
Xisa: Extensible Inductive

Shape Analysis

Carnegie Mellon University – March 16, 2011

Xavier Rival

INRIA/ENS Paris

Bor-Yuh Evan Chang

U of Colorado, Boulder

If some of the symbols are garbled, try either installing TexPoint

George C. Necula

U of California, Berkeley

Additional Contributors: Vincent Laviron, James Holley, Daniel Stuzman

2

The promise of program analysis:

Eliminate entire classes of bugs

For example,

– Reading from a closed file:

– Reacquiring a locked lock:

How?

– Systematically examine the program

– Simulate running program on ―all inputs‖

– ―Automated code review‖

read();

acquire();





Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

3

…code …

// x now points to an unlocked lock

acquire(x);

… code …

analysis

state

Program analysis by example:

Checking for double acquires

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Simulate running program on ―all inputs‖



x

acquire(x);

… code …

4

…code …

// x now points to an unlocked lock in a linked list

acquire(x);

… code …

ideal analysis state

Program analysis by example:

Checking for double acquires

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Simulate running program on ―all inputs‖

x xx

or or or …

5

…code …

// x now points to an unlocked lock in a linked list

acquire(x);

… code …

ideal analysis state analysis

state

Must abstract

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

x xx

or or or …

x

For decidability, must

abstract—―model all

inputs‖ (e.g., merge

objects)

Abstraction too coarse or not precise enough

(e.g., lost x is always unlocked)

mislabels good code

as buggy



6

To address the precision challenge

Traditional program analysis mentality:

―Why can’t developers write more specifications for

our analysis? Then, we could verify so much more.‖

― Since developers won’t write specifications, we will

use default abstractions (perhaps coarse) that work

hopefully most of the time.‖

Cooperative approach:

―Can we design program analyses around the user?

Developers write testing code. Can we adapt the

analysis to use those as specifications?‖

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

7

Summary of overview

Challenge in analysis: Finding a good abstraction
precise enough but not more than necessary

Powerful, generic abstractions
expensive, hard to use and understand

Built-in, default abstractions
often not precise enough (e.g., data structures)

Cooperative approach:

Must involve the user in abstraction
without expecting the user to be a program analysis

expert

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

8

Overview of contributions

Extensible Inductive Shape Analysis (Xisa)

Precise inference of data structure properties

Able to check, for instance, the locking example

Targeted to software developers

Uses data structure checking code for guidance

 Turns testing code into a specification for static

analysis

Efficient

 Builds abstraction out of developer-supplied

checking code

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Extensible Inductive

Shape Analysis

Precise inference of

data structure properties

End-user approach

…

10

Shape analysis is a fundamental analysis

Precise heap abstraction needed to analyze
– Traditional languages (C, Java)

– Web scripting languages

Improves verifiers that try to
– Eliminate resource usage bugs

(locks, file handles)

– Eliminate memory errors (leaks, dangling pointers)

– Eliminate concurrency errors (data races)

– Validate developer assertions

Enables program transformations
– Compile-time garbage collection

– Data structure refactorings

…

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

11

Shape analysis by example:

Removing duplicates

// l is a sorted doubly-linked list

for each node cur in list l {

remove cur if duplicate;

}

assert l is sorted, doubly-linked

with no duplicates;

Example/Testing Code Review/Static Analysis

―no duplicates‖l

―sorted dl list‖l

program-specific

l 2 2 44

l 2 44

cur

l 2 4

―sorted dl list‖l
―segment with

no duplicates‖

cur

intermediate state

more complicated

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

12

Shape analysis is not yet practical

Choosing the heap abstraction difficult for precision

Parametric in high-level,

developer-oriented predicates

+ Extensible

+ Targeted at developersXisa

Built-in high-level predicates

- Harder to extend

+ No additional user effort (if

precise enough)

Parametric in low-level,

analyzer-oriented predicates

+ Very general and expressive

- Harder for non-expert

89

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Some representative approaches:

Cooperative approach:

Space Invader

[Distefano et al.]

TVLA

[Sagiv et al.]

13

Our approach: Executable specifications

Utilize ―run-time checking code‖ as specification

for static analysis.

assert(l.sorted_dll(…));

for each node cur in list l {

remove cur if duplicate;

}

assert(l.sorted_dll_nodup(…));

l

l

cur

l

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

•p specifies where

prev should point

h.dll(p) :=

if (h = null) then

true

else

h!prev = p and

h!next.dll(h)

checker

h.dll(p) :=

h = null Æ emp

Ç 9n. h ≠ null Æ

hprev  p ¤

hnext  n ¤

n.dll(h)

Contribution:

Generalize

checkers for

complicated

intermediate states

Contribution:

Build the abstraction

for analysis out of

developer-specified

checking code

14

Xisa is …

• Extensible and targeted for developers

– Parametric in developer-supplied checkers—viewed as

inductive definitions in separation logic

• Precise yet compact abstraction for efficiency

– Data structure-specific based on properties of interest

to the developer

An automated shape analysis with a precise memory

abstraction based around invariant checkers.

Xisa

h.dll(p) =

if (h = null) then

true

else

h!prev = prev and

h!next.dll(h)

checkers

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

15

Splitting of summaries (materialization)

To reflect updates precisely

And summarizing for termination (widening)

Shape analysis is an abstract interpretation

on abstract memory descriptions with …

cur

l

cur

l

cur

l

cur

l

cur

l

cur

l

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

16

Must materialize summaries to interpret

updates precisely

l

cur

l

cur

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Want abstract update to be ―exact‖, that is, to

update one ―concrete memory cell‖.

The example at a high-level: iterate using cur changing the

doubly-linked list from purple to red.

l

cur

split at cur

update cur purple to red

l

cur

How does the

analysis ―split‖

summaries and

know where to

―split‖?

17

Roadmap: Components of Xisa

Xisa shape analyzer

abstract interpretation

splitting and

interpreting update

summarizing

checker

analysis

h.dll(p) =

if (h = null) then

true

else

h!prev = prev and

h!next.dll(h)

checkers

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Learn information

about checkers to use

them effectively

program analysischecker analysis
(―pre-program analysis‖)Defining a program analysis:

1. The abstraction (e.g., separation logic

formulas with inductive definitions) and

operations on the abstraction (e.g.,

unfolding, update)

2. How to effectively apply the operations

(harder!)

Challenge: Checkers are incomplete specs

18

Memory abstraction as separating shape

graphs

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

2 44

Memory partitioned into regions

Graph abstraction

° ±®

data

next

prev
nullnull

2 4 4

Region summarization
segment summary

®
dll(null) dll(¯)

°
dll(°)

¯
prev

next
±

4Segment generalization of a checker (®.dll(null) up to °.dll(¯))

memory cell

inductive

predicate

(checker)

address/value

19

Unfold inductive definitions to split

summaries

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

h.dll(p) :=

h = null Æ emp

Ç 9n. h ≠ null Æ

hprev  p ¤

hnext  n ¤

n.dll(h)

Definition yields graph unfolding rules

®
dll(®)

¯
prev

next
°

dll(¯)
® unfold ® = null

Ç

To materialize cur!next!next …
unfold here

®
dll(null) dll(¯)

°
dll(°)

¯
prev

next
±

curl

20

Also need a ―backwards‖ unfolding

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

®
dll(null) dll(¯)

°
dll(°)

¯
prev

next
±

cur

for each node cur in list l {

remove cur if duplicate;

}

assert l is sorted, doubly-

linked with no

duplicates;

cur!prev!next

= cur!next;

“backwards” unfolding for cur!prev!next

®
dll(null) dll(")

°
dll(°)

prev

next
±

cur

¯

"
prev

next

Ç

°
dll(°)

¯
prev

next
±

cur

® = ° Æ ¯ = null

Technical Details:

How does the analysis do this unfolding?

Why is this unfolding allowed?

(Key: Segments are also inductively defined)

[POPL’08]

How does the analysis know to do this unfolding?

21

Roadmap: Components of Xisa

Xisa shape analyzer

abstract interpretation

splitting and

interpreting update

summarizing

checker

analysis

h.dll(p) =

if (h = null) then

true

else

h!prev = prev and

h!next.dll(h)

checkers

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

program analysischecker analysis
(―pre-program analysis‖)

Contribution:

Turns testing code

into specification

for static analysis

How do we decide

where to unfold?Derives additional

information to

guide unfolding

22

Level types for deciding where to unfold

®
dll(null) dll(¯) dll(¯)

°

®.dll(null)

¯.dll(®)

°.dll(¯)

±.dll(°)

null.dll(±)

Checker ―Run‖ (call tree/derivation)

Instance

Summary

° ±
next

prev

® ¯

prev

next next

prev

next

prev
nullnull

h.dll(p) =

if (h = null) then

true

else

h!prev = p and

h!next.dll(h)

h:{nexth i, prevh i }

p:{nexth i,prevh i }

If it exists, where is:

°!next ?

¯!next ?

Checker Definition

Says:

For h!next/h!prev,

unfold from h

For p!next/p!prev,

unfold before h

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

23

Level types make the analysis robust with

respect to how checkers are written

¯
dll(®) dll(¯) dll(¯)

°

Instance

Summary h.dll(p) =

if (h = null) then

true

else

h!prev = p and

h!next.dll(h)

h:{nexth i, prevh i }

p:{nexth i,prevh i }

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

°¯
prev

next next

prev

null®

¯
next

°
next

prev

null

Instance

¯
dll0 dll0 dll0

°

Summary
h.dll0() =

if (h!next = null) then

true

else

h!next!prev = h

and h!next.dll0()

Alternative doubly-linked list checker h:{nexth i, prevh i }

°!prev ?

Doubly-linked list checker (as before)

Different

types for

different

unfolding

24

Summary of checker parameter types

Tell where to unfold for which fields

Make analysis robust with respect to how

checkers are written

Learn where in summaries unfolding won’t help

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Can be inferred automatically with a fixed-

point computation on the checker definitions

25

Summary of interpreting updates

Splitting of summaries needed for precision

Unfolding checkers is a natural way to do

splitting

When checker traversal matches code traversal

Checker parameter type analysis

Useful for guiding unfolding in difficult cases, for

example, ―back pointer‖ traversals

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

26

Roadmap: Components of Xisa

Xisa shape analyzer

abstract interpretation

splitting and

interpreting update

summarizing

checker

analysis

h.dll(p) =

if (h = null) then

true

else

h!prev = prev and

h!next.dll(h)

checkers

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

program analysischecker analysis
(―pre-program analysis‖)

27

Summarize

by folding into inductive predicates

last = l;
cur = l!next;

while (cur != null) {

// … cur, last …

if (…) last = cur;
cur = cur! next;

}

list
l, last

next
cur

list
l

next next
curlast

list
l

next next next
curlast

summarize

list
last

listnext
cur

list
l

Challenge: Precision
(e.g., last, cur separated by

at least one step)

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

last
listnext

cur

Previous approaches

guess where to fold

for each graph.

Contribution:

Determine where by

comparing graphs

across history

28

Use iteration history with a widening

operator

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

list
cur

list
l cur

list
l

next next
cur

list

Match regions

Apply local weakening rules on each region

cur
list

l cur l
next

cur
list

cur
list

l cur

Widened result

list
cur

list
l cur

29

Given checkers, everything is automatic

Xisa shape analyzer

abstract interpretation

splitting and

interpreting update

summarizing

checker

analysis

h.dll(p) =

if (h = null) then

true

else

h!prev = prev and

h!next.dll(h)

checkers

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

program analysischecker analysis
(―pre-program analysis‖)

30

Results: Performance

Benchmark

Max. Num.

Graphs at a

Program Pt

Analysis

Time

(ms)

singly-linked list reverse 1 1.0

doubly-linked list reverse 1 1.5

doubly-linked list copy 2 5.4

doubly-linked list remove 5 17.9

doubly-linked list remove and back 5 18.1

search tree with parent insert 3 16.6

search tree with parent insertand back 5 64.7

two-level skip list rebalance 1 11.7

Linux scull driver (894 loc)

(char arrays ignored, functions inlined)

4 3969.6

Times negligible for data

structure operations

(often in sec or 1/10 sec)
Expressiveness:

Different data structures

Verified shape invariant as given by the

checker is preserved across the operation.
Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

TVLA: 850 ms

TVLA: 290 ms

Space Invader

only analyzes lists

(built-in)

31

Demo: Doubly-linked list reversal

http://xisa.cs.colorado.edu/

Body of loop over the elements:

Swaps the next and prev fields

of curr.

Already reversed segment

Node whose next and

prev fields were swapped

Not yet reversed list

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

Ongoing Undergraduate Project:

Better memory visualization

+ Eclipse integration

+ User study

32

Summary of

Xisa: Extensible Inductive Shape Analysis

Key Insight: Checkers as specifications

Developer View: Global, Expressed in a familiar style

Analysis View: Capture developer intent,

Not arbitrary inductive definitions

Constructing the program analysis

Intermediate states: Generalized segment predicates

Splitting: Checker parameter types with levels

Summarizing: History-guided approach with widening op

next listlist list listlist

® ¯
c(°) c0(°0)

h : {nexth i, prevh i} p : {nexth i, prevh i}

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

33

Subsequent Work

• C-Level Memory Abstraction [ESOP’10]

– Separating shape graphs support mixing high-

level (e.g., record fields) and low-level (e.g.,

union fields) memory abstractions

• ―Very Context-Sensitive‖ Interprocedural

Analysis [POPL’11]

– Whole program, state-based interprocedural

analysis using Xisa

– Make call stack explicit and summarize using

shape invariants

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

34

Future work:

Exploiting common specification framework

Scenario: Code instrumented with lots of checker calls

(perhaps automatically with object invariants)

assert(mychecker(x));

// … operation on x …

assert(mychecker(x));

Can we prove parts statically?

Static Analysis View: Hybrid checking

Testing View: Incrementalize invariant checking

Example: Insert in a sorted list

l
v wu

Preservation of sortedness shown statically

Emit run-time check for new element: u · v · w

• Very slow to execute

• Hard to prove statically (in general)

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

35

Conclusion

Extensible Inductive Shape Analysis
precision demanding program analysis

improved by novel user interaction

Developer: Gets results corresponding to

intuition

Analysis: Focused on what’s important to

the developer

Practical precise tools for better software

with a cooperative approach!

Bor-Yuh Evan Chang - Xisa: Extensible Inductive Shape Analysis

What can inductive

shape analysis do for you?

http://xisa.cs.colorado.edu

