Refuting Heap Reachability

Bor-Yuh Evan Chang 張博聿 University of Colorado Boulder

July 31, 2014

Sam Blackshear Manu Sridharan **CU Boulder**

Samsung

National Chiao Tung University 國立交通大學

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

Refuting Heap Reachability

Bor-Yuh Evan Chang 張博聿 University of Colorado Boulder

July 31, 2014

Sam Blackshear Manu Sridharan **CU Boulder**

Samsung

National Chiao Tung University 國立交通大學

Howsis

Howsis

Howsis

Howsis

Howsis

Howsis

Howsis

Howsis

Howsis

Activity objects encapsulate the UI

Bug: Holding reference to "old" Activity

Howsis

Activity objects encapsulate the UI

"an Activity leak"

Bug: Holding reference to "old" Activity

"Do not keep long-lived references to a context-activity"

"Do not keep long-lived references to a context-activity"

"Do not keep long-lived references to a context-activity"

"Do not keep long-lived references to a context-activity"

"Do not keep long-lived references to a context-activity"

A Specific Property to Check:

No Activity is ever reachable from a static field.

Can be answered with a points-to analysis

of type Activity

Can be answered with a points-to analysis

Compute a points-to graph and look for such points-to paths

This won't work because ...

Known: Precise points-to analysis challenging

Hind (2001). "Pointer Analysis: Haven't We Solved This Problem Yet?"▶ 75 papers, 9 PhD theses

Known: Precise points-to analysis challenging

Hind (2001). "Pointer Analysis: Haven't We Solved This Problem Yet?"▶ 75 papers, 9 PhD theses

Known: Precise points-to analysis challenging enough impossible

Verifier

A "union" of tools and techniques (e.g., model checking, abstract interpretation)

Verifier

Different classes of tools make different trade-offs: Recognize strength in combining MC-AI approaches

Different classes of tools make different trade-offs: Recognize strength in combining MC-AI approaches

Let's make it work!

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Prove alarms false with a witness search

Thresher [SAS'11,PLDI'13] attacks alarm triage for heap reachability properties

Prove alarms false with a witness search

java.util.HashMap.class

MyClass3.java

Get abstract heap path + allocation sites

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

We can do this with analysis!

What does the user need to do? He starts at, say, line 142 and traces back to see if a bug is possible given what's happening.

We can do this with analysis!

If we filter most false alarms, the user can triage more quickly and get to true bugs earlier (without frustration).

Idea 1: Refute points-to on-demand with second precise "filter" analysis

*-sensitive, strong updates (separation logic) but over-approximate

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 1: Refute points-to on-demand with second precise "filter" analysis "from constraints" to reduce with the points-to domain

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)]

Idea 1): Refute points-to on-demand with second precise "filter" analysis

Select a points-to edge in the path

Select a points-to edge in the path

Try to refute the edge with a symbolic analysis

Refutation: Derive a contradiction, that a points-to relation can't actually hold


```
class Vec {
  static Object[] EMPTY = new<sub>arr<sub>0</sub></sub> Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
```


}


```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
      copy from old table
    }
    this.tbl[next slot] = val;
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
      copy from old table
    }
    this.tbl[next slot] = val;
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
       copy from old table
    this.tbl[next slot] = val;
                                           act<sub>0</sub>: Activity
                                   arro
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
       copy from old table
    this.tbl[next slot] = val;
                                           act<sub>0</sub>: Activity
                                   arro
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push (Object Need interprocedural path-sensitivity
    if (need capacity) {
       this.tbl = newarr, Object[more capacity];
       copy from old table
    this.tbl[next slot] = val;
                                            act<sub>0</sub>: Activity
                                     arr<sub>0</sub>
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push (Object Need interprocedural path-sensitivity
    if (need capacity) {
       this.tbl = newarr1 Object[more capacity];
       copy from old table
    this.tbl[next slot] = val;
                                            act<sub>0</sub>: Activity
                                     arr<sub>0</sub>
```



```
Null object pattern: Should never be written to
class Vec
  static Object[] EMPTY = new_{arr_0} Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push (Object Need interprocedural path-sensitivity
    if (need capacity) {
       this.tbl = newarr1 Object[more capacity];
       copy from old table
                                     Need strong updates
    this.tbl[next slot] = val;
                                            act<sub>0</sub>: Activity
                                    arr<sub>0</sub>
```



```
class Vec {
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
      copy from old table
    this.tbl[next slot] = val;
                                          act<sub>0</sub>: Activity
                                   arr<sub>0</sub>
```



```
class Vec {
  static Object[] EMPTY = newarro Object[1]; ...
  Vec() { this.tbl = EMPTY; capacity initially empty }
  void push(Object val) {
    if (need capacity) {
      this.tbl = newarr, Object[more capacity];
      copy from old table
    this.tbl[next slot] = val;
                                  arr_0 \cdot [-] \mapsto act_0 * true
```



```
class Vec {
  static Object [] EMPTV = new_{arr_0} Object [1]; ...
    c() { this.tbl = EMPTY; capacity initially empty }
            (Object
                   neway [Dbject[more capacity];
       copy from old table
    this.tbl[next slot] = val;
                                   arr_0·[-] \rightarrow act_0 * true
```



```
class Vec {
                               newarr Object
  static Object
         {\this.tb!
                                Derive a contradiction
                                along all "backwards"
                                path programs
                                [Beyer, Henzinger, Majumdar, Rybalchenko (2007)]
       copy
    this.tbl[next slot]
                              val;
                                    arr_0·[-] \mapsto act_0 * true
```



```
se falsetalse
                           Derive a contradiction
                           along all "backwards"
                           path programs
                           [Beyer, Henzinger, Majumdar, Rybalchenko (2007)]
this.tbl[next slot]
                          val;
                                arr_0·[-] \mapsto act_0 * true
```



```
se falsetalse
                           Derive a contradiction
                           along all "backwards"
                           path programs
                           [Beyer, Henzinger, Majumdar, Rybalchenko (2007)]
this.tbl[next slot]
                                arr_0·[-] \mapsto act_0 * true
```

Derive refutations by trying to find witnesses

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $egin{array}{c} Q_1 \lor Q_2 \ \hline \mathbf{x} \cdot \mathbf{f} \ \hline Q \end{array}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

 $egin{array}{c} Q_1 \lor Q_2 \ \hline {f x} \cdot {f f} \ \hline Q \end{array}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $Q_1 \lor Q_2$ if (\dots) {} else {}

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $Q_1 \lor Q_2$ if (\dots) {} else {}

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

 $Q_1 \lor Q_2$ x. f

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

while $Q_{inv}(\dots)$ {}

Over-approximate what?

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Concrete $\langle \sigma, s \rangle \Downarrow \sigma'$ Evaluation

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma' \qquad \qquad \sigma \in \mathbf{State} \quad s \in \mathbf{Statement}$$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract **Analysis**

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{D}(\mathbf{State})$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

Standard Total Correctness Soundness Criteria

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State}$ $s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{St\^{a}te} \quad \gamma : \mathbf{St\^{a}te} \to \mathcal{D}(\mathbf{State})$$

Post: Goal

If
$$\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$$
 such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{St\^{a}te} \quad \gamma : \mathbf{St\^{a}te} \to \mathcal{B}(\mathbf{State})$$

"Total" Witness Soundness Criteria

Post: Goal

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

"Total" Witness Soundness Criteria

Post: Goal

$$\widehat{\sigma} = \bot$$
 ?

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{St\^{a}te} \quad \gamma : \mathbf{St\^{a}te} \to \mathcal{D}(\mathbf{State})$$

"Total" Witness Soundness Criteria

Post: Goal

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{St\^{a}te} \quad \gamma : \mathbf{St\^{a}te} \to \mathcal{B}(\mathbf{State})$$

"Total" Witness Soundness Criteria

Post: Goal

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

Ball, Kupferman, and Yorsh (2005)

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

"Total" Witness Soundness Criteria

Post: Goal

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, ... are under-approximate

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$, then $\langle \sigma, s \rangle \Downarrow \sigma'$ for some $\sigma \in \gamma(\widehat{\sigma})$.

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

Abstract Analysis

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

Refutation Soundness Criteria

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

If a loop may "produce" a conjunct of the query, we can "assume it does" (weaken the query) only at the cost of precision.

Refutation Soundness Criteria

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

If a loop may "produce" a conjunct of the query, we can "assume it does" (weaken the query) only at the cost of precision.

Refutation Soundness Criteria

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

Refutations: Prove alarms false with "partial" witnesses, an "easier condition" for loops

$$\langle \sigma, s \rangle \Downarrow \sigma'$$

Concrete Evaluation
$$\langle \sigma, s \rangle \Downarrow \sigma'$$
 $\sigma \in \mathbf{State} \ s \in \mathbf{Statement}$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\}$$

$$\vdash \{\widehat{\sigma}\} \ s \ \{\widehat{\sigma}'\} \qquad \widehat{\sigma} \in \mathbf{State} \quad \gamma : \mathbf{State} \to \mathcal{B}(\mathbf{State})$$

If $\vdash \{\widehat{\sigma}\}\ s\ \{\widehat{\sigma}'\}$ such that $\sigma' \in \gamma(\widehat{\sigma}')$ and $\langle \sigma, s \rangle \Downarrow \sigma'$, then $\sigma \in \gamma(\widehat{\sigma})$.

Roadmap: Precise but with scalability challenges

 $egin{array}{c} Q_1 \lor Q_2 \ \hline {f x} . {f f} \ \hline Q \end{array}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

while $Q_{inv}(\dots)$ {}

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $Q_1 \lor Q_2$ if (\dots) {} else {}

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

2

 $egin{array}{c|c} Q_1 &ee Q_2 \ \hline extbf{if} & (\ldots) & \{\} & extbf{else} & \{\} \ \hline Q & \end{array}$

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

while $Q_{inv}(\dots)$ $\{\}$

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed


```
o from { ..., [a<sub>i</sub>],...}
```



```
o from { ..., [a<sub>i</sub>],...}

symbolic object instance (an address)
```


$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

$$i > j \land i < j$$

$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

$$i > j \land i < j$$

or $o \cdot f \mapsto p * o \cdot f \mapsto q \land p \neq q$

$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

i > j
$$\Lambda$$
 i < j
or o · f → p * o · f → q Λ p≠q
or o from \emptyset

$$o$$
 from $\{..., a_i,...\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

i > j
$$\Lambda$$
 i < j
or o · f → p * o · f → q Λ p≠q
or o from \emptyset

$$x.f = p$$

$$y \cdot f \mapsto p$$

$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

$$i > j \land i < j$$

or $o \cdot f \mapsto p * o \cdot f \mapsto q \land p \neq q$

or o from \emptyset

$$y \text{ from } pt(x) \cap pt(y) \land x = y$$

$$\forall y \cdot f \mapsto p \land x \neq y$$

$$x.f = p$$

$$\mathtt{y}\cdot\mathtt{f}\mapsto\mathtt{p}$$

$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

$$i > j \land i < j$$

or $o \cdot f \mapsto p * o \cdot f \mapsto q \land p \neq q$

or o from \emptyset

y from
$$pt(x) \cap pt(y) \land x = y$$

$$\forall y \cdot f \mapsto p \land x \neq y$$

$$x.f = p$$

$$\mathtt{y}\cdot\mathtt{f}\mapsto\mathtt{p}$$

$$o$$
 from $\{\ldots, a_i, \ldots\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

Refute (derive false) if:

y from
$$pt(x) \cap pt(y) \land x = y$$

$$\lor y \cdot f \mapsto p \land x \neq y$$

$$x.f = p$$

$$\mathtt{y}\cdot\mathtt{f}\mapsto\mathtt{p}$$

Generalized disalias check:

$$pt(x) \cap pt(y) = \emptyset$$

$$o$$
 from $\{..., a_i,...\}$

symbolic object instance (an address)

abstract loc in points-to (set of addresses)

Restriction on possible abstract locations based on flow in the backwards analysis

Refute (derive false) if:

$$i > j \land i < j$$
or $o \cdot f \mapsto p * o \cdot f \mapsto q \land p \neq q$
or o from \emptyset

y from
$$pt(x) \cap pt(y) \land x = y$$

$$\vee \boxed{y \cdot f \mapsto p \land x \neq y}$$

$$x.f = p$$

$$\mathtt{y}\cdot\mathtt{f}\mapsto\mathtt{p}$$

Generalized disalias check:

$$pt(x) \cap pt(y) = \emptyset$$

Roadmap: Thresher filters out false alarms by refuting them one-by-one.

Idea 1: Refute points-to on-demand with second precise "filter" analysis

Idea 2: Leverage the facts from the first analysis in the filter analysis to scale

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android framework code

Off-the-shelf, state-of-the-art points-to analysis from WALA

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs		False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2K	25	15	0	1068	100	60
DroidLife	3K	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs		False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2K	25	15	0	1068	100	60
DroidLife	3К	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

staticfield-Activity pairs

Program	LOC	Points-To Alarms	Thresher Refuted	
PulsePoint	unknown	16	8	
StandupTimer	2 K	25	15	
DroidLife	3K	3	0	
SMSPopUp	7K	5	1	
aMetro	20 K	54	18	
K9Mail	40K	208	130	
Total	72 K	72K 311		
	stat	icfield-	Filtered	
	Activ	Activity pairs		

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs
PulsePoint	unknown	16	8	8
StandupTimer	2K	25	15	0
DroidLife	3K	3	0	3
SMSPopUp	7K	5	1	4
aMetro	20K	54	18	36
K9Mail	40K	208	130	64
Total	72 K	311	172	115
		icfield- ity pairs	Filtered	Manual

Program	LOC		Thresher Refuted	True Bugs
PulsePoint	unknown	16	8	8
StandupTimer	2 K	25	15	0
DroidLife	3К	3	0	3
SMSPopUp	7K	5	1	4
aMetro	20K	54	18	36
K9Mail	40K	208	130	64
Total	72K	311	172	115

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2K	25	15	0	1068
DroidLife	3K	3	0	3	1
SMSPopUp	7K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2 K	25	15	0	1068
DroidLife	3K	3	0	3	1
SMSPopUp	7K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602

< ~coffee to
lunch break</pre>

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)
PulsePoint	unknown	16	8	8	95
StandupTimer	2K	25	15	0	1068
DroidLife	3K	3	0	3	1
SMSPopUp	7K	5	1	4	46
aMetro	20K	54	18	36	18
K9Mail	40K	208	130	64	374
Total	72K	311	172	115	1602

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs		False Alarm %
PulsePoint	unknown	16	8	8	95	0
StandupTimer	2K	25	15	0	1068	100
DroidLife	3К	3	0	3	1	0
SMSPopUp	7K	5	1	4	46	0
aMetro	20K	54	18	36	18	0
K9Mail	40K	208	130	64	374	18
Total	72K	311	172	115	1602	17

% after filtering

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs		False Alarm %	Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2K	25	15	0	1068	100	60
DroidLife	3К	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

% after filtering

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs			Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2K	25	15	0	1068	100	60
DroidLife	3K	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

Is Thresher effective at filtering?

Program	LOC	Points-To Alarms	Thresher Refuted	True Bugs	Thresher Time (s)		Filtered %
PulsePoint	unknown	16	8	8	95	0	100
StandupTimer	2K	25	15	0	1068	100	60
DroidLife	3K	3	0	3	1	0	-
SMSPopUp	7K	5	1	4	46	0	100
aMetro	20K	54	18	36	18	0	100
K9Mail	40K	208	130	64	374	18	90
Total	72K	311	172	115	1602	17	88

False alarms down to 17% from 63% (points-to analysis only)
Thresher filters 88% of false alarms from points-to analysis

Some Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

- Assume alarms false, prove them so (refute) automatically with a "partial" witness search
- Reduced separation constraints with points-to facts
- ▶ Filters out ~90% of false alarms to expose true bugs
- Application: Find memory leaks and eliminate crashes in Android

Roadmap: Precise but with scalability challenges

 $egin{array}{c} Q_1 \lor Q_2 \ \mathbf{x} \cdot \mathbf{f} \ \hline Q \end{array}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $egin{array}{c|c} Q_1 \lor Q_2 \ \hline extbf{if} & (\ldots) & \{\} & extbf{else} & \{\} \ \hline Q & \end{array}$

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

while $Q_{inv}(\dots)$ {}

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

 $Q_1 \lor Q_2$ $\mathbf{x} \cdot \mathbf{f}$

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

2

 $egin{array}{c|c} Q_1 &ee Q_2 \ \hline extbf{if} & (\ldots) & \{\} & extbf{else} & \{\} \ \hline Q & \end{array}$

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

while $Q_{inv}(\dots)$ $\{\}$

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges

Alias path explosion for strong updates (On write, case split for each possible alias in Q to maintain separation)

 $Q_1 \lor Q_2$ if (\dots) {} else

Control-flow path explosion:

Ignore for now, reasonable if number of guards relevant to Q is small (e.g., [Das et al. (2002)])

Loops:

Simple loop invariant inference sufficient so far but more sophisticated techniques possible if needed

Teaser: Most transitions are irrelevant

Teaser: Most transitions are irrelevant

How do we soundly "jump" to the transitions that are relevant for deriving the refutation?

Thank You!

www.cs.colorado.edu/~bec pl.cs.colorado.edu

... in the process of finding leaks in apps


```
class HashMap {
  static Object[] EMPTY = new Object[2]; ...
 HashMap() { this.tbl = EMPTY; capacity initially empty }
 void put(Object key, Object val) {
    if (need capacity) {
      this.tbl = new Object[more capacity];
      copy from old table
    this.tbl[bucket using hash of key] = val;
 HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
```


Null object pattern: Should never be written to

```
class HashM
  static Object[] EMPTY = new Object[2]; ...
 HashMap() { this.tbl = EMPTY; capacity initially empty }
 void put(Object key, Object val) {
    if (need capacity) {
      this.tbl = new Object[more capacity];
      copy from old table
    this.tbl[bucket using hash of key] = val;
 HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
```


Null object pattern: Should never be written to

```
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                   allocate new
      this.tbl = new Object[more capacity];
                                                  backing array
      copy from old table
                                                   on first write
    this.tbl[bucket using hash of key] = val;
 HashMap(Map m) {
    if (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                    allocate new
      this.tbl = new Object[more capacity];
                                                   backing array
      copy from old table
                                                    on first write
    this.tbl[bucket using hash of key] = val;
 HashMap(Map m) {
    fif (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                      allocate new
      this.tbl = new Object[more capacity];
                                                      backing array
      copy from old table
                                                      on first write
    this.tbl[bucket using hash of key] = val;
  HashMap(Map m) {
    fif (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
                            An "evil" implementation of the Map interface
                            can corrupt EMPTY. Then, all HashMaps created
                                  in the future will be corrupted.
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                       allocate new
      this.tbl = new Object[more capacity];
                                                      backing array
      copy from old table
                                                       on first write
    this.tbl[bucket using hash of key] = val;
                        return 0
  HashMap(Map m)
    fif (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
                            An "evil" implementation of the Map interface
                            can corrupt EMPTY. Then, all HashMaps created
      return "evil" content
                                   in the future will be corrupted.
```

```
Null object pattern: Should never be written to
class HashM
  static Object[] EMPTY = new Object[2]; ...
  HashMap() { this.tbl = EMPTY; capacity initially empty }
  void put(Object key, Object val) {
    if (need capacity) {
                                                        allocate new
       this.tbl = new Object[more capacity];
                                                       backing array
       copy from old table
                                                        on first write
                We reported this, Google fixed it
    this.
                    https://android-review.googlesource.com/#/c/52183/
  HashMap(Map m) {
    fif (m.size() < 1) { this.tbl = EMPTY; }</pre>
    else { this.tbl = new Object[at least m.size()]; }
    copy from m
                             An "evil" implementation of the Map interface
                             can corrupt EMPTY. Then, all HashMaps created
      return "evil" content
                                   in the future will be corrupted.
```