Advances in Neural Information Processing
Systems, 2008.

[26] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. Smola, “Scalable inference in latent variable models,” in
WSDM, 2012, pp. 123–132.

[27] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for
topic model inference on streaming document collections,” in
Knowledge Discovery and Data Mining, 2009.

[28] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul,
“An introduction to variational methods for graphical models,”
Machine Learning, vol. 37, no. 2, pp. 183–233, 1999.

[29] M. J. Wainwright and M. I. Jordan, “Graphical models,
exponential families, and variational inference,” Foundations
and Trends in Machine Learning, vol. 1, no. 1–2, pp. 1–305,
2008.

[30] D. M. Blei and M. I. Jordan, “Variational inference for
Dirichlet process mixtures,” Journal of Bayesian Analysis,
vol. 1, no. 1, pp. 121–144, 2005.

[31] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei,
“Hierarchical Dirichlet processes,” Journal of the American
Statistical Association, vol. 101, no. 476, pp. 1566–1581,
2006.

[32] K. Kurihara, M. Welling, and N. Vlassis, “Accelerated
variational Dirichlet process mixtures,” in Proceedings of
Advances in Neural Information Processing Systems,
Cambridge, MA, 2007.

[33] J. Wolfe, A. Haghighi, and D. Klein, “Fully distributed EM
for very large datasets,” in Proceedings of International
Conference of Machine Learning, 2008, pp. 1184–1191.

[34] H. Wallach, D. Mimno, and A. McCallum, “Rethinking LDA:
Why priors matter,” in Proceedings of Advances in Neural
Information Processing Systems, 2009.

[35] T. White, Hadoop: The Definitive Guide (Second Edition),
2nd ed., M. Loukides, Ed. O’Reilly, 2010.

[36] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On
smoothing and inference for topic models,” in Proceedings of
Uncertainty in Artificial Intelligence, 2009.

[37] T. P. Minka, “Estimating a dirichlet distribution,” Microsoft,
Tech. Rep., 2000, http://research.microsoft.com/en-
us/um/people/minka/papers/dirichlet/.

[38] J. Lin and C. Dyer, Data-Intensive Text Processing with
MapReduce, ser. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers, 2010.

[39] C. Lin and Y. He, “Joint sentiment/topic model for sentiment
analysis,” in Proceedings of the ACM International
Conference on Information and Knowledge Management,
2009.

[40] J. W. Pennebaker and M. E. Francis, Linguistic Inquiry and
Word Count, 1st ed. Lawrence Erlbaum, August 1999.

[41] D. M. Blei and J. D. McAuliffe, “Supervised topic models,” in
Proceedings of Advances in Neural Information Processing
Systems. MIT Press, 2007.

[42] J. Boyd-Graber and D. M. Blei, “Syntactic topic models,” in
Proceedings of Advances in Neural Information Processing
Systems, 2008.

[43] NIST, “Trec special database 22,” 1994,
http://www.nist.gov/srd/nistsd22.htm.

[44] M. Koppel, J. Schler, S. Argamon, and J. Pennebaker, “Effects
of age and gender on blogging,” in In AAAI 2006 Symposium
on Computational Approaches to Analysing Weblogs, 2006.

[45] D. Hu and L. K. Saul, “A probabilistic model of unsupervised
learning for musical-key profiles,” in International Society for
Music Information Retrieval Conference, 2009.

[46] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business
topics in source code using latent dirichlet allocation,” in
ISEC, 2008.

[47] D. Talbot and M. Osborne, “Smoothed bloom filter language
models: Tera-scale lms on the cheap,” in ACL, 2007, pp.
468–476.

[48] J. Winn and C. M. Bishop, “Variational message passing,”
Journal of Machine Learning Research, vol. 6, pp. 661–694,
2005.

[49] M. Hoffman, D. M. Blei, and F. Bach, “Online learning for
latent dirichlet allocation,” in NIPS, 2010.

