Mr. LDA: A Flexible Large Scale Topic Modeling Package using Variational Inference in MapReduce

Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and Mohamad Alkhouja

COLLEGE OF INFORMATION STUDIES

Mr. LDA: A Flexible Large Scale Topic Modeling Package using Variational Inference in MapReduce

Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and Mohamad Alkhouja

COLLEGE OF INFORMATION STUDIES

Introductions

MR LDA

- MR = MapReduce
- LDA = latent Dirichlet allocation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MR LDA = Ke

Introductions

MR LDA

- MR = MapReduce
- LDA = latent Dirichlet allocation
- MR LDA = Ke

- First author
- Immigration issues prevented presentation

Roadmap

- Review of topic models
- The need for scalability
- Variational inference vs. Gibbs sampling
- MR LDA
 - A scalable topic modeling package
 - Using variational inference
- Extensions
 - Extending psychologically-inspired word lists
 - Discovering topics consistent across languages

Outline

1 Topic Model Introduction

2 Inference

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why topic models?

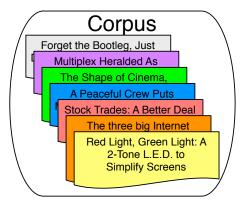
- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unsupervised

Conceptual Approach

From an **input corpus** and number of topics $K \rightarrow$ words to topics



Conceptual Approach

From an input corpus and number of topics $K \rightarrow$ words to topics

TOPIC 2

TOPIC 1

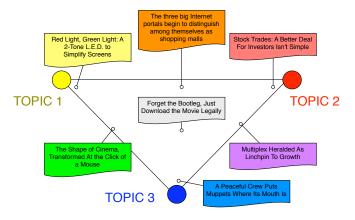
computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

TOPIC 3

Conceptual Approach

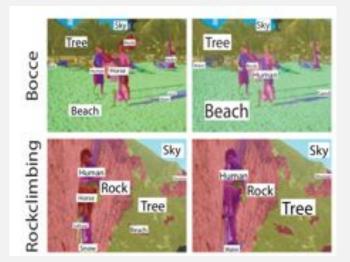
• For each document, what topics are expressed by that document?



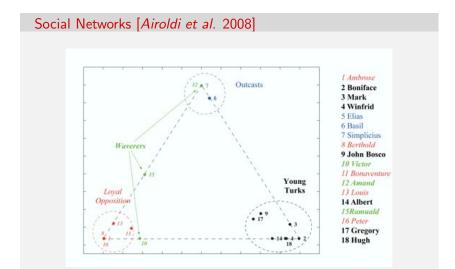
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Topic Models: What's Important

- Topic models
 - Topics to words multinomial distribution
 - Documents to topics multinomial distribution
- Statistical structure inferred from data
- Have semantic coherence because of language use
- We use latent Dirichlet allocation (LDA) [*Blei et al.* 2003], a fully Bayesian version of pLSI [*Hofmann* 1999], probabilistic version of LSA [*Landauer and Dumais* 1997]

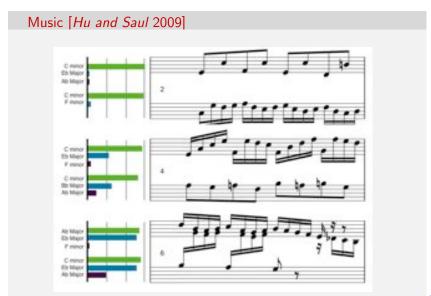


Applications



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Applications



- The most interesting datasets are the **big** ones
- These datasets don't fit on a single machine
- Thus we can't depend on analysis that sits on a single machine

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MapReduce

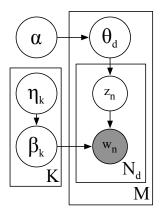
- Framework proposed by Google [Dean and Ghemawat 2004]
- Hadoop, OSS implementation by Yahoo [White 2010]
- Central concept
 - Mappers process small units of data
 - Reducers aggregate / combine results of mappers into final result
 - Drivers Run a series of jobs to get the work done
 - Overall framework distributes intermediate results where they need to go

Outline

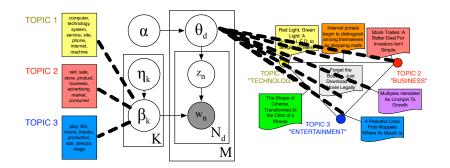
1 Topic Model Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

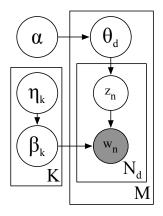
2 Inference



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

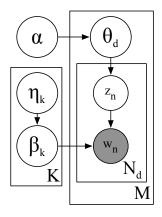


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



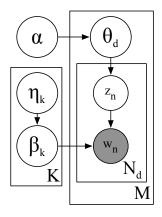
- Generative models tell a story of how your data came to be
- There are missing pieces to that story (e.g. the topics)
- Statistical inference fills in the missing pieces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



- Generative models tell a story of how your data came to be
- There are missing pieces to that story (e.g. the topics)
- Statistical inference fills in the missing pieces
- Hard problem requires looking at the entire dataset
- Why we need large scale solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



- Generative models tell a story of how your data came to be
- There are missing pieces to that story (e.g. the topics)
- Statistical inference fills in the missing pieces
- Hard problem requires looking at the entire dataset
- Why we need large scale solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Use MapReduce!

Variational

- Few, expensive iterations
- Deterministic
- Conjugate easier, tractable without
- Easy convergence diagnosis

MCMC / Gibbs

- Many, cheap iterations
- Random
- Effective for conjugate distributions
- Tricky convergence diagnosis

Variational

- First LDA implementation [*Blei et al.* 2003]
- Master-Slave LDA [Nallapati et al. 2007]
- Apache Mahout

MCMC / Gibbs

- Popular
 [Griffiths and Steyvers 2004]
- Sparsity helps [Yao et al. 2009]
- Assume shared memory? [Asuncion et al. 2008]
- YahooLDA [Smola and Narayanamurthy 2010]

Expectation Maximization Algorithm

- Input: z (hidden variables), ξ (parameters), D (data)
- Start with initial guess of z, parameters ξ
- Repeat
 - Compute the expected value of latent variables z
 - Compute the parameters ξ that maximize likelihood L (use calculus)

• With each iteration, objective function L goes up

Expectation Maximization Algorithm

- Input: z (hidden variables), ξ (parameters), D (data)
- Start with initial guess of z, parameters ξ
- Repeat
 - **E-Step** Compute the expected value of latent variables *z*
 - Compute the parameters ξ that maximize likelihood L (use calculus)

• With each iteration, objective function *L* goes up

Expectation Maximization Algorithm

- Input: z (hidden variables), ξ (parameters), D (data)
- Start with initial guess of z, parameters ξ
- Repeat
 - **E-Step** Compute the expected value of latent variables z
 - M-Step Compute the parameters ξ that maximize likelihood L (use calculus)

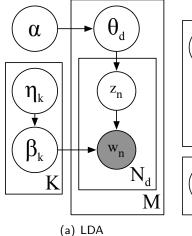
With each iteration, objective function L goes up

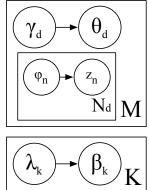
- Sometimes you can't actually optimize L
- So we instead optimize a lower bound based on a "variational" distribution q

$$\mathcal{L} = \mathbb{E}_q \left[\log \left(p(\mathsf{D}|Z) p(Z|\xi) \right) \right] - \mathbb{E}_q \left[\log q(Z) \right]$$
(1)

- $\bullet L \mathcal{L} = KL(q||p)$
- This is called variational EM (normal EM is when p = q)
- \blacksquare Makes the math possible to optimize $\mathcal L$

Variational distribution

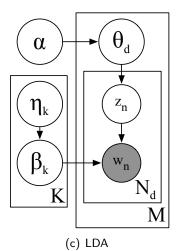


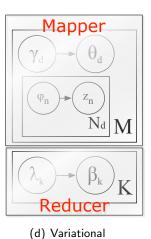


(b) Variational

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variational distribution



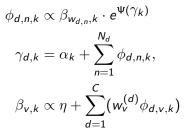


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- \$\phi\$ How much the nth word in a document expressed topic k
- \$\gamma_{d,k}\$ How much the \$k^{th}\$ topic is expressed in a document \$d\$
- β_{v,k} How much word v is associated with topic k

$$\phi_{d,n,k} \propto \beta_{w_{d,n},k} \cdot e^{\Psi(\gamma_k)}$$
$$\gamma_{d,k} = \alpha_k + \sum_{n=1}^{N_d} \phi_{d,n,k},$$
$$\beta_{v,k} \propto \eta + \sum_{d=1}^{C} (w_v^{(d)} \phi_{d,v,k})$$

- - k (Mapper)
- γ_{d,k} How much the kth topic is expressed in a document d (Mapper)
- β_{v,k} How much word v is associated with topic k



- \$\phi\$ How much the \$n^{th}\$ word in a document expressed topic \$k\$ (Mapper)
- γ_{d,k} How much the kth topic is expressed in a document d (Mapper)
- β_{v,k} How much word v is associated with topic k (Reducer)

$$\phi_{d,n,k} \propto \beta_{w_{d,n,k}} \cdot e^{\Psi(\gamma_k)}$$
$$\gamma_{d,k} = \alpha_k + \sum_{n=1}^{N_d} \phi_{d,n,k},$$
$$\beta_{v,k} \propto \eta + \sum_{d=1}^{C} (w_v^{(d)} \phi_{d,v,k})$$

- \$\phi\$ How much the \$n^{th}\$ word in a document expressed topic \$k\$ (Mapper)
- γ_{d,k} How much the kth topic is expressed in a document d (Mapper)
- β_{v,k} How much word v is associated with topic k (Reducer)

$$\begin{split} \phi_{d,n,k} &\propto \beta_{w_{d,n,k}} \cdot e^{\Psi(\gamma_k)} \\ \gamma_{d,k} &= \alpha_k + \sum_{n=1}^{N_d} \phi_{d,n,k}, \\ \beta_{v,k} &\propto \eta + \sum_{d=1}^C (w_v^{(d)} \phi_{d,v,k}) \end{split}$$

Other considerations

Thus far, no difference from Mahout or [Nallapati et al. 2007]

- \blacksquare Computing objective function $\mathcal L$ to assess convergence
- Updating hyperparameters
 - Many implementations don't do this
 - Critical for topic quality and good likelihood

Objective Function

Expanding Equation 1 gives us $\mathcal{L}(\gamma, \phi; \alpha, \beta)$ for one document:

$$\mathcal{L}(\gamma,\phi;\alpha,\beta) = \sum_{d=1}^{C} \mathcal{L}_{d}(\gamma,\phi;\alpha,\beta)$$
$$= \underbrace{\sum_{d=1}^{C} \mathcal{L}_{d}(\alpha)}_{\text{Driver}} + \underbrace{\sum_{d=1}^{C} (\mathcal{L}_{d}(\gamma,\phi) + \mathcal{L}_{d}(\phi) + \mathcal{L}_{d}(\gamma))}_{\text{computed in mapper}}_{\text{computed in Reducer}}$$

Updating hyperparameters

We use a Newton-Raphson method which requires the Hessian matrix and the gradient,

$$\alpha_{\mathsf{new}} = \alpha_{\mathsf{old}} - \mathcal{H}^{-1}(\alpha_{\mathsf{old}}) \cdot g(\alpha_{\mathsf{old}}),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Updating hyperparameters

We use a Newton-Raphson method which requires the Hessian matrix and the gradient,

$$\alpha_{\mathsf{new}} = \alpha_{\mathsf{old}} - \mathcal{H}^{-1}(\alpha_{\mathsf{old}}) \cdot g(\alpha_{\mathsf{old}}),$$

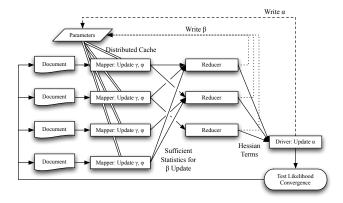
where the Hessian matrix $\mathcal H$ and gradient $g(\alpha)$ are

$$\mathcal{H}(k,l) = \delta(k,l)C\Psi'(\alpha_k) - C\Psi'\left(\sum_{l=1}^{K} \alpha_l\right),$$

$$g(k) = \underbrace{C\left(\Psi\left(\sum_{l=1}^{K} \alpha_l\right) - \Psi(\alpha_k)\right)}_{\text{computed in driver}} + \underbrace{\sum_{d=1}^{C} \Psi(\gamma_{d,k}) - \Psi\left(\sum_{l=1}^{K} \gamma_{d,l}\right)}_{\text{computed in mapper}}$$

Complexity

Removing document-dependence: update $O(K^2)$ in the driver



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other implementation details

- Computing Ψ function is expensive, so we cache / approximate values
- The number of intermediate values swamp the system, so we employ in-mapper combiners [Lin and Dyer 2010]

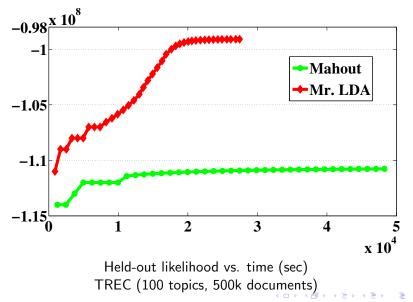
Initialization

Other implementation details

- Computing Ψ function is expensive, so we cache / approximate values
 - Always helps
- The number of intermediate values swamp the system, so we employ in-mapper combiners [Lin and Dyer 2010]

- Only helps with many topics
- Initialization
 - Helps in first iterations

Comparison with Mahout



 $\mathcal{O} \land \mathcal{O}$

Outline

2 Inference

How are psychological factors expressed in blogs?

- Linguistic Inquiry in Word Count [Pennebaker and Francis 1999]
- Example psychological processes:
 - Anger: hate, kill, annoyed
 - Negative Emotions: hurt, ugly, nasty
- What words cooccur with these words in a particular corpus?

How are psychological factors expressed in blogs?

- Linguistic Inquiry in Word Count [Pennebaker and Francis 1999]
- Example psychological processes:
 - Anger: hate, kill, annoyed
 - Negative Emotions: hurt, ugly, nasty
- What words cooccur with these words in a particular corpus?
- Use LIWC categories as an informed prior to "seed" topics

$$\beta_{\mathbf{v},k} \propto \eta_{\mathbf{v},k} + \sum_{d=1}^{C} (w_{\mathbf{v}}^{(d)} \phi_{d,\mathbf{v},k})$$

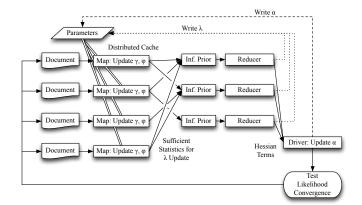
How are psychological factors expressed in blogs?

- Linguistic Inquiry in Word Count [Pennebaker and Francis 1999]
- Example psychological processes:
 - Anger: hate, kill, annoyed
 - Negative Emotions: hurt, ugly, nasty
- What words cooccur with these words in a particular corpus?
- Use LIWC categories as an informed prior to "seed" topics

$$\beta_{\mathbf{v},\mathbf{k}} \propto \eta_{\mathbf{v},\mathbf{k}} + \sum_{d=1}^{C} (w_{\mathbf{v}}^{(d)} \phi_{d,\mathbf{v},\mathbf{k}})$$

Not possible in SparseLDA-based models

Workflow for Informed Prior



Psychologically-Informed Topics from Blogs

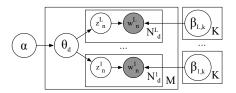
Affective	Negative	Positive	Anxiety	Anger	Sadness
Processes	Emotions	Emotions			
easili	sorri	lord	bird	iraq	level
dare	crappi	prayer	diseas	american	grief
truli	bullshit	pray	shi	countri	disord
lol	goddamn	merci	infect	militari	moder
needi	messi	etern	blood	nation	miseri
jealousi	shitti	truli	snake	unit	lbs
friendship	bitchi	humbl	anxieti	america	loneli
betray	angri	god	creatur	force	pain

Using 50 topics on Blog Authorship corpus [Koppel et al. 2006]

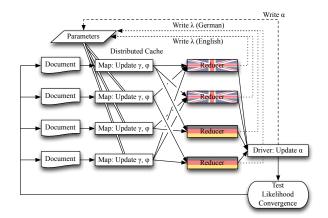
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Polylingual LDA

- Assumes documents have multiple "faces" [*Mimno et al.* 2009]
- Topics also assumed to have per-language distribution
- As long as documents talk about the same thing, learns consistent topics across languages
- First variational inference algorithm



Workflow for Polylingual LDA



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aligned topics from all of Wikipedia

	game	opera	greek	league	said	italian	soviet
English	games	musical	turkish	cup	family	church	political
	player	composer	region	club	could	роре	military
	players	orchestra	hugarian	played	childerr	nitaly	union
	released	piano	wine	football	death	catholic	russian
	comics	works	hungary	games	father	bishop	power
	characters	symphony	greece	career	wrote	roman	israel
	character	instruments	turkey	game	mother	rome	empire
	version	composers	ottoman	championship	never	st	republic
German	spiel	musik	ungarn	saison	frau	papst	regierung
	spieler	komponist	turkei	gewann	the	rom	republik
	serie	oper	turkischen	spielte	familie	ii	sowjetunio
	the	komponisten	griechenland	karriere	mutter	kirche	kam
	erschien	werke	rumanien	fc	vater	di	krieg
	gibt	orchester	ungarischen	spielen	leben	bishof	land
	commics	wiener	griechischen	wechselte	starb	italien	bevolkerun
	veroffentlic	komposition	istanbul	mannschaft	tod	italienisch	ende
	2	klavier	serbien	olympischen	kinder	konig	reich

Which large-scale implementation is right for me?

• Yahoo LDA [Smola and Narayanamurthy 2010]

- Fastest
- Sparse Gibbs sampling
- Great when you can use memcached
- Mahout
 - Variational
 - Simplest

Mr LDA

- Designed for extensibility
- Multilingual
- Hyperparameter updating [Wallach et al. 2009]

Likelihood monitoring

Conclusion

- MR LDA: A scalable implementation for topic modeling
- Extensible variational inference
- Next steps
 - Supporting more modeling assumptions (including non-conjugacy)

- Nonparametrics (over topics and vocabulary)
- Multiple starts

Download the Code

http://mrlda.cc

Ke Zhai

First author

 Immigration issues prevented presentation

◆□>

MR LDA

- MR = MapReduce
- LDA = latent Dirichlet allocation

Ke Zhai

First author

 Immigration issues prevented presentation

(日)、

MR LDA

- MR = MapReduce
- LDA = latent Dirichlet allocation
- MR LDA = Ke

Merci!

- Jimmy Lin
- NSF #1018625

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.

2008.

Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9:1981–2014.

Arthur Asuncion, Padhraic Smyth, and Max Welling.

2008.

Asynchronous distributed learning of topic models. In Proceedings of Advances in Neural Information Processing Systems.

David M. Blei, Andrew Ng, and Michael Jordan.

2003.

Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.

Jeffrey Dean and Sanjay Ghemawat.

2004.

MapReduce: Simplified data processing on large clusters. pages 137–150, San Francisco, California.

Thomas L. Griffiths and Mark Steyvers.

2004.

Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Suppl 1):5228–5235.

Thomas Hofmann.

1999.

Probabilistic latent semantic analysis. In Proceedings of Uncertainty in Artificial Intelligence.

Diane Hu and Lawrence K. Saul.

 $Map(d, \vec{w})$

1: repeat 2: for all $v \in [1, V]$ do 3: for all $k \in [1, K]$ do Update $\phi_{v,k} = \beta_{v,k} \times \exp(\Psi(\gamma_{d,k})).$ 4: 5: end for Normalize row $\phi_{\mathbf{v},*}$, such that $\sum_{k=1}^{N} \phi_{\mathbf{v},k} = 1$. 6: 7: Update $\sigma = \sigma + \vec{w}_V \phi_V$, where ϕ_V is a K-dimensional vector, and \vec{w}_V is the count of v in this document. 8: end for 9: Update row vector $\gamma_{d,*} = \alpha + \sigma$. 10: until convergence 11: for all $k \in [1, K]$ do 12: for all $v \in [1, V]$ do 13: Emit key-value pair $\langle k, \Delta \rangle$: $\vec{w}_v \phi_v$. Emit key-value pair $\langle k, v \rangle$: $\vec{w}_v \phi_v$. {order inversion} 14: 15: end for Emit key-value pair $\langle \Delta, k \rangle : (\Psi(\gamma_{d,k}) - \Psi(\sum_{l=1}^{K} \gamma_{d,l})).$ 16: {emit the γ -tokens for α update} 17: Output key-value pair $\langle k, d \rangle - \gamma_{d,k}$ to file. 18: end for 19: Emit key-value pair $\langle \Delta, \Delta \rangle - \mathcal{L}$, where \mathcal{L} is log-likelihood of this document.

 $Map(d, \vec{w})$ 1: repeat 2: for all $v \in [1, V]$ do 3: for all $k \in [1, K]$ do Update $\phi_{v,k} = \beta_{v,k} \times \exp(\Psi(\gamma_{d,k})).$ 4: 5: end for Normalize row $\phi_{\mathbf{v},*}$, such that $\sum_{k=1}^{n} \phi_{\mathbf{v},k} = 1$. 6: 7: Update $\sigma = \sigma + \vec{w}_V \phi_V$, where ϕ_V is a K-dimensional vector, and \vec{w}_V is the count of v in this document. 8: end for 9: Update row vector $\gamma_{d,*} = \alpha + \sigma$. 10: until convergence 11: for all $k \in [1, K]$ do 12: for all $v \in [1, V]$ do 13: Emit key-value pair $\langle k, \Delta \rangle$: $\vec{w}_v \phi_v$. Emit key-value pair $\langle k, v \rangle$: $\vec{w}_v \phi_v$. {order inversion} 14: 15: end for Emit key-value pair $\langle \Delta, k \rangle : (\Psi(\gamma_{d,k}) - \Psi(\sum_{l=1}^{K} \gamma_{d,l})).$ 16: {emit the γ -tokens for α update} 17: Output key-value pair $\langle k, d \rangle - \gamma_{d,k}$ to file. 18: end for 19: Emit key-value pair $\langle \Delta, \Delta \rangle - \mathcal{L}$, where \mathcal{L} is log-likelihood of this document.

 $Map(d, \vec{w})$ 1: repeat 2: for all $v \in [1, V]$ do 3: for all $k \in [1, K]$ do Update $\phi_{v,k} = \beta_{v,k} \times \exp(\Psi(\gamma_{d,k})).$ 4: 5: end for Normalize row $\phi_{\mathbf{v},*}$, such that $\sum_{k=1}^{n} \phi_{\mathbf{v},k} = 1$. 6: 7: Update $\sigma = \sigma + \vec{w}_V \phi_V$, where ϕ_V is a K-dimensional vector, and \vec{w}_V is the count of v in this document. 8: end for 9: Update row vector $\gamma_{d,*} = \alpha + \sigma$. 10: until convergence 11: for all $k \in [1, K]$ do 12: for all $v \in [1, V]$ do 13: Emit key-value pair $\langle k, \Delta \rangle$: $\vec{w}_v \phi_v$. Emit key-value pair $\langle k, v \rangle$: $\vec{w}_v \phi_v$. {order inversion} 14: 15: end for Emit key-value pair $\langle \Delta, k \rangle : (\Psi(\gamma_{d,k}) - \Psi(\sum_{l=1}^{K} \gamma_{d,l})).$ 16: {emit the γ -tokens for α update} 17: **Output** key-value pair $\langle k, d \rangle - \gamma_{d,k}$ to file. 18: end for 19: Emit key-value pair $\langle \Delta, \Delta \rangle - \mathcal{L}$, where \mathcal{L} is log-likelihood of this document.

Input:

KEY - key pair $\langle p_{\text{left}}, p_{\text{right}} \rangle$. VALUE - an iterator \mathcal{I} over sequence of values.

Reduce

- 1: Compute the sum σ over all values in the sequence \mathcal{I} .
- 2: if $p_{\text{left}} = \triangle$ then
- 3: if $p_{right} = \triangle$ then
- 4: Output key-value pair $\langle \Delta, \Delta \rangle \sigma$ to file. {output the model likelihood \mathcal{L} for convergence checking}

5: else

- 6: Output key-value pair $\langle \Delta, p_{\text{right}} \rangle \sigma$ to file. {output the γ -tokens to update α -vectors, Section ??}
- 7: end if
- 8: else

9: if $p_{right} = \triangle$ then

10: Update the normalization factor $n = \sigma$. {order inversion}

11: else

```
12: Output key-value pair \langle k, v \rangle : \frac{\sigma}{n}. {output normalized \beta value}
```

- 13: end if
- 14: end if

Input:

KEY - key pair $\langle p_{\text{left}}, p_{\text{right}} \rangle$. VALUE - an iterator \mathcal{I} over sequence of values.

Reduce

1: Compute the sum σ over all values in the sequence \mathcal{I} .

2: if $p_{\text{left}} = \triangle$ then

3: **if** $p_{right} = \triangle$ **then**

4: Output key-value pair $\langle \Delta, \Delta \rangle - \sigma$ to file. {output the model likelihood \mathcal{L} for convergence checking}

5: else

- 6: Output key-value pair $\langle \Delta, p_{\text{right}} \rangle \sigma$ to file. {output the γ -tokens to update α -vectors, Section ??}
- 7: end if
- 8: else

9: if $p_{right} = \triangle$ then

10: Update the normalization factor $n = \sigma$. {order inversion}

11: else

12: Output key-value pair $\langle k, v \rangle : \frac{\sigma}{n}$. {output normalized β value}

- 13: end if
- 14: end if

Input:

KEY - key pair $\langle p_{\text{left}}, p_{\text{right}} \rangle$. VALUE - an iterator \mathcal{I} over sequence of values.

Reduce

1: Compute the sum σ over all values in the sequence \mathcal{I} .

2: if $p_{\text{left}} = \triangle$ then 3: if $p_{right} = \triangle$ then 4: Output key-value pair $\langle \Delta, \Delta \rangle - \sigma$ to file. {output the model likelihood \mathcal{L} for convergence checking} 5: else 6: Output key-value pair $\langle \Delta, p_{right} \rangle - \sigma$ to file. {output the γ -tokens to update α -vectors, Section ??} 7: end if 8: else 9: if $p_{\text{right}} = \triangle$ then 10: Update the normalization factor $n = \sigma$. {order inversion} 11: else 12: Output key-value pair $\langle k, v \rangle : \frac{\sigma}{n}$. {output normalized β value} 13: end if 14: end if