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Abstract

We develop latent Dirichlet allocation with
WORDNET (LDAWN), an unsupervised
probabilistic topic model that includes word
sense as a hidden variable. We develop a
probabilistic posterior inference algorithm
for simultaneously disambiguating a corpus
and learning the domains in which to con-
sider each word. Using the WORDNET hi-
erarchy, we embed the construction of Ab-
ney and Light (1999) in the topic model and
show that automatically learned domains
improve WSD accuracy compared to alter-
native contexts.

1 Introduction

Word sense disambiguation (WSD) is the task of
determining the meaning of an ambiguous word in
its context. It is an important problem in natural
language processing (NLP) because effective WSD
can improve systems for tasks such as information
retrieval, machine translation, and summarization.
In this paper, we develop latent Dirichlet alloca-
tion with WORDNET (LDAWN), a generative prob-
abilistic topic model for WSD where the sense of
the word is a hidden random variable that is inferred
from data.

There are two central advantages to this approach.
First, with LDAWN we automatically learn the con-
text in which a word is disambiguated. Rather
than disambiguating at the sentence-level or the
document-level, our model uses the other words that
share the same hidden topic across many documents.

Second, LDAWN is a fully-fledged generative
model. Generative models are modular and can be
easily combined and composed to form more com-

plicated models. (As a canonical example, the ubiq-
uitous hidden Markov model is a series of mixture
models chained together.) Thus, developing a gen-
erative model for WSD gives other generative NLP
algorithms a natural way to take advantage of the
hidden senses of words.

In general, topic models are statistical models of
text that posit a hidden space of topics in which the
corpus is embedded (Blei et al., 2003). Given a
corpus, posterior inference in topic models amounts
to automatically discovering the underlying themes
that permeate the collection. Topic models have re-
cently been applied to information retrieval (Wei and
Croft, 2006), text classification (Blei et al., 2003),
and dialogue segmentation (Purver et al., 2006).

While topic models capture the polysemous use
of words, they do not carry the explicit notion of
sense that is necessary for WSD. LDAWN extends
the topic modeling framework to include a hidden
meaning in the word generation process. In this
case, posterior inference discovers both the topics
of the corpus and the meanings assigned to each of
its words.

After introducing a disambiguation scheme based
on probabilistic walks over the WORDNET hierar-
chy (Section 2), we embed the WORDNET-WALK

in a topic model, where each topic is associated with
walks that prefer different neighborhoods of WORD-
NET (Section 2.1). Then, we describe a Gibbs sam-
pling algorithm for approximate posterior inference
that learns the senses and topics that best explain a
corpus (Section 3). Finally, we evaluate our system
on real-world WSD data, discuss the properties of
the topics and disambiguation accuracy results, and
draw connections to other WSD algorithms from the
research literature.
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Figure 1: The possible paths to reach the word “colt”
in WORDNET. Dashed lines represent omitted links.
All words in the synset containing “revolver” are
shown, but only one word from other synsets is
shown. Edge labels are probabilities of transitioning
from synset i to synset j. Note how this favors fre-
quent terms, such as “revolver,” over ones like “six-
shooter.”

2 Topic models and WordNet

The WORDNET-WALK is a probabilistic process of
word generation that is based on the hyponomy re-
lationship in WORDNET (Miller, 1990). WORD-
NET, a lexical resource designed by psychologists
and lexicographers to mimic the semantic organiza-
tion in the human mind, links “synsets” (short for
synonym sets) with myriad connections. The spe-
cific relation we’re interested in, hyponomy, points
from general concepts to more specific ones and is
sometimes called the “is-a” relationship.

As first described by Abney and Light (1999), we
imagine an agent who starts at synset [entity],
which points to every noun in WORDNET 2.1 by
some sequence of hyponomy relations, and then
chooses the next node in its random walk from the
hyponyms of its current position. The agent repeats
this process until it reaches a leaf node, which corre-
sponds to a single word (each of the synset’s words
are unique leaves of a synset in our construction).
For an example of all the paths that might gener-
ate the word “colt” see Figure 1. The WORDNET-
WALK is parameterized by a set of distributions over
children for each synset s in WORDNET, βs.

Symbol Meaning
K number of topics
βk,s multinomial probability vector over

the successors of synset s in topic k
S scalar that, when multiplied by αs

gives the prior for βk,s
αs normalized vector whose ith entry,

when multiplied by S, gives the prior
probability for going from s to i

θd multinomial probability vector over
the topics that generate document d

τ prior for θ
z assignment of a word to a topic
Λ a path assignment through

WORDNET ending at a word.
λi,j one link in a path λ going from syn-

set i to synset j.

Table 1: A summary of the notation used in the pa-
per. Bold vectors correspond to collections of vari-
ables (i.e. zu refers to a topic of a single word, but
z1:D are the topics assignments of words in docu-
ment 1 through D).

2.1 A topic model for WSD

The WORDNET-WALK has two important proper-
ties. First, it describes a random process for word
generation. Thus, it is a distribution over words
and thus can be integrated into any generative model
of text, such as topic models. Second, the synset
that produces each word is a hidden random vari-
able. Given a word assumed to be generated by a
WORDNET-WALK, we can use posterior inference
to predict which synset produced the word.

These properties allow us to develop LDAWN,
which is a fusion of these WORDNET-WALKs and
latent Dirichlet allocation (LDA) (Blei et al., 2003),
a probabilistic model of documents that is an im-
provement to pLSI (Hofmann, 1999). LDA assumes
that there are K “topics,” multinomial distributions
over words, which describe a collection. Each docu-
ment exhibits multiple topics, and each word in each
document is associated with one of them.

Although the term “topic” evokes a collection of
ideas that share a common theme and although the
topics derived by LDA seem to possess semantic
coherence, there is no reason to believe this would



be true of the most likely multinomial distributions
that could have created the corpus given the assumed
generative model. That semantically similar words
are likely to occur together is a byproduct of how
language is actually used.

In LDAWN, we replace the multinomial topic dis-
tributions with a WORDNET-WALK, as described
above. LDAWN assumes a corpus is generated by
the following process (for an overview of the nota-
tion used in this paper, see Table 1).

1. For each topic, k ∈ {1, . . . ,K}
(a) For each synset s, randomly choose transition prob-

abilities βk,s ∼ Dir(Sαs).

2. For each document d ∈ {1, . . . , D}
(a) Select a topic distribution θd ∼ Dir(τ)
(b) For each word n ∈ {1, . . . , Nd}

i. Select a topic z ∼ Mult(1, θd)
ii. Create a path Λd,n starting with λ0 as the root

node.
iii. From children of λi:

A. Choose the next node in the walk λi+1 ∼
Mult(1, βz,λi)

B. If λi+1 is a leaf node, generate the associ-
ated word. Otherwise, repeat.

Every element of this process, including the
synsets, is hidden except for the words of the doc-
uments. Thus, given a collection of documents, our
goal is to perform posterior inference, which is the
task of determining the conditional distribution of
the hidden variables given the observations. In the
case of LDAWN, the hidden variables are the param-
eters of the K WORDNET-WALKs, the topic assign-
ments of each word in the collection, and the synset
path of each word. In a sense, posterior inference
reverses the process described above.

Specifically, given a document collection w1:D,
the full posterior is

p(β1:K ,z1:D,θ1:D,Λ1:D |w1:D, τ, Sα) ∝(∏K
k=1 p(βk |Sα)

∏D
d=1 p(θd | τ)

∏Nd
n=1 p(Λd,n |β1:K)p(wd,n |Λd,n)

)
, (1)

where the constant of proportionality is the marginal
likelihood of the observed data.

Note that by encoding the synset paths as a hid-
den variable, we have posed the WSD problem as
a question of posterior probabilistic inference. Fur-
ther note that we have developed an unsupervised

model. No labeled data is needed to disambiguate a
corpus. Learning the posterior distribution amounts
to simultaneously decomposing a corpus into topics
and its words into their synsets.

The intuition behind LDAWN is that the words
in a topic will have similar meanings and thus share
paths within WORDNET. For example, WORDNET

has two senses for the word “colt;” one referring to a
young male horse and the other to a type of handgun
(see Figure 1).

Although we have no a priori way of know-
ing which of the two paths to favor for a
document, we assume that similar concepts
will also appear in the document. Documents
with unambiguous nouns such as “six-shooter”
and “smoothbore” would make paths that pass
through the synset [firearm, piece,
small-arm] more likely than those go-
ing through [animal, animate being,
beast, brute, creature, fauna]. In
practice, we hope to see a WORDNET-WALK that
looks like Figure 2, which points to the right sense
of cancer for a medical context.

LDAWN is a Bayesian framework, as each vari-
able has a prior distribution. In particular, the
Dirichlet prior for βs, specified by a scaling factor
S and a normalized vector αs fulfills two functions.
First, as the overall strength of S increases, we place
a greater emphasis on the prior. This is equivalent to
the need for balancing as noted by Abney and Light
(1999).

The other function that the Dirichlet prior serves
is to enable us to encode any information we have
about how we suspect the transitions to children
nodes will be distributed. For instance, we might ex-
pect that the words associated with a synset will be
produced in a way roughly similar to the token prob-
ability in a corpus. For example, even though “meal”
might refer to both ground cereals or food eaten at
a single sitting and “repast” exclusively to the lat-
ter, the synset [meal, repast, food eaten
at a single sitting] still prefers to transi-
tion to “meal” over “repast” given the overall corpus
counts (see Figure 1, which shows prior transition
probabilities for “revolver”).

By setting αs,i, the prior probability of transition-
ing from synset s to node i, proportional to the to-
tal number of observed tokens in the children of i,



we introduce a probabilistic variation on informa-
tion content (Resnik, 1995). As in Resnik’s defini-
tion, this value for non-word nodes is equal to the
sum of all the frequencies of hyponym words. Un-
like Resnik, we do not divide frequency among all
senses of a word; each sense of a word contributes
its full frequency to α.

3 Posterior Inference with Gibbs Sampling

As described above, the problem of WSD corre-
sponds to posterior inference: determining the prob-
ability distribution of the hidden variables given ob-
served words and then selecting the synsets of the
most likely paths as the correct sense. Directly com-
puting this posterior distribution, however, is not
tractable because of the difficulty of calculating the
normalizing constant in Equation 1.

To approximate the posterior, we use Gibbs sam-
pling, which has proven to be a successful approx-
imate inference technique for LDA (Griffiths and
Steyvers, 2004). In Gibbs sampling, like all Markov
chain Monte Carlo methods, we repeatedly sample
from a Markov chain whose stationary distribution is
the posterior of interest (Robert and Casella, 2004).
Even though we don’t know the full posterior, the
samples can be used to form an empirical estimate
of the target distribution. In LDAWN, the samples
contain a configuration of the latent semantic states
of the system, revealing the hidden topics and paths
that likely led to the observed data.

Gibbs sampling reproduces the posterior distri-
bution by repeatedly sampling each hidden variable
conditioned on the current state of the other hidden
variables and observations. More precisely, the state
is given by a set of assignments where each word
is assigned to a path through one of K WORDNET-
WALK topics: uth word wu has a topic assignment
zu and a path assignment Λu. We use z−u and Λ−u

to represent the topic and path assignments of all
words except for u, respectively.

Sampling a new topic for the word wu requires
us to consider all of the paths that wu can take in
each topic and the topics of the other words in the
document u is in. The probability of wu taking on
topic i is proportional to

p(zu = i |z−u)
∑

λ p(λ |Λ−u)1[wu ∈ λ], (2)

which is the probability of selecting z from θd times
the probability of a path generating wu from a path
in the ith WORDNET-WALK.

The first term, the topic probability of the uth

word, is based on the assignments to the K topics
for words other than u in this document,

p(zu = i|z−u) =
n
(d)
−u,i + τi

∑
j n

(d)
−u,j +

∑K
j=1 τj

, (3)

where n
(d)
−u,j is the number of words other than u in

topic j for the document d that u appears in.
The second term in Equation 2 is a sum over the

probabilities of every path that could have generated
the word wu. In practice, this sum can be com-
puted using a dynamic program for all nodes that
have unique parent (i.e. those that can’t be reached
by more than one path). Although the probability of
a path is specific to the topic, as the transition prob-
abilities for a synset are different across topics, we
will omit the topic index in the equation,

p(Λu = λ|Λ−u, ) =
∏l−1

i=1 β
−u
λi,λi+1

. (4)

3.1 Transition Probabilities

Computing the probability of a path requires us to
take a product over our estimate of the probability
from transitioning from i to j for all nodes i and j in
the path λ. The other path assignments within this
topic, however, play an important role in shaping the
transition probabilities.

From the perspective of a single node i, only paths
that pass through that node affect the probability of
u also passing through that node. It’s convenient to
have an explicit count of all of the paths that tran-
sition from i to j in this topic’s WORDNET-WALK,
so we use T−u

i,j to represent all of the paths that go
from i to j in a topic other than the path currently
assigned to u.

Given the assignment of all other words to paths,
calculating the probability of transitioning from i to
j with word u requires us to consider the prior α and
the observations Ti,j in our estimate of the expected
value of the probability of transitioning from i to j,

β−u
i,j =

T−u
i,j + Siαi,j

Si +
∑

k T
−u
i,k

. (5)



As mentioned in Section 2.1, we paramaterize the
prior for synset i as a vector αi, which sums to one,
and a scale parameter S.

The next step, once we’ve selected a topic, is to
select a path within that topic. This requires the
computation of the path probabilities as specified in
Equation 4 for all of the paths wu can take in the
sampled topic and then sampling from the path prob-
abilities.

The Gibbs sampler is essentially a randomized
hill climbing algorithm on the posterior likelihood as
a function of the configuration of hidden variables.
The numerator of Equation 1 is proportional to that
posterior and thus allows us to track the sampler’s
progress. We assess convergence to a local mode of
the posterior by monitoring this quantity.

4 Experiments

In this section, we describe the properties of the
topics induced by running the previously described
Gibbs sampling method on corpora and how these
topics improve WSD accuracy.

Of the two data sets used during the course of
our evaluation, the primary dataset was SEMCOR

(Miller et al., 1993), which is a subset of the Brown
corpus with many nouns manually labeled with the
correct WORDNET sense. The words in this dataset
are lemmatized, and multi-word expressions that are
present in WORDNET are identified. Only the words
in SEMCOR were used in the Gibbs sampling pro-
cedure; the synset assignments were only used for
assessing the accuracy of the final predictions.

We also used the British National Corpus, which
is not lemmatized and which does not have multi-
word expressions. The text was first run through
a lemmatizer, and then sequences of words which
matched a multi-word expression in WORDNET

were joined together into a single word. We took
nouns that appeared in SEMCOR twice or in the
BNC at least 25 times and used the BNC to com-
pute the information-content analog α for individ-
ual nouns (For example, the probabilities in Figure 1
correspond to α).

4.1 Topics

Like the topics created by structures such as LDA,
the topics in Table 2 coalesce around reasonable

themes. The word list was compiled by summing
over all of the possible leaves that could have gen-
erated each of the words and sorting the words by
decreasing probability. In the vast majority of cases,
a single synset’s high probability is responsible for
the words’ positions on the list.

Reassuringly, many of the top senses for the
present words correspond to the most frequent sense
in SEMCOR. For example, in Topic 4, the senses for
“space” and “function” correspond to the top senses
in SEMCOR, and while the top sense for “set” corre-
sponds to “an abstract collection of numbers or sym-
bols” rather than “a group of the same kind that be-
long together and are so used,” it makes sense given
the math-based words in the topic. “Point,” however,
corresponds to the sense used in the phrase “I got to
the point of boiling the water,” which is neither the
top SEMCOR sense nor a sense which makes sense
given the other words in the topic.

While the topics presented in Table 2 resemble
the topics one would obtain through models like
LDA (Blei et al., 2003), they are not identical. Be-
cause of the lengthy process of Gibbs sampling, we
initially thought that using LDA assignments as an
initial state would converge faster than a random ini-
tial assignment. While this was the case, it con-
verged to a state that less probable than the randomly
initialized state and no better at sense disambigua-
tion (and sometimes worse). The topics presented
in 2 represent words both that co-occur together in
a corpus and co-occur on paths through WORDNET.
Because topics created through LDA only have the
first property, they usually do worse in terms of both
total probability and disambiguation accuracy (see
Figure 3).

Another interesting property of topics in LDAWN
is that, with higher levels of smoothing, words that
don’t appear in a corpus (or appear rarely) but are
in similar parts of WORDNET might have relatively
high probability in a topic. For example, “maturity”
in topic two in Table 2 is sandwiched between “foot”
and “center,” both of which occur about five times
more than “maturity.” This might improve LDA-
based information retrieval schemes (Wei and Croft,
2006) .
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Figure 2: The possible paths to reach the word “cancer” in WORDNET along with transition probabilities
from the medically-themed Topic 2 in Table 2, with the most probable path highlighted. The dashed lines
represent multiple links that have been consolidated, and synsets are represented by their offsets within
WORDNET 2.1. Some words for immediate hypernyms have also been included to give context. In all other
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
president growth material point water plant music

party age object number house change film
city treatment color value road month work

election feed form function area worker life
administration day subject set city report time

official period part square land mercer world
office head self space home requirement group
bill portion picture polynomial farm bank audience

yesterday length artist operator spring farmer play
court level art component bridge production thing
meet foot patient corner pool medium style
police maturity communication direction site petitioner year
service center movement curve interest relationship show

Table 2: The most probable words from six randomly chosen WORDNET-walks from a thirty-two topic
model trained on the words in SEMCOR. These are summed over all of the possible synsets that generate
the words. However, the vast majority of the contributions come from a single synset.



 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

A
cc

ur
ac

y

Iteration

Unseeded
Seeded with LDA

-96000

-94000

-92000

-90000

-88000

-86000

-84000

-82000

-80000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

M
od

el
 P

ro
ba

bi
lit

y

Iteration

Unseeded
Seeded with LDA

Figure 3: Topics seeded with LDA initially have
a higher disambiguation accuracy, but are quickly
matched by unseeded topics. The probability for the
seeded topics starts lower and remains lower.

4.2 Topics and the Weight of the Prior

Because the Dirichlet smoothing factor in part
determines the topics, it also affects the disam-
biguation. Figure 4 shows the modal disambigua-
tion achieved for each of the settings of S =
{0.1, 1, 5, 10, 15, 20}. Each line is one setting of K
and each point on the line is a setting of S. Each
data point is a run for the Gibbs sampler for 10,000
iterations. The disambiguation, taken at the mode,
improved with moderate settings of S, which sug-
gests that the data are still sparse for many of the
walks, although the improvement vanishes if S dom-
inates with much larger values. This makes sense,
as each walk has over 100,000 parameters, there are
fewer than 100,000 words in SEMCOR, and each
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proves accuracy. As smoothing increases, the prior
(based on token frequency) becomes stronger. Ac-
curacy is the percentage of correctly disambiguated
polysemous words in SEMCOR at the mode.

word only serves as evidence to at most 19 parame-
ters (the length of the longest path in WORDNET).

Generally, a greater number of topics increased
the accuracy of the mode, but after around sixteen
topics, gains became much smaller. The effect of α
is also related to the number of topics, as a value of S
for a very large number of topics might overwhelm
the observed data, while the same value of S might
be the perfect balance for a smaller number of topics.
For comparison, the method of using a WORDNET-
WALK applied to smaller contexts such as sentences
or documents achieves an accuracy of between 26%
and 30%, depending on the level of smoothing.

5 Error Analysis

This method works well in cases where the delin-
eation can be readily determined from the over-
all topic of the document. Words such as “kid,”
“may,” “shear,” “coach,” “incident,” “fence,” “bee,”
and (previously used as an example) “colt” were
all perfectly disambiguated by this method. Figure
2 shows the WORDNET-WALK corresponding to a
medical topic that correctly disambiguates “cancer.”

Problems arose, however, with highly frequent



words, such as “man” and “time” that have many
senses and can occur in many types of documents.
For example, “man” can be associated with many
possible meanings: island, game equipment, ser-
vant, husband, a specific mammal, etc.

Although we know that the “adult male” sense
should be preferred, the alternative meanings will
also be likely if they can be assigned to a topic
that shares common paths in WORDNET; the doc-
uments contain, however, many other places, jobs,
and animals which are reasonable explanations (to
LDAWN) of how “man” was generated. Unfortu-
nately, “man” is such a ubiquitous term that top-
ics, which are derived from the frequency of words
within an entire document, are ultimately uninfor-
mative about its usage.

While mistakes on these highly frequent terms
significantly hurt our accuracy, errors associated
with less frequent terms reveal that WORDNET’s
structure is not easily transformed into a probabilis-
tic graph. For instance, there are two senses of
the word “quarterback,” a player in American foot-
ball. One is position itself and the other is a per-
son playing that position. While one would expect
co-occurrence in sentences such as “quarterback is a
easy position, so our quarterback is happy,” the paths
to both terms share only the root node, thus making
it highly unlikely a topic would cover both senses.

Because of WORDNET’s breadth, rare senses
also impact disambiguation. For example, the
metonymical use of “door” to represent a whole
building as in the phrase “girl next door” is un-
der the same parent as sixty other synsets contain-
ing “bridge,” “balcony,” “body,” “arch,” “floor,” and
“corner.” Surrounded by such common terms that
are also likely to co-occur with the more conven-
tional meanings of door, this very rare sense be-
comes the preferred disambiguation of “door.”

6 Related Work

Abney and Light’s initial probabilistic WSD ap-
proach (1999) was further developed into a Bayesian
network model by Ciaramita and Johnson (2000),
who likewise used the appearance of monosemous
terms close to ambiguous ones to “explain away” the
usage of ambiguous terms in selectional restrictions.
We have adapted these approaches and put them into

the context of a topic model.
Recently, other approaches have created ad hoc

connections between synsets in WORDNET and then
considered walks through the newly created graph.
Given the difficulties of using existing connections
in WORDNET, Mihalcea (2005) proposed creating
links between adjacent synsets that might comprise
a sentence, initially setting weights to be equal to
the Lesk overlap between the pairs, and then using
the PageRank algorithm to determine the stationary
distribution over synsets.

6.1 Topics and Domains
Yarowsky was one of the first to contend that “there
is one sense for discourse” (1992). This has lead
to the approaches like that of Magnini (Magnini et
al., 2001) that attempt to find the category of a text,
select the most appropriate synset, and then assign
the selected sense using domain annotation attached
to WORDNET.

LDAWN is different in that the categories are not
an a priori concept that must be painstakingly anno-
tated within WORDNET and require no augmenta-
tion of WORDNET. This technique could indeed be
used with any hierarchy. Our concepts are the ones
that best partition the space of documents and do the
best job of describing the distinctions of diction that
separate documents from different domains.

6.2 Similarity Measures
Our approach gives a probabilistic method of us-
ing information content (Resnik, 1995) as a start-
ing point that can be adjusted to cluster words in
a given topic together; this is similar to the Jiang-
Conrath similarity measure (1997), which has been
used in many applications in addition to disambigua-
tion. Patwardhan (2003) offers a broad evaluation of
similarity measures for WSD.

Our technique for combining the cues of topics
and distance in WORDNET is adjusted in a way sim-
ilar in spirit to Buitelaar and Sacaleanu (2001), but
we consider the appearance of a single term to be
evidence for not just that sense and its immediate
neighbors in the hyponomy tree but for all of the
sense’s children and ancestors.

Like McCarthy (2004), our unsupervised system
acquires a single predominant sense for a domain
based on a synthesis of information derived from a



textual corpus, topics, and WORDNET-derived sim-
ilarity, a probabilistic information content measure.
By adding syntactic information from a thesaurus
derived from syntactic features (taken from Lin’s au-
tomatically generated thesaurus (1998)), McCarthy
achieved 48% accuracy in a similar evaluation on
SEMCOR; LDAWN is thus substantially less effec-
tive in disambiguation compared to state-of-the-art
methods. This suggests, however, that other meth-
ods might be improved by adding topics and that our
method might be improved by using more informa-
tion than word counts.

7 Conclusion and Future Work

The LDAWN model presented here makes two con-
tributions to research in automatic word sense dis-
ambiguation. First, we demonstrate a method for au-
tomatically partitioning a document into topics that
includes explicit semantic information. Second, we
show that, at least for one simple model of WSD,
embedding a document in probabilistic latent struc-
ture, i.e., a “topic,” can improve WSD.

There are two avenues of research with LDAWN
that we will explore. First, the statistical nature of
this approach allows LDAWN to be used as a com-
ponent in larger models for other language tasks.
Other probabilistic models of language could in-
sert the ability to query synsets or paths of WORD-
NET. Similarly, any topic based information re-
trieval scheme could employ topics that include se-
mantically relevant (but perhaps unobserved) terms.
Incorporating this model in a larger syntactically-
aware model, which could benefit from the local
context as well as the document level context, is an
important component of future research.
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