
CLRS 2.3, 4.3 Mergesort & The Master Theorem Unit 3.A: Sorting

divide-and-conquer algorithm to sort a list of numbers:
procedure mergesort(L);
if |L| = 1 then return L /∗ base case ∗/
else {

L1 ← any ⌊|L|/2⌋ elements of L; /∗ divide step ∗/
L2 ← the remaining ⌈|L|/2⌉ elements of L;
S1 ← mergesort(L1); /∗ recurse ∗/
S2 ← mergesort(L2);
merge S1 with S2 and return the result; } /∗ combine ∗/

note that any integer n satisfies n = ⌊n/2⌋+ ⌈n/2⌉

Example 1.
input: 1 12 8 10 4 7 2 9 →
recursively sort: 1 8 10 12 2 4 7 9 →
merge: 1 2 4 7 8 9 10 12

Example 1 illustrates the 1st of 2 good ways to visualize recursive algorithms:
The Magic View of Recursion:
think of recursive calls as “magically” returning the correct answer
don’t worry about the details of lower levels of recursion!

Theorem. Mergesort sorts a list of n numbers in time O(n log n) and space O(n).

we’ll prove this twice (in this handout and next) illustrating 2 basic techniques

Simple analysis/Iteration method

define T (n) = the worst-case time to execute mergesort on a list of n elements
proceed in 2 steps (i) – (ii) :

(i) assume n = 2k for an integer k

T (n) =

{

1 n = 1
n + 2T (n/2) n > 1

Remark. this recurrence is well-defined, and avoids floors and ceilings

iterate the recurrence:

T (n) = n + 2T (n/2) [by the recurrence]

= n + 2(n/2) + 4T (n/4) [substituting for T (n/2)]

= n + 2(n/2) + 4(n/4) + 8T (n/8) [substituting for T (n/4)]

= n + 2(n/2) + 4(n/4) + . . . + 2i−1(n/2i−1) + 2iT (n/2i) [generalizing]

= n + 2(n/2) + . . . + 2i(n/2i) + . . . + 2k−1(n/2k−1) + 2k [take i = k & use base case]

= n(1 + k)

= n(1 + log n)

CSCI 5454 H. Gabow Spring 2008 #16, p. 1

thus T (n) = O(n log n), for n a power of 2

this calculation is the iteration method

(ii) let n be arbitrary
Fact. There is a power of 2 between n and 2n (specifically p = 2⌈ log n⌉).

for the above power p,
T (n) ≤ T (p) = p(1 + log p) ≤ 2n(1 + log 2n) =⇒ in general, T (n) = O(n log n) ⊓⊔

Remarks

1. the recurrence for general n is too messy to analyze

2. usually we omit step (ii)! (see CLRS 4.4.2)

3. the “simple analysis” often correponds to a “simple algorithm”
the algorithm makes n a power of 2 by padding with dummy numbers (e.g., see FFT)

4. divide-and-conquer algorithms recurring on 2 equal-sized problems are the most common

CSCI 5454 H. Gabow Spring 2008 #16, p. 2

F Master Theorem

the F Master Theorem generalizes our timing calculation to any number of equal-sized problems
it solves recurrences by inspection!
here’s a summary; see Handout #49 for details

consider a recurrence

T (n) =

{

1 n = 1
aT (n/b) + D(n) n > 1, n a power of b

where a, b are real numbers, a > 0, b > 1
D(n) is called the “driving function”

the “homogeneous solution” (h.s.) is nh for h = log ba

intuitively “T (n) = max{ homogeneous solution, driver }”
more precisely:

(i) if D(n) = O(nd) with d < h then T (n) = Θ(nh)

if (i) doesn’t apply suppose D(n) = ndf(n) where d ≥ 0 & f is a nondecreasing function
(intuitively f is a small function like log n, but that’s not required)

(ii) if d > h then T (n) = Θ(D(n))

(iii) if d = h then T (n) = Θ(D(n) log n) if f(n) is a small function like any power of log n
more precisely if f(n) satisfies this “flatness condition”:
(F) ∃c > 0 ∋ f(

√
n) ≥ cf(n)

Example.

(i) T (n) = 8T (n/2) + n2 =⇒ T (n) = Θ(n3)
(ii) T (n) = 2T (n/2) + n2 =⇒ T (n) = Θ(n2)
(iii) T (n) = 4T (n/2) + n2 =⇒ T (n) = Θ(n2 log n)

Question. How do the answers change when the driver increases to n2 log n?

CSCI 5454 H. Gabow Spring 2008 #16, p. 3

CLRS 4.3–4.4 The Master Theorem Unit 9.D: Master Theorem

1. Divide-and-conquer recurrences

suppose a divide-and-conquer algorithm divides the given problem into equal-sized subproblems
say a subproblems, each of size n/b

T (n) =

{

1 n = 1
aT (n/b) + D(n) n > 1, n a power of b

տ
the driving function

assume a and b are real numbers, a > 0, b > 1

Remarks
1. usually a is integral!
2. fractional b is useful, e.g., T (n) = 3T (2n/3) + 1

here T is defined on a set of rational numbers, (3/2)i

the related function on integers, T (n) = 3T (⌈2n/3⌉) + 1,
behaves exactly the same way – CLRS 4.4.2

2. Solving the recurrence

let n = bk, k = log bn (n not necessarily integer)
iterate the recurrence:

T (bk) = D(bk) + aT (bk−1)

= D(bk) + aD(bk−1) + a2T (bk−2)

=

k−1
∑

i=0

aiD(bk−i) + akT (1)

second term akT (1) is the solution when D(·) = 0, called the homogeneous solution (h.s.)
akT (1) = a log bn = n log ba

let h = log ba, so h.s.= nh

usually h ≥ 0 since a ≥ 1

An important special case
a common driving function is D(n) = nd, d ≥ 0 (d is real)

the sum becomes nd
∑k−1

i=0 (a/bd)i, a geometric progression

Sum of a geometric progression
let r be a constant and k tend to ∞

k
∑

i=0

ri =

{

rk+1−1
r−1

r 6= 1
k + 1 r = 1

=







Θ(1) 0 < r < 1
Θ(k) r = 1
Θ(rk) r > 1

CSCI 5454 H. Gabow Spring 2008 #49, p. 1

for D(n) = nd, T (n) =







Θ(nd)
Θ(nh log n)
Θ(nh)

a < bd, i.e., h < d
a = bd, i.e., h = d
a > bd, i.e., h > d

More generally
it’s fairly common to have drivers like n log n or even n2 log n log log n, etc.

we’ll assume our driver has the form ndf(n), where f is nondecreasing
intuitively f is a small function like log n

F Master Theorem. For any nondecreasing function f(n) and any d ≥ 0,

T (n) =















Θ(D(n))

O(D(n) log n)

Θ(nh)

D(n) = Θ(ndf(n))

D(n) = Θ(nhf(n))

D(n) = O(nd)

h < d

h > d

Remarks
1. informally, “T (n) = max{ homogeneous solution, driver }”

2. F Master Theorem is proved similar to special case above

3. the middle case is tight, i.e., T (n) = Θ(D(n) log n) for D(n) = Θ(nhf(n)),
if f(n) satisfies this “flatness condition”:

(F) f(
√

n) = Ω(f(n))

e.g., f(n) = log n satisfies (F), f(n) = n doesn’t

the set of f ’s satisfying (F) is closed under product, powers, logs
e.g., log 2n,

√
log n, log log n satisfy (F)

we can also relax (F), requiring it only for sufficiently large n

4. the CLRS Master Theorem (p.73) has weaker 2nd & 3rd cases

3. Examples

1. T (n) = 3T (2n/3) + 1 (Stooge-sort, Pr.7-3)
h.s. : T (n) = 3T (2n/3); iterating gives h.s. = nh, h = log 3/23 ≈ 2.7

h > d (log 3/23 > 0) =⇒ T (n) = h.s. = Θ(nh) = ω(n2) (!)

2. T (n) = T (n/2d) + d2n1/d (recursion on d-dimensional mesh)
h.s. : T (n) = T (n/2d); h.s. = 1

h < d (0 < 1/d) =⇒ T (n) = driver = Θ(d2n1/d)

this illustrates the case h = 0 when a = 1

3. T (n) = T (n/2) + log n (PRAM mergesort)
h.s. = 1, driver = (h.s.)× log n
=⇒ T (n) = driver × log n = Θ(log 2n)

CSCI 5454 H. Gabow Spring 2008 #49, p. 2

CLRS 4.1 Master Theorem for Unequal-size Subproblems Unit 9.D: Master Theorem

common strategy: achieve linear divide/combine time

Example 1. T (n) = n + T (n/2) T (n) =

Example 2. T (n) = n + 2T (n/2) T (n) =

in general for T (n) = n + aT (n/b),

T (n) =

{

Θ(n) a < b, i.e., total problem size decreases each level
Θ(n log n) a = b, i.e., total problem size stays same each level

this generalizes to unequal-size subproblems:

Example 3. T (n) = n + T (n/2) + T (n/3) T (n) =

Example 4. T (n) = n + T (n/2) + T (n/3) + T (n/6) T (n) =

Example 5. T (n) = n + T (n/2) + 2T (n/4) T (n) =

Example 6. T (n) = Θ(n) + T (⌈n/2⌉) + T (⌊n/3⌋) + T (⌈n/6⌉+ 21) T (n) =

Example 7. T (n) = n + T (n− 1) T (n) =

Theorem. For real numbers ai, Ai, 0 < ai < 1, i = 1, . . . , k let

T (n) =

{

c n < N
n +

∑k
i=1 T (⌈ain + Ai⌉) n ≥ N

Then T (n) =

{

Θ(n)
∑k

i=1 ai < 1

Θ(n log n)
∑k

i=1 ai = 1

Proof. use method of substitution (CLRS 4.1):
guess the solution; prove it formally using mathematical induction

we guess the answer using intuition from equal-size subproblems
(CLRS p.191) illustrates 1st case ⊓⊔

Remarks

1. other ways to guess the solution:
(i) make a table of values (perhaps computer-generated)
(ii) guess form of solution, introducing unknown constants

the inductive proof reveals the values of the constants
see CLRS p.65

2. sometimes subproblem sizes can vary

CSCI 5454 H. Gabow Spring 2008 #50, p. 1

e.g., Planar Separator Theorem. Any planar graph has a set of ≤
√

8n vertices
whose removal leaves 2 disconnected subgraphs, each with ≤ 2n/3 vertices.
The separating set can be found in time O(n).

corresponding recurrence involves a max operation, e.g.,

T (n) ≤ max{n + T (n1) + T (n2) : n1 + n2 ≤ n; n1, n2 ≤ 2n/3}

theorem holds for these recurrences too!

Example 8. T (n) = max{n+T (n1)+T (n2) : n1+n2 ≤ n; n1, n2 ≤ 9n/10} T (n) =

F Master Theorem for Unequal Subproblems.
Consider any recurrence

T (n) =

k
∑

i=1

T (ain) + D(n)

where 0 < ai < 1, i = 1, ..., k and D(n) = ndf(n) for a nondecreasing function f(n).
(change the arguments ain to ain + Ai if you wish).

Set s =
∑k

i=1 ad
i .

T (n) =







Θ(D(n)) s < 1
O(D(n) log n) s = 1
Θ(nh) s > 1

where h satisfies
∑k

i=1 ah
i = 1.

The middle case is tight, T (n) = Θ(D(n) log n), for s = 1 and f satisfying (F).

Example 9. T (n) = n3 + 3T (2n/3) + 3T (n/3) T (n) =

Example 10. T (n) = n4 + 3T (2n/3) + 3T (n/3) T (n) =

Example 11. T (n) = n2 + 3T (2n/3) + 3T (n/3) T (n) =

Remarks

1. for equal size problems, this is precisely the original F Master Theorem
since h = log ba satisfies a(1/b)h = 1

2. since h is usually hard to compute, we phrase the first 2 cases using only d
but they correspond to the cases d > h and d = h of the F Master Theorem

CSCI 5454 H. Gabow Spring 2008 #50, p. 2

