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Abstract

While topic models can discover patterns of word usage in large corpora, it is
difficult to meld this unsupervised structure with noisy, human-provided labels,
especially when the label space is large. In this paper, we present a model—Label
to Hierarchy (L2H)—that can induce a hierarchy of user-generated labels and the
topics associated with those labels from a set of multi-labeled documents. The
model is robust enough to account for missing labels from untrained, disparate
annotators and provide an interpretable summary of an otherwise unwieldy label
set. We show empirically the effectiveness of L2H in predicting held-out words
and labels for unseen documents.

1 Understanding Large Text Corpora through Label Annotations

Probabilistic topic models [4] discover the thematic structure of documents from news, blogs, and
web pages. Typical unsupervised topic models such as latent Dirichlet allocation [7, LDA] uncover
topics from unannotated documents. In many settings, however, documents are also associated
with additional data, which provide a foundation for joint models of text with continuous response
variables [6, 48, 27], categorical labels [37, 18, 46, 26] or link structure [9].

This paper focuses on additional information in the form of multi-labeled data, where each document
is tagged with a set of labels. These data are ubiquitous. Web pages are tagged with multiple
directories,1 books are labeled with different categories or political speeches are annotated with
multiple issues.2 Previous topic models on multi-labeled data focus on a small set of relatively
independent labels [25, 36, 46]. Unfortunately, in many real-world examples, the number of labels—
from hundreds to thousands—is incompatible with the independence assumptions of these models.

In this paper, we capture the dependence among the labels using a learned tree-structured hierarchy.
Our proposed model, L2H—Label to Hierarchy—learns from label co-occurrence and word usage to
discover a hierarchy of topics associated with user-generated labels. We show empirically that L2H
can improve over relevant baselines in predicting words or missing labels in two prediction tasks.
L2H is designed to explicitly capture the relationships among labels to discover a highly interpretable
hierarchy from multi-labeled data. This interpretable hierarchy helps improve prediction performance
and also provides an effective way to search, browse and understand multi-labeled data [17, 10, 8, 12].

∗Part of this work was done while the first author interned at Facebook.
1Open Directory Project (http://www.dmoz.org/)
2Policy Agenda Codebook (http://policyagendas.org/)
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2 L2H: Capturing Label Dependencies using a Tree-structured Hierarchy

Discovering a topical hierarchy from text has been the focus of much topic modeling research. One
popular approach is to learn an unsupervised hierarchy of topics. For example, hLDA [5] learns
an unbounded tree-structured hierarchy of topics from unannotated documents. One drawback of
hLDA is that documents only are associated with a single path in the topic tree. Recent work
relaxing this restriction include TSSB [1], nHDP [30], nCRF [2] and SHLDA [27]. Going beyond
tree structure, PAM [20] captures the topic hierarchy using a pre-defined DAG, inspiring more flexible
extensions [19, 24]. However, since only unannotated text is used to infer the hierarchical topics,
it usually requires an additional step of topic labeling to make them interpretable. This difficulty
motivates work leveraging existing taxonomies such as HSLDA [31] and hLLDA [32].

A second active area of research is constructing a taxonomy from multi-labeled data. For example,
Heymann and Garcia-Molina [17] extract a tag hierarchy using the tag network centrality; simi-
lar work has been applied to protein hierarchies [42]. Hierarchies of concepts have come from
seeded ontologies [39], crowdsourcing [29], and user-specified relations [33]. More sophisticated
approaches build domain-specific keyword taxonomies with adapting Bayesian Rose Trees [21].
These approaches, however, concentrate on the tags, ignoring the content the tags describe.

In this paper, we combine ideas from these two lines of research and introduce L2H, a hierarchical
topic model that discovers a tree-structured hierarchy of concepts from a collection of multi-labeled
documents. L2H takes as input a set of D documents {wd}, each tagged with a set of labels ld.
The label set L contains K unique, unstructured labels and the word vocabulary size is V . To
learn an interpretable taxonomy, L2H associates each label—a user-generated word/phrase—with a
topic—a multinomial distribution over the vocabulary—to form a concept, and infers a tree-structured
hierarchy to capture the relationships among concepts. Figure 1 shows the plate diagram for L2H,
together with its generative process.
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1. Create label graph G and draw a uniform spanning tree T from G (§ 2.1)
2. For each node k ∈ [1,K] in T

(a) If k is the root, draw background topic φk ∼ Dir(βu)
(b) Otherwise, draw topic φk ∼ Dir(βφσ(k)) where σ(k) is node k’s

parent.
3. For each document d ∈ [1, D] having labels ld

(a) Define L0
d and L1

d using T and ld (cf. § 2.2)
(b) Draw θ0d ∼ Dir(L0

d × α) and θ1d ∼ Dir(L1
d × α)

(c) Draw a stochastic switching variable πd ∼ Beta(γ0, γ1)
(d) For each token n ∈ [1, Nd]

i. Draw set indicator xd,n ∼ Bern(πd)
ii. Draw topic indicator zd,n ∼ Mult(θ

xd,n
d )

iii. Draw word wd,n ∼ Mult(φzd,n)

Figure 1: Generative process and the plate diagram notation of L2H.

2.1 Generating a labeled topic hierarchy

We assume an underlying directed graph G = (E ,V) in which each node is a concept consisting of
(1) a label—observable user-generated input, and (2) a topic—latent multinomial distribution over
words.3 The prior weight of a directed edge from node i to node k is the fraction of documents tagged
with label k which are also tagged with label i: ti,k = Di,k/Dj . We also assume an additional
Background node. Edges to the Background node have prior zero weight and edges from the
Background node to node i have prior weight troot,i = Di/maxkDk. Here, Di is the number of
documents tagged with label i, and Di,k is the number of documents tagged with both labels i and k.

The tree T is a spanning tree generated from G. The probability of a tree given the graph G is thus
the product of all its edge prior weights p(T | G) =

∏
e∈E te. To capture the intuition that child

nodes in the hierarchy specialize the concepts of their parents, we model the topic φk at each node

3In this paper, we use node when emphasizing the structure discovered by the model. Each node corresponds
to a concept which consists of a label and a topic.
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k using a Dirichlet distribution whose mean is centered at the topic of node k’s parent σ(k), i.e.,
φk ∼ Dir(βφσ(k)). The topic at the root node is drawn from a symmetric Dirichlet φroot ∼ Dir(βu),
where u is a uniform distribution over the vocabulary [1, 2]. This is similar to the idea of “backoff” in
language models where more specific contexts inherit the ideas expressed in more general contexts;
i.e., if we talk about “pedagogy” in education, there’s a high likelihood we’ll also talk about it in
university education [22, 41].

2.2 Generating documents

As in LDA, each word in a document is generated by one of the latent topics. L2H, however, also
uses the labels and topic hierarchy to restrict the topics a document uses. The document’s label set ld
identifies which nodes are more likely to be used. Restricting tokens of a document in this way—to
be generated only from a subset of the topics depending the document’s labels—creates specific,
focused, labeled topics [36, Labeled LDA].

Unfortunately, ld is unlikely to be an exhaustive enumeration: particularly when the label set is large,
users often forget or overlook relevant labels. We therefore depend on the learned topology of the
hierarchy to fill in the gaps of what users forget by expanding ld into a broader set, L1

d, which is the
union of nodes on the paths from the root node to any of the document’s label nodes. We call this
the document’s candidate set. The candidate set also induces a complementary set L0

d ≡ L \ L1
d

(illustrated in Figure 2). Previous approaches such as LPAM [3] and Tree labeled LDA [40] also
leverage the label hierarchy to expand the original label set. However, these previous models require
that the label hierarchy is given rather than inferred as in our L2H.

0

1

4 5 6

2

3

Figure 2: Illustration of the candidate label set: given a document d
having labels ld = {2, 4} (double-circled nodes), the candidate label
set of d consists of nodes on all the paths from the root node to node
2 and node 4. L1

d = {0, 1, 2, 4} and L0
d = {3, 5, 6}. This allows

an imperfect label set to induce topics that the document should be
associated with even if they weren’t explicitly enumerated.

L2H replaces Labeled LDA’s absolute restriction to specific topics to a soft preference. To achieve this,
each document d has a switching variable πd drawn from Beta(γ0, γ1), which effectively decides
how likely tokens in d are to be generated from L1

d versus L0
d. Token n in document d is generated by

first flipping the biased coin πd to choose the set indicator xd,n. Given xd,n, the label zd,n is drawn
from the corresponding label distribution θxd,n

d and the token is generated from the corresponding
topic wd,n ∼ Mult(φzd,n).

3 Posterior Inference

Given a set of documents with observed words {wd} and labels {ld}, inference finds the posterior
distribution over the latent variables. We use a Markov chain Monte Carlo (MCMC) algorithm to
perform posterior inference, in which each iteration after initialization consists of the following
steps: (1) sample a set indicator xd,n and topic assignment zd,n for each token, (2) sample a word
distribution φk for each node k in the tree, and (3) update the structure of the label tree.

Initialization: With the large number of labels, the space of hierarchical structures that MCMC
needs to explore is huge. Initializing the tree-structure hierarchy is crucial to help the sampler focus
on more important regions of the search space and help the sampler converge. We initialize the
hierarchy with the maximum a priori probability tree by running Chu-Liu/Edmonds’ algorithm to
find the maximum spanning tree on the graph G starting at the background node.

Sampling assignments xd,n and zd,n: For each token, we need to sample whether it was generated

from the label set or not, xd,n. We choose label set i with probability
C−d,n

d,i +γi

C−d,n
d,· +γ0+γ1

and we sample a

node in the chosen set i with probability
N−d,n

d,k +α

C−d,n
d,i +α|Li

d|
· φk,wd,n

. Here, Cd,i is the number of times

tokens in document d assigned to label set i; Nd,k is the number of times tokens in document d are
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assigned to node k. Marginal counts are denoted by ·, and −d,n denotes the counts excluding the
assignment of token wd,n.

After we have the label set, we can sample the topic assignment. This is more efficient than sampling
jointly, as most tokens are in the label set, and there are a limited number of topics in the label set.
The probability of assigning node k to zd,n is

p(xd,n = i, zd,n = k |x−d,n, z−d,n, φ,Lid) ∝
C−d,nd,i + γi

C−d,nd,· + γ0 + γ1
·

N−d,nd,k + α

C−d,nd,i + α|Lid|
· φk,wd,n

(1)

Sampling topics φ: As discussed in Section 2.1, topics on each path in the hierarchy form a
cascaded Dirichlet-multinomial chain where the multinomial φk at node k is drawn from a Dirichlet
distribution with the mean vector being the topic φσ(k) at the parent node σ(k). Given assignments
of tokens to nodes, we need to determine the conditional probability of a word given the token. This
can be done efficiently in two steps: bottom-up smoothing and top-down sampling [2].

• Bottom-up smoothing: This step estimates the counts M̃k,v of node k propagated from its children.
This can be approximated efficiently by using the minimal/maximal path assumption [11, 44]. For
the minimal path assumption, each child node k′ of k propagates a value of 1 to M̃k,v if Mk′,v > 0.
For the maximal path assumption, each child node k′ of k propagates the full count Mk′,v to M̃k,v .

• Top-down sampling: After estimating M̃k,v for each node from leaf to root, we sample the word
distributions top-down using its actual counts mk, its children’s propagated counts m̃k and its
parent’s word distribution φσ(k) as φk ∼ Dir(mk + m̃k + βφσ(k)).

Updating tree structure T : We update the tree structure by looping through each non-root
node, proposing a new parent node and either accepting or rejecting the proposed parent using
the Metropolis-Hastings algorithm. More specifically, given a non-root node k with current parent i,
we propose a new parent node j by sampling from all incoming nodes of k in graph G, with probability
proportional to the corresponding edge weights. If the proposed parent node j is a descendant of
k, we reject the proposal to avoid a cycle. If it is not a descendant, we accept the proposed move
with probability min

(
1, Q(i≺k)

Q(j≺k)
P (j≺k)
P (i≺k)

)
, where Q and P denote the proposal distribution and the

model’s joint distribution respectively, and i ≺ k denotes the case where i is the parent of k.

Since we sample the proposed parent using the edge weights, the proposal probability ratio is

Q(i ≺ k)

Q(j ≺ k)
=
ti,k
tj,k

(2)

The joint probability of L2H’s observed and latent variables is:

P =
∏

e∈E
p(e | G)

D∏

d=1

p(xd | γ)p(zd |xd, ld, α)p(wd | zd, φ)

K∏

l=1

p(φl |φσ(l), β)p(φroot |β) (3)

When node k changes its parent from node i to j, the candidate set L1
d changes for any document d

that is tagged with any label in the subtree rooted at k. Let4k denote the subtree rooted at k and
D4k

= {d | ∃l ∈ 4k ∧ l ∈ ld} the set of documents whose candidate set might change when k’s
parent changes. Canceling unchanged quantities, the ratio of the joint probabilities is:

P (j ≺ k)

P (i ≺ k)
=
tj,k
ti,k

∏

d∈D4k

p(zd | j ≺ k)

p(zd | i ≺ k)

p(xd | j ≺ k)

p(xd | i ≺ k)

p(wd | j ≺ k)

p(wd | i ≺ k)

K∏

l=1

p(φl | j ≺ k)

p(φl | i ≺ k)
(4)

We now expand each factor in Equation 4. The probability of node assignments zd for document d is
computed by integrating out the document-topic multinomials θ0d and θ1d (for the candidate set and its
inverse):

p(zd |xd,L0
d,L1

d;α) =
∏

x∈{0,1}

Γ(α|Lxd |)
Γ(Cd,x + α|Lxd |)

∏

l∈Lx
d

Γ(Nd,l + α)

Γ(α)
(5)

4



Similarly, we compute the probability of xd for each document d, integrating out πd,

p(xd | γ) =
Γ(γ0 + γ1)

Γ(Cd,· + γ0 + γ1)

∏

x∈{0,1}

Γ(Cd,x + γi)

Γ(γx)
(6)

Since we explicitly sample the topic φl at each node l, we need to re-sample all topics for the case that
j is the parent of i to compute the ratio

∏K
l=1

p(φl | j≺k)
p(φl | i≺k) . Given the sampled φ, the word likelihood is

p(wd | zd, φ) =
∏Nd

n=1 φzd,n,wd,n
.

However, re-sampling the topics for the whole hierarchy for every node proposal is inefficient. To
avoid that, we keep all φ’s fixed and approximate the ratio as:

∏

d∈D4k

p(wd | j ≺ k)

p(wd | i ≺ k)

K∏

l=1

p(φl | j ≺ k)

p(φl | i ≺ k)
≈
∫
φk
p(mk + m̃k |φk) p(φk |φj) dφk∫

φk
p(mk + m̃k |φk) p(φk |φi) dφk

(7)

where mk is the word counts at node k and m̃k is the word counts propagated from children of k.
Since φ is fixed and the node assignments z are unchanged, the word likelihoods cancel out except
for tokens assigned at k or any of its children. The integration in Equation 7 is

∫

φk

p(mk + m̃k |φk) p(φk |φj) dφk =
Γ(β)

Γ(Mk,· + M̃k,· + β)

V∏

v=1

Γ(Mk,v + M̃k,v + βφi,v)

Γ(βφi,v)
(8)

Using Equations 2 and 4, we can compute the Metropolis-Hastings acceptance probability.

4 Experiments: Analyzing Political Agendas in U.S. Congresses

In our experiments, we focus on studying political attention in the legislative process, of interest
to both computer scientists [13, 14] and political scientists [15, 34]. GovTrack provides bill text
from the US Congress, each of which is assigned with multiple political issues by the Congressional
Research Service. Examples of Congressional issues include Education, Higher Education, Health,
Medicare, etc. To evaluate the effectiveness of L2H, we evaluate on two computational tasks: docu-
ment modeling—measuring perplexity on a held-out set of documents—and multi-label classification.
We also discuss qualitative results based on the label hierarchy learned by our model.

Data: We use the text and labels from GovTrack for the 109th through 112th Congresses (2005–
2012). For both quantitative tasks, we perform 5-fold cross-validation. For each fold, we perform
standard pre-processing steps on the training set including tokenization, removing stopwords, stem-
ming, adding bigrams, and filtering using TF-IDF to obtain a vocabulary of 10,000 words (final
statistics in Figure 3).4 After building the vocabulary from training documents, we discard all
out-of-vocabulary words in the test documents. We ignore labels associated with fewer than 100 bills.

4.1 Document modeling

In the first quantitative experiment, we focus on the task of predicting the words in held-out test
documents, given their labels. This is measured by perplexity, a widely-used evaluation metric [7, 45].
To compute perplexity, we follow the “estimating θ” method described in Wallach et al. [45, Sec.
5.1] and split each test document d into wTE1

d and wTE2

d . During training, we estimate all topics’
distributions over the vocabulary φ̂. During test, first we run Gibbs sampling using the learned topics
on wTE1

d to estimate the topic proportions θ̂TE
d for each test document d. Then, we compute the

perplexity on the held-out words wTE2

d as exp

{
−

∑
d log(p(wTE2

d | ld,θ̂TE
d ,φ̂))

N TE2

}
where N TE2 is the total

number of tokens in wTE2

d .

4We find bigram candidates that occur at least ten times in the training set and use a χ2 test to filter out those
having a χ2 value less than 5.0. We then treat selected bigrams as single word types in the vocabulary.
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Setup We compare our proposed model L2H with the following methods:

• LDA [7]: unsupervised topic model with a flat topic structure. In our experiments, we set the
number of topics of LDA equal to the number of labels in each dataset.

• L-LDA [36]: associates each topic with a label, and a document is generated using the topics
associated with the document’s labels only.

• L2F (Label to Flat structure): a simplified version of L2H with a fixed, flat topic structure. The
major difference between L2F and L-LDA is that L2F allows tokens to be drawn from topics that are
not in the document’s label set via the use of the switching variable (Section 2.2). Improvements
of L2H over L2F show the importance of the hierarchical structure.

For all models, the number of topics is the number of labels in the dataset. We run for 1,000 iterations
on the training data with a burn-in period of 500 iterations. After the burn-in period, we store ten
sets of estimated parameters, one after every fifty iterations. During test time, we run ten chains
using these ten learned models on the test data and compute the perplexity after 100 iterations. The
perplexity of each fold is the average value over the ten chains [28].
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Figure 3: Dataset statistics
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Figure 4: Perplexity on held-out documents, averaged over 5 folds

Results: Figure 4 shows the perplexity of the four models averaged over five folds on the four
datasets. LDA outperforms the other models with labels since it can freely optimize the likelihood
without additional constraints. L-LDA and L2F are comparable. However, L2H significantly outper-
forms both L-LDA and L2F. Thus, if incorporating labels into a model, learning an additional topic
hierarchy improves predictive power and generalizability of L-LDA.

4.2 Multi-label Classification

Multi-label classification is predicting a set of labels for a test document given its text [43, 23, 47].
The prediction is from a set of pre-defined K labels and each document can be tagged with any
of the 2K possible subsets. In this experiment, we use M3L—an efficient max-margin multi-label
classifier [16]—to study how features extracted from our L2H improve classification.

We use F1 as the evaluation metric. The F1 score is first computed for each document d as F1(d) =
2·P (d)·R(d)
P (d)+R(d) , where P (d) and R(d) are the precision and recall for document d. After F1(d) is
computed for all documents, the overall performance can be summarized by micro-averaging and
macro-averaging to obtain Micro-F1 and Macro-F1 respectively. In macro-averaging, F1 is first
computed for each document using its own confusion matrix and then averaged. In micro-averaging,
on the other hand, only a single confusion matrix is computed for all documents, and the F1 score is
computed based on this single confusion matrix [38].

Setup We use the following sets of features:

• TF: Each document is represented by a vector of term frequency of all word types in the vocabulary.
• TF-IDF: Each document is represented by a vector ψTFIDF

d of TF-IDF of all word types.
• L-LDA&TF-IDF: Ramage et al. [35] combine L-LDA features and TF-IDF features to improve the

performance on recommendation tasks. Likewise, we extract a K-dimensional vector θ̂L-LDA
d and

combine with TF-IDF vector ψTFIDF
d to form the feature vector of L-LDA&TF-IDF.5

5We run L-LDA on train for 1,000 iterations and ten models after 500 burn-in iterations. For each model, we
sample assignments for all tokens using 100 iterations and average over chains to estimate θ̂L-LDA

d .
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• L2H&TF-IDF: Similarly, we combine TF-IDF with the features θ̂L2H
d = {θ̂0d, θ̂1d} extracted using

L2H (same MCMC setup as L-LDA).

One complication for L2H is the candidate label set L1
d, which is not observed during test time. Thus,

during test time, we estimate L1
d using TF-IDF. Let Dl be the set of documents tagged with label

l. For each l, we compute a TF-IDF vector φTFIDF
l = avgd∈Dl

ψTFIDF
d . Then for each document d, we

generate the k nearest labels using cosine similarity, and add them to the candidate label set L1
d of

d. Finally, we expand this initial set by adding all labels on the paths from the root of the learned
hierarchy to any of the k nearest labels (Figure 2). We explored different values of k ∈ {3, 5, 7, 9},
with similar results; the results in this section are reported with k = 5.
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Figure 5: Multi-label classification results. The results are averaged over 5 folds.

Results Figure 5 shows classification results. For both Macro-F1 and Micro-F1, TF-IDF, L-
LDA&TF-IDF and L2H&TF-IDF significantly outperform TF. Also, L-LDA&TF-IDF performs better
than TF-IDF, which is consistent with Ramage et al. (2010) [35].

L2H&TF-IDF performs better than L-LDA&TF-IDF, which in turn performs better than TF-IDF. This
shows that features extracted from L2H are more predictive than those extracted from L-LDA, and
both improve classification. The improvements of L2H&TF-IDF and L-LDA&TF-IDF over TF-IDF are
clearer for Macro-F1 compared with Micro-F1. Thus, features from both topic models help improve
prediction, regardless of the frequencies of their tagged labels.

4.3 Learned label hierarchy: A taxonomy of Congressional issues

Terrorism

intellig, intellig_commun, 
afghanistan, nation_intellig, 
guantanamo_bai, qaeda, 

central_intellig, detent, pakistan, 
interrog, defens_intellig, detaine, 

Int'l organizations & 
cooperation

export, arm_export, control_act, 
foreign_assist, cuba, 

defens_articl, foreign_countri, 
foreign_servic, export_administr, 

author_act, munit_list

International affairs

libya, unit_nation, intern_religi, 
bahrain, religi_freedom, 

religi_minor, freedom_act, africa, 
violenc, secur_council, 

benghazi, privileg_resolut, hostil, 

Foreign aid and 
international relief

fund_appropri, foreign_assist, 
remain_avail, regular_notif, 

intern_develop, relat_program, 
unit_nation, pakistan, 

foreign_oper, usaid, prior_act

International law and 
treaties

foreign_assist, intern_develop, 
vessel, foreign_countri, sanit, 

appropri_congression, 
develop_countri, violenc, girl, 

defens_articl, export

Religion

unit_nation, israel, iaea, harass, 
syria, iran, peacekeep_oper, 

regular_budget, unrwa, 
palestinian, refuge, durban, bulli, 

secur_council

Europe

republ, belaru, turkei, nato, 
holocaust_survivor, north_atlant, 

holocaust, european_union, 
albania, jew, china, macedonia, 

treati_organ, albanian, greec

Middle East

syria, israel, iran, enterpris_fund, 
unit_nation, egypt, palestinian, 

cypru, tunisia, hezbollah, 
lebanon, republ, hama, syrian, 

violenc, weapon,

Latin America

border_protect, haiti, 
merchandis, evas, tariff_act, 
cover_merchandis, export, 

custom_territori, custom_enforc,, 
countervail_duti, intern_trade

Asia

china, vietnam, taiwan, republ, 
chines, sea, north_korea, 

tibetan, north_korean, refuge, 
south_china, intern_religi, tibet, 

enterpris, religi_freedom

Military operations and 
strategy

armi, air_forc, none, navi, 
addit_amount, control_act, 

emerg_deficit, fund_appropri, 
balanc_budget, terror_pursuant, 

transfer_author,marin_corp

Sanctions

iran, sanction, syria, 
comprehens_iran, north_korea, 
financi_institut, presid_determin, 
islam_republ,  foreign_person, 

weapon, iran_sanction

Human rights

traffick, russian_feder, 
traffick_victim, prison, alien, 

visa, nation_act, victim, detent, 
human_traffick, corrupt, russian, 

foreign_labor, sex_traffick, 

Department of Defense

air_forc, militari_construct, 
author_act, armi, nation_defens, 

navi, militari_depart, aircraft, 
congression_defens, command, 

sexual_assault, activ_duti

Military personnel and 
dependents

coast_guard, vessel, command, 
special_select, sexual_violenc, 
academi, sexual_harass, navi, 
former_offic, gulf_coast, haze, 

port, marin, marin_debri

Armed forces and 
national security

cemeteri, nation_guard, dog, 
service_memb, 

homeless_veteran, funer, 
medic_center, militari_servic, 
arlington_nation, armi, guard

Department of 
Homeland Security
cybersecur, inform_secur, 

inform_system, cover_critic, 
critic_infrastructur, 

inform_infrastructur, 
cybersecur_threat, 

Figure 6: A subtree in the hierarchy learned by L2H. The subtree root International Affairs is a child
node of the Background root node.

To qualitatively analyze the hierarchy learned by our model, Figure 6 shows a subtree whose root
is about International Affairs, obtained by running L2H on bills in the 112th U.S. Congress. The
learned topic at International Affairs shows the focus of 112th Congress on the Arab Spring—a
revolutionary wave of demonstrations and protests in Arab countries like Libya, Bahrain, etc. The
concept is then split into two distinctive aspects of international affairs: Military and Diplomacy.
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We are working with domain experts to formally evaluate the learned concept hierarchy. A political
scientist (personal communication) comments:

The international affairs topic does an excellent job of capturing the key distinction
between military/defense and diplomacy/aid. Even more impressive is that it then
also captures the major policy areas within each of these issues: the distinction
between traditional military issues and terrorism-related issues, and the distinction
between thematic policy (e.g., human rights) and geographic/regional policy.

5 Conclusion

We have presented L2H, a model that discovers not just the interaction between overt labels and
the latent topics used in a corpus, but also how they fit together in a hierarchy. Hierarchies are a
natural way to organize information, and combining labels with a hierarchy provides a mechanism
for integrating user knowledge and data-driven summaries in a single, consistent structure. Our
experiments show that L2H yields interpretable label/topic structures, that it can substantially improve
model perplexity compared to baseline approaches, and that it improves performance on a multi-label
prediction task.
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