divide-and-conquer algorithm to sort a list of numbers:
procedure mergesort (L);
if $|L|=1$ then return $L \quad / *$ base case $* /$
else \{
$L_{1} \leftarrow$ any $\lfloor|L| / 2\rfloor$ elements of $L ; \quad / *$ divide step $* /$
$L_{2} \leftarrow$ the remaining $\lceil|L| / 2\rceil$ elements of L;
$S_{1} \leftarrow \operatorname{mergesort}\left(L_{1}\right) ; \quad / *$ recurse $* /$
$S_{2} \leftarrow$ mergesort $\left(L_{2}\right)$; merge S_{1} with S_{2} and return the result; \} /* combine */
note that any integer n satisfies $n=\lfloor n / 2\rfloor+\lceil n / 2\rceil$
Example 1.

input: $\quad \begin{array}{llllllll}1 & 12 & 8 & 10 & 4 & 7 & 2 & 9\end{array} \rightarrow$ recursively sort:	1	8	10	12	2	4	7	$9 \rightarrow$

merge: $\quad \begin{array}{llllllll}1 & 2 & 4 & 7 & 8 & 9 & 10 & 12\end{array}$
Example 1 illustrates the 1st of 2 good ways to visualize recursive algorithms:
The Magic View of Recursion:
think of recursive calls as "magically" returning the correct answer
don't worry about the details of lower levels of recursion!
Theorem. Mergesort sorts a list of n numbers in time $O(n \log n)$ and space $O(n)$.
we'll prove this twice (in this handout and next) illustrating 2 basic techniques

Simple analysis/Iteration method

define $T(n)=$ the worst-case time to execute mergesort on a list of n elements proceed in 2 steps (i) - (ii) :
(i) assume $n=2^{k}$ for an integer k

$$
T(n)= \begin{cases}1 & n=1 \\ n+2 T(n / 2) & n>1\end{cases}
$$

Remark. this recurrence is well-defined, and avoids floors and ceilings
iterate the recurrence:

$$
\begin{aligned}
T(n) & =n+2 T(n / 2) & & {[\text { by the recurrence] }} \\
& =n+2(n / 2)+4 T(n / 4) & & {[\text { substituting for } T(n / 2)] } \\
& =n+2(n / 2)+4(n / 4)+8 T(n / 8) & & {[\text { substituting for } T(n / 4)] } \\
& =n+2(n / 2)+4(n / 4)+\ldots+2^{i-1}\left(n / 2^{i-1}\right)+2^{i} T\left(n / 2^{i}\right) & & {[\text { generalizing }] } \\
& =n+2(n / 2)+\ldots+2^{i}\left(n / 2^{i}\right)+\ldots+2^{k-1}\left(n / 2^{k-1}\right)+2^{k} & & {[\text { take } i=k \& \text { use base case }] } \\
& =n(1+k) & & \\
& =n(1+\log n) & &
\end{aligned}
$$

thus $T(n)=O(n \log n)$, for n a power of 2
this calculation is the iteration method
(ii) let n be arbitrary

Fact. There is a power of 2 between n and $2 n$ (specifically $p=2^{\lceil\log n\rceil}$).
for the above power p,
$T(n) \leq T(p)=p(1+\log p) \leq 2 n(1+\log 2 n) \Longrightarrow$ in general, $T(n)=O(n \log n)$

Remarks

1. the recurrence for general n is too messy to analyze
2. usually we omit step (ii)! (see CLRS 4.4.2)
3. the "simple analysis" often correponds to a "simple algorithm" the algorithm makes n a power of 2 by padding with dummy numbers (e.g., see FFT)
4. divide-and-conquer algorithms recurring on 2 equal-sized problems are the most common

F Master Theorem

the F Master Theorem generalizes our timing calculation to any number of equal-sized problems it solves recurrences by inspection!
here's a summary; see Handout \#49 for details
consider a recurrence

$$
T(n)= \begin{cases}1 & n=1 \\ a T(n / b)+D(n) & n>1, n \text { a power of } b\end{cases}
$$

where a, b are real numbers, $a>0, b>1$
$D(n)$ is called the "driving function"
the "homogeneous solution" (h.s.) is n^{h} for $h=\log _{b} a$
intuitively " $T(n)=\max \{$ homogeneous solution, driver \}"
more precisely:
(i) if $D(n)=O\left(n^{d}\right)$ with $d<h$ then $\underline{T(n)=\Theta\left(n^{h}\right)}$
if (i) doesn't apply suppose $D(n)=n^{d} f(n)$ where $d \geq 0 \& f$ is a nondecreasing function (intuitively f is a small function like $\log n$, but that's not required)
(ii) if $d>h$ then $\underline{T(n)=\Theta(D(n))}$
(iii) if $d=h$ then $T(n)=\Theta(D(n) \log n)$ if $f(n)$ is a small function like any power of $\log n$ more precisely if $f(n)$ satisfies this "flatness condition":
(F) $\exists c>0 \ni f(\sqrt{n}) \geq c f(n)$

Example.
(i) $\quad T(n)=8 T(n / 2)+n^{2} \Longrightarrow T(n)=\Theta\left(n^{3}\right)$
(ii) $T(n)=2 T(n / 2)+n^{2} \Longrightarrow T(n)=\Theta\left(n^{2}\right)$
(iii) $T(n)=4 T(n / 2)+n^{2} \Longrightarrow T(n)=\Theta\left(n^{2} \log n\right)$

Question. How do the answers change when the driver increases to $n^{2} \log n$?

1. Divide-and-conquer recurrences

suppose a divide-and-conquer algorithm divides the given problem into equal-sized subproblems say a subproblems, each of size n / b

$$
\begin{aligned}
& T(n)= \begin{cases}1 & n=1 \\
a T(n / b)+D(n) & n>1, n \text { a power of } b\end{cases} \\
& \text { the driving function }
\end{aligned}
$$

assume a and b are real numbers, $a>0, b>1$

Remarks

1. usually a is integral!
2. fractional b is useful, e.g., $T(n)=3 T(2 n / 3)+1$ here T is defined on a set of rational numbers, $(3 / 2)^{i}$
the related function on integers, $T(n)=3 T(\lceil 2 n / 3\rceil)+1$,
behaves exactly the same way - CLRS 4.4.2

2. Solving the recurrence

let $n=b^{k}, k=\log _{b} n$ (n not necessarily integer)
iterate the recurrence:

$$
\begin{aligned}
T\left(b^{k}\right) & =D\left(b^{k}\right)+a T\left(b^{k-1}\right) \\
& =D\left(b^{k}\right)+a D\left(b^{k-1}\right)+a^{2} T\left(b^{k-2}\right) \\
& =\sum_{i=0}^{k-1} a^{i} D\left(b^{k-i}\right)+a^{k} T(1)
\end{aligned}
$$

second term $a^{k} T(1)$ is the solution when $D(\cdot)=0$, called the homogeneous solution (h.s.)
$a^{k} T(1)=a^{\log _{b} n}=n^{\log _{b} a}$
let $h=\log _{b} a$, so h.s. $=n^{h}$
usually $h \geq 0$ since $a \geq 1$
An important special case
a common driving function is $D(n)=n^{d}, d \geq 0$ (d is real)
the sum becomes $n^{d} \sum_{i=0}^{k-1}\left(a / b^{d}\right)^{i}$, a geometric progression
Sum of a geometric progression let r be a constant and k tend to ∞

$$
\sum_{i=0}^{k} r^{i}=\left\{\begin{array}{ll}
\frac{r^{k+1}-1}{r-1} & r \neq 1 \\
k+1 & r=1
\end{array}= \begin{cases}\Theta(1) & 0<r<1 \\
\Theta(k) & r=1 \\
\Theta\left(r^{k}\right) & r>1\end{cases}\right.
$$

$$
\text { for } D(n)=n^{d}, \quad T(n)=\left\{\begin{array}{lll}
\Theta\left(n^{d}\right) & a<b^{d}, & \text { i.e., } h<d \\
\Theta\left(n^{h} \log n\right) & a=b^{d}, & \text { i.e., } h=d \\
\Theta\left(n^{h}\right) & a>b^{d}, & \text { i.e., } h>d
\end{array}\right.
$$

More generally
it's fairly common to have drivers like $n \log n$ or even $n^{2} \log n \log \log n$, etc.
we'll assume our driver has the form $n^{d} f(n)$, where f is nondecreasing intuitively f is a small function like $\log n$

F Master Theorem. For any nondecreasing function $f(n)$ and any $d \geq 0$,

$$
T(n)=\left\{\begin{array}{lll}
\Theta(D(n)) & D(n)=\Theta\left(n^{d} f(n)\right) & h<d \\
O(D(n) \log n) & D(n)=\Theta\left(n^{h} f(n)\right) & \\
\Theta\left(n^{h}\right) & D(n)=O\left(n^{d}\right) & h>d
\end{array}\right.
$$

Remarks

1. informally, " $T(n)=\max \{$ homogeneous solution, driver \}"
2. F Master Theorem is proved similar to special case above
3. the middle case is tight, i.e., $T(n)=\Theta(D(n) \log n)$ for $D(n)=\Theta\left(n^{h} f(n)\right)$, if $f(n)$ satisfies this "flatness condition":
(F) $\quad f(\sqrt{n})=\Omega(f(n))$
e.g., $f(n)=\log n$ satisfies (F), $f(n)=n$ doesn't
the set of f 's satisfying (F) is closed under product, powers, logs e.g., $\log ^{2} n, \sqrt{\log n}, \log \log n$ satisfy (F)
we can also relax (F), requiring it only for sufficiently large n
4. the CLRS Master Theorem (p.73) has weaker 2nd \& 3rd cases

3. Examples

1. $T(n)=3 T(2 n / 3)+1 \quad$ (Stooge-sort, Pr.7-3)
h.s. : $T(n)=3 T(2 n / 3)$; iterating gives h.s. $=n^{h}, h=\log _{3 / 2} 3 \approx 2.7$
$h>d\left(\log _{3 / 2} 3>0\right) \Longrightarrow T(n)=$ h.s. $=\Theta\left(n^{h}\right)=\omega\left(n^{2}\right)$
2. $T(n)=T\left(n / 2^{d}\right)+d^{2} n^{1 / d} \quad$ (recursion on d-dimensional mesh)
h.s. : $T(n)=T\left(n / 2^{d}\right)$; h.s. $=1$
$h<d(0<1 / d) \Longrightarrow T(n)=$ driver $=\Theta\left(d^{2} n^{1 / d}\right)$
this illustrates the case $h=0$ when $a=1$
3. $T(n)=T(n / 2)+\log n \quad$ (PRAM mergesort)
h.s. $=1$, driver $=($ h.s. $) \times \log n$
$\Longrightarrow T(n)=$ driver $\times \log n=\Theta\left(\log ^{2} n\right)$

CLRS 4.1 Master Theorem for Unequal-size Subproblems Unit 9.D: Master Theorem
common strategy: achieve linear divide/combine time
Example 1. $T(n)=n+T(n / 2) \quad T(n)=$ \qquad
Example 2. $T(n)=n+2 T(n / 2) \quad T(n)=$ \qquad
in general for $T(n)=n+a T(n / b)$,

$$
T(n)= \begin{cases}\Theta(n) & a<b, \text { i.e., total problem size decreases each level } \\ \Theta(n \log n) & a=b, \text { i.e., total problem size stays same each level }\end{cases}
$$

this generalizes to unequal-size subproblems:
Example 3. $T(n)=n+T(n / 2)+T(n / 3) \quad T(n)=$ \qquad
Example 4. $T(n)=n+T(n / 2)+T(n / 3)+T(n / 6) \quad T(n)=$ \qquad
Example 5. $T(n)=n+T(n / 2)+2 T(n / 4) \quad T(n)=$ \qquad
Example 6. $T(n)=\Theta(n)+T(\lceil n / 2\rceil)+T(\lfloor n / 3\rfloor)+T(\lceil n / 6\rceil+21) \quad T(n)=$ \qquad
Example 7. $T(n)=n+T(n-1) \quad T(n)=$ \qquad
Theorem. For real numbers $a_{i}, A_{i}, 0<a_{i}<1, i=1, \ldots, k$ let

$$
\begin{aligned}
& T(n)= \begin{cases}c & n<N \\
n+\sum_{i=1}^{k} T\left(\left\lceil a_{i} n+A_{i}\right\rceil\right) & n \geq N\end{cases} \\
& T(n)= \begin{cases}\Theta(n) & \sum_{i=1}^{k} a_{i}<1 \\
\Theta(n \log n) & \sum_{i=1}^{k} a_{i}=1\end{cases}
\end{aligned}
$$

Proof. use method of substitution (CLRS 4.1):
guess the solution; prove it formally using mathematical induction
we guess the answer using intuition from equal-size subproblems
(CLRS p.191) illustrates 1st case

Remarks

1. other ways to guess the solution:
(i) make a table of values (perhaps computer-generated)
(ii) guess form of solution, introducing unknown constants the inductive proof reveals the values of the constants see CLRS p. 65
2. sometimes subproblem sizes can vary
e.g., Planar Separator Theorem. Any planar graph has a set of $\leq \sqrt{8 n}$ vertices whose removal leaves 2 disconnected subgraphs, each with $\leq 2 n / 3$ vertices. The separating set can be found in time $O(n)$.
corresponding recurrence involves a max operation, e.g.,

$$
T(n) \leq \max \left\{n+T\left(n_{1}\right)+T\left(n_{2}\right): n_{1}+n_{2} \leq n ; n_{1}, n_{2} \leq 2 n / 3\right\}
$$

theorem holds for these recurrences too!
Example 8. $T(n)=\max \left\{n+T\left(n_{1}\right)+T\left(n_{2}\right): n_{1}+n_{2} \leq n ; n_{1}, n_{2} \leq 9 n / 10\right\} \quad T(n)=$ \qquad
F Master Theorem for Unequal Subproblems.
Consider any recurrence

$$
T(n)=\sum_{i=1}^{k} T\left(a_{i} n\right)+D(n)
$$

where $0<a_{i}<1, i=1, \ldots, k$ and $D(n)=n^{d} f(n)$ for a nondecreasing function $f(n)$. (change the arguments $a_{i} n$ to $a_{i} n+A_{i}$ if you wish).

Set $s=\sum_{i=1}^{k} a_{i}^{d}$.

$$
T(n)= \begin{cases}\Theta(D(n)) & s<1 \\ O(D(n) \log n) & s=1 \\ \Theta\left(n^{h}\right) & s>1\end{cases}
$$

where h satisfies $\sum_{i=1}^{k} a_{i}^{h}=1$.
The middle case is tight, $T(n)=\Theta(D(n) \log n)$, for $s=1$ and f satisfying (F).

Example 9. $T(n)=n^{3}+3 T(2 n / 3)+3 T(n / 3) \quad T(n)=$ \qquad
Example 10. $T(n)=n^{4}+3 T(2 n / 3)+3 T(n / 3) \quad T(n)=$ \qquad
Example 11. $T(n)=n^{2}+3 T(2 n / 3)+3 T(n / 3) \quad T(n)=$ \qquad
Remarks

1. for equal size problems, this is precisely the original F Master Theorem
since $h=\log _{b} a$ satisfies $a(1 / b)^{h}=1$
2. since h is usually hard to compute, we phrase the first 2 cases using only d but they correspond to the cases $d>h$ and $d=h$ of the F Master Theorem
