
CLRS 2.3, 4.3 Mergesort & The Master Theorem Unit 3.A: Sorting

divide-and-conquer algorithm to sort a list of numbers:
procedure mergesort(L);
if |L| = 1 then return L /∗ base case ∗/
else {

L1 ← any ⌊|L|/2⌋ elements of L; /∗ divide step ∗/
L2 ← the remaining ⌈|L|/2⌉ elements of L;
S1 ← mergesort(L1); /∗ recurse ∗/
S2 ← mergesort(L2);
merge S1 with S2 and return the result; } /∗ combine ∗/

note that any integer n satisfies n = ⌊n/2⌋+ ⌈n/2⌉

Example 1.
input: 1 12 8 10 4 7 2 9 →
recursively sort: 1 8 10 12 2 4 7 9 →
merge: 1 2 4 7 8 9 10 12

Example 1 illustrates the 1st of 2 good ways to visualize recursive algorithms:
The Magic View of Recursion:
think of recursive calls as “magically” returning the correct answer
don’t worry about the details of lower levels of recursion!

Theorem. Mergesort sorts a list of n numbers in time O(n log n) and space O(n).

we’ll prove this twice (in this handout and next) illustrating 2 basic techniques

Simple analysis/Iteration method

define T (n) = the worst-case time to execute mergesort on a list of n elements
proceed in 2 steps (i) – (ii) :

(i) assume n = 2k for an integer k

T (n) =

{

1 n = 1
n + 2T (n/2) n > 1

Remark. this recurrence is well-defined, and avoids floors and ceilings

iterate the recurrence:

T (n) = n + 2T (n/2) [by the recurrence]

= n + 2(n/2) + 4T (n/4) [substituting for T (n/2)]

= n + 2(n/2) + 4(n/4) + 8T (n/8) [substituting for T (n/4)]

= n + 2(n/2) + 4(n/4) + . . . + 2i−1(n/2i−1) + 2iT (n/2i) [generalizing]

= n + 2(n/2) + . . . + 2i(n/2i) + . . . + 2k−1(n/2k−1) + 2k [take i = k & use base case]

= n(1 + k)

= n(1 + log n)
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thus T (n) = O(n log n), for n a power of 2

this calculation is the iteration method

(ii) let n be arbitrary
Fact. There is a power of 2 between n and 2n (specifically p = 2⌈ log n⌉).

for the above power p,
T (n) ≤ T (p) = p(1 + log p) ≤ 2n(1 + log 2n) =⇒ in general, T (n) = O(n log n) ⊓⊔

Remarks

1. the recurrence for general n is too messy to analyze

2. usually we omit step (ii)! (see CLRS 4.4.2)

3. the “simple analysis” often correponds to a “simple algorithm”
the algorithm makes n a power of 2 by padding with dummy numbers (e.g., see FFT)

4. divide-and-conquer algorithms recurring on 2 equal-sized problems are the most common
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F Master Theorem

the F Master Theorem generalizes our timing calculation to any number of equal-sized problems
it solves recurrences by inspection!
here’s a summary; see Handout #49 for details

consider a recurrence

T (n) =

{

1 n = 1
aT (n/b) + D(n) n > 1, n a power of b

where a, b are real numbers, a > 0, b > 1
D(n) is called the “driving function”

the “homogeneous solution” (h.s.) is nh for h = log ba

intuitively “T (n) = max{ homogeneous solution, driver }”
more precisely:

(i) if D(n) = O(nd) with d < h then T (n) = Θ(nh)

if (i) doesn’t apply suppose D(n) = ndf(n) where d ≥ 0 & f is a nondecreasing function
(intuitively f is a small function like log n, but that’s not required)

(ii) if d > h then T (n) = Θ(D(n))

(iii) if d = h then T (n) = Θ(D(n) log n) if f(n) is a small function like any power of log n
more precisely if f(n) satisfies this “flatness condition”:
(F) ∃c > 0 ∋ f(

√
n) ≥ cf(n)

Example.

(i) T (n) = 8T (n/2) + n2 =⇒ T (n) = Θ(n3)
(ii) T (n) = 2T (n/2) + n2 =⇒ T (n) = Θ(n2)
(iii) T (n) = 4T (n/2) + n2 =⇒ T (n) = Θ(n2 log n)

Question. How do the answers change when the driver increases to n2 log n?
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CLRS 4.3–4.4 The Master Theorem Unit 9.D: Master Theorem

1. Divide-and-conquer recurrences

suppose a divide-and-conquer algorithm divides the given problem into equal-sized subproblems
say a subproblems, each of size n/b

T (n) =

{

1 n = 1
aT (n/b) + D(n) n > 1, n a power of b

տ
the driving function

assume a and b are real numbers, a > 0, b > 1

Remarks
1. usually a is integral!
2. fractional b is useful, e.g., T (n) = 3T (2n/3) + 1

here T is defined on a set of rational numbers, (3/2)i

the related function on integers, T (n) = 3T (⌈2n/3⌉) + 1,
behaves exactly the same way – CLRS 4.4.2

2. Solving the recurrence

let n = bk, k = log bn (n not necessarily integer)
iterate the recurrence:

T (bk) = D(bk) + aT (bk−1)

= D(bk) + aD(bk−1) + a2T (bk−2)

=

k−1
∑

i=0

aiD(bk−i) + akT (1)

second term akT (1) is the solution when D(·) = 0, called the homogeneous solution (h.s.)
akT (1) = a log bn = n log ba

let h = log ba, so h.s.= nh

usually h ≥ 0 since a ≥ 1

An important special case
a common driving function is D(n) = nd, d ≥ 0 (d is real)

the sum becomes nd
∑k−1

i=0 (a/bd)i, a geometric progression

Sum of a geometric progression
let r be a constant and k tend to ∞

k
∑

i=0

ri =

{

rk+1−1
r−1

r 6= 1
k + 1 r = 1

=







Θ(1) 0 < r < 1
Θ(k) r = 1
Θ(rk) r > 1
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for D(n) = nd, T (n) =







Θ(nd)
Θ(nh log n)
Θ(nh)

a < bd, i.e., h < d
a = bd, i.e., h = d
a > bd, i.e., h > d

More generally
it’s fairly common to have drivers like n log n or even n2 log n log log n, etc.

we’ll assume our driver has the form ndf(n), where f is nondecreasing
intuitively f is a small function like log n

F Master Theorem. For any nondecreasing function f(n) and any d ≥ 0,

T (n) =















Θ(D(n))

O(D(n) log n)

Θ(nh)

D(n) = Θ(ndf(n))

D(n) = Θ(nhf(n))

D(n) = O(nd)

h < d

h > d

Remarks
1. informally, “T (n) = max{ homogeneous solution, driver }”

2. F Master Theorem is proved similar to special case above

3. the middle case is tight, i.e., T (n) = Θ(D(n) log n) for D(n) = Θ(nhf(n)),
if f(n) satisfies this “flatness condition”:

(F) f(
√

n) = Ω(f(n))

e.g., f(n) = log n satisfies (F), f(n) = n doesn’t

the set of f ’s satisfying (F) is closed under product, powers, logs
e.g., log 2n,

√
log n, log log n satisfy (F)

we can also relax (F), requiring it only for sufficiently large n

4. the CLRS Master Theorem (p.73) has weaker 2nd & 3rd cases

3. Examples

1. T (n) = 3T (2n/3) + 1 (Stooge-sort, Pr.7-3)
h.s. : T (n) = 3T (2n/3); iterating gives h.s. = nh, h = log 3/23 ≈ 2.7

h > d ( log 3/23 > 0) =⇒ T (n) = h.s. = Θ(nh) = ω(n2) (!)

2. T (n) = T (n/2d) + d2n1/d (recursion on d-dimensional mesh)
h.s. : T (n) = T (n/2d); h.s. = 1

h < d (0 < 1/d) =⇒ T (n) = driver = Θ(d2n1/d)

this illustrates the case h = 0 when a = 1

3. T (n) = T (n/2) + log n (PRAM mergesort)
h.s. = 1, driver = (h.s.)× log n
=⇒ T (n) = driver × log n = Θ( log 2n)

CSCI 5454 H. Gabow Spring 2008 #49, p. 2



CLRS 4.1 Master Theorem for Unequal-size Subproblems Unit 9.D: Master Theorem

common strategy: achieve linear divide/combine time

Example 1. T (n) = n + T (n/2) T (n) =

Example 2. T (n) = n + 2T (n/2) T (n) =

in general for T (n) = n + aT (n/b),

T (n) =

{

Θ(n) a < b, i.e., total problem size decreases each level
Θ(n log n) a = b, i.e., total problem size stays same each level

this generalizes to unequal-size subproblems:

Example 3. T (n) = n + T (n/2) + T (n/3) T (n) =

Example 4. T (n) = n + T (n/2) + T (n/3) + T (n/6) T (n) =

Example 5. T (n) = n + T (n/2) + 2T (n/4) T (n) =

Example 6. T (n) = Θ(n) + T (⌈n/2⌉) + T (⌊n/3⌋) + T (⌈n/6⌉+ 21) T (n) =

Example 7. T (n) = n + T (n− 1) T (n) =

Theorem. For real numbers ai, Ai, 0 < ai < 1, i = 1, . . . , k let

T (n) =

{

c n < N
n +

∑k
i=1 T (⌈ain + Ai⌉) n ≥ N

Then T (n) =

{

Θ(n)
∑k

i=1 ai < 1

Θ(n log n)
∑k

i=1 ai = 1

Proof. use method of substitution (CLRS 4.1):
guess the solution; prove it formally using mathematical induction

we guess the answer using intuition from equal-size subproblems
(CLRS p.191) illustrates 1st case ⊓⊔

Remarks

1. other ways to guess the solution:
(i) make a table of values (perhaps computer-generated)
(ii) guess form of solution, introducing unknown constants

the inductive proof reveals the values of the constants
see CLRS p.65

2. sometimes subproblem sizes can vary
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e.g., Planar Separator Theorem. Any planar graph has a set of ≤
√

8n vertices
whose removal leaves 2 disconnected subgraphs, each with ≤ 2n/3 vertices.
The separating set can be found in time O(n).

corresponding recurrence involves a max operation, e.g.,

T (n) ≤ max{n + T (n1) + T (n2) : n1 + n2 ≤ n; n1, n2 ≤ 2n/3}

theorem holds for these recurrences too!

Example 8. T (n) = max{n+T (n1)+T (n2) : n1+n2 ≤ n; n1, n2 ≤ 9n/10} T (n) =

F Master Theorem for Unequal Subproblems.
Consider any recurrence

T (n) =

k
∑

i=1

T (ain) + D(n)

where 0 < ai < 1, i = 1, ..., k and D(n) = ndf(n) for a nondecreasing function f(n).
(change the arguments ain to ain + Ai if you wish).

Set s =
∑k

i=1 ad
i .

T (n) =







Θ(D(n)) s < 1
O(D(n) log n) s = 1
Θ(nh) s > 1

where h satisfies
∑k

i=1 ah
i = 1.

The middle case is tight, T (n) = Θ(D(n) log n), for s = 1 and f satisfying (F).

Example 9. T (n) = n3 + 3T (2n/3) + 3T (n/3) T (n) =

Example 10. T (n) = n4 + 3T (2n/3) + 3T (n/3) T (n) =

Example 11. T (n) = n2 + 3T (2n/3) + 3T (n/3) T (n) =

Remarks

1. for equal size problems, this is precisely the original F Master Theorem
since h = log ba satisfies a(1/b)h = 1

2. since h is usually hard to compute, we phrase the first 2 cases using only d
but they correspond to the cases d > h and d = h of the F Master Theorem
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