
Refuting Heap
Reachability
Bor-Yuh Evan Chang 張博⾀聿

University of Colorado Boulder

July 31, 2014

National Chiao Tung University
國⽴立交通⼤大學

Sam Blackshear
CU Boulder

Manu Sridharan
Samsung

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Static Incrementalization of
Data Structure Checks

[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

This Talk

Refuting Heap
Reachability
Bor-Yuh Evan Chang 張博⾀聿

University of Colorado Boulder

July 31, 2014

National Chiao Tung University
國⽴立交通⼤大學

Sam Blackshear
CU Boulder

Manu Sridharan
Samsung

A bug that manifests spectacularly …

A bug that manifests spectacularly …

A bug that manifests spectacularly …

A bug that manifests spectacularly …

Crash

Wow! Android memory leaks underly
rotation-based crashes.

Wow! Android memory leaks underly
rotation-based crashes. How?!?

Wow! Android memory leaks underly
rotation-based crashes.

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

How?!?

Wow! Android memory leaks underly
rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”

How?!?

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

Often: A
misunderstanding of
a library causes the
library to keep the
Activity reference.

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

The expert recommendation ...

A Specific Property to Check:
No Activity is ever reachable from a static field.

“Do not keep long-lived references to a context-activity”

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

This won’t work because …

The well-known false alarm problem!

The well-known false alarm problem!

Oh
Verifier, help
me prove my

program has no
bugs

The well-known false alarm problem!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

The well-known false alarm problem!

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Known: Precise points-to analysis challenging
impossible?enough^

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Perspective: The false alarm problem

Perspective: The false alarm problem

Verifier

Perspective: The false alarm problem

Verifier

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation)

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation)

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation)

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation) Happy!

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation) Happy!

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation) Happy!

Unhappy but inevitable. Research work to minimize

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation) Happy!

Unhappy but inevitable. Research work to minimize

Different classes of tools make different trade-offs:
Recognize strength in combining MC-AI approaches

Perspective: The false alarm problem

VerifierProgram

Spec-
ification

✔
proof of no bug witness to a bug

or

alarms
of

maybe
bugs

✘
timeout

“bound-out”

or

A “union” of tools and techniques (e.g.,
model checking, abstract interpretation) Happy!

Unhappy but inevitable. Research work to minimize

Different classes of tools make different trade-offs:
Recognize strength in combining MC-AI approaches

This talk:
Applied to heap

reachability

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

A candidate for statically answering,
“Is there an Activity leak?”

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Can be answered with a
points-to analysis

Compute a points-to
graph and look for such
points-to paths

Let’s make it work!

alarms
of

maybe
bugs

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug witness to a bug

or

timeout
“bound-out”

or

witness to a bug

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

witness to a bug

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

Prove alarms false with a witness search

witness to a bug

Leak
Alarms

Tool

Thresher [SAS’11,PLDI’13] attacks alarm triage for
heap reachability properties

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

✔
proof of no bug

or

timeout
“bound-out”

or

Prove alarms false with a witness search

Proof Obligation User-Query
[Dillig, Dillig, Aiken (2012)]

Alarm Clustering
[Lee, Lee, Yi (2012)]

Manual triage for heap reachability reports

Manual triage for heap reachability reports

Manual triage for heap reachability reports

MyClass1.java

allocated here

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java

Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.javaGet abstract heap path + allocation sites

Assuming the user starts to triage an alarm …

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

We can do this with analysis!

Assuming the user starts to triage an alarm …

What does the user need to do? He starts at,
say, line 142 and traces back to see if a bug is
possible given what’s happening.

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

We can do this with analysis!

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

*-sensitive, strong updates (separation logic) but over-approximate

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

1

1

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

“from constraints” to reduce with the points-to domain
1

2

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

refinement

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)]

refinement

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted

False Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not RefutedFalse Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm
Soundly Filtered

A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Select a points-to
edge in the path

Try to refute the
edge with a
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm
Soundly Filtered

Refutation: Derive a contradiction, that a points-to
relation can’t actually hold

Refuting a points-to edge:
What are we up against?

1

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Need strong updates

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0 act0: Activity

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

false false falsefalse
false

arr0·[-] ↦ act0 * true

A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction
along all “backwards”
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)]

false false falsefalse
false

Derive refutations by trying to find witnesses

arr0·[-] ↦ act0 * true

Roadmap: Precise but with scalability challenges 1

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Over-approximate what?

Soundness Criteria 1

Soundness Criteria 1

Concrete
Evaluation

Soundness Criteria 1

Concrete
Evaluation

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Standard Total Correctness Soundness Criteria

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

 ?

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Ball, Kupferman, and Yorsh (2005)

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

“Total” Witness Soundness Criteria Post: Goal

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, … are under-approximate

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that ,
then for some .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Refutation Soundness Criteria

Refutations: Prove alarms false with “partial” witnesses,
an “easier condition” for loops

If a loop may “produce” a conjunct of the query, we can
“assume it does” (weaken the query) only at the cost of
precision.

Soundness Criteria 1

Concrete
Evaluation

Abstract
Analysis

If such that and ,
then .

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check:
pt(x) ∩ pt(y) = ∅

from constraints: Reducing separation constraints
with points-to facts

Points-To
Facts

2

o from { …, ,… }ai

symbolic object
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check:
pt(x) ∩ pt(y) = ∅

Restriction on possible abstract
locations based on flow in the

backwards analysis

Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second precise “filter” analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android
framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

staticfield-
Activity pairs

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

1

Manual

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

< ∼coffee to
lunch break

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

% after
filtering

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

% after
filtering

1

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

1

Some Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Assume alarms false, prove them so (refute) automatically with a
“partial” witness search

‣ Reduced separation constraints with points-to facts

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Application: Find memory leaks and eliminate crashes in Android

Leak
Alarms

Filter with
Thresher

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f (. . .) {} else {}

Q

while Qinv (. . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to
maintain separation)

Points-To
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but
more sophisticated techniques possible if needed

Teaser: Most transitions are irrelevant

2808

1114

787

1138

827

11443

425

1115

11441 233242467073 1144211448118184284675678679 7087837841

11196

1231937837309 7310

11471

217

11472

12475

117

1121

11473116

11814

21121152116 216

222 224

225

226227

663

6956

7069

7083

844

14021

120349

377

379 380381

383384 385

388389 391 392394 395397 398400 401402404 405407 408410 411413 414415 416418 420421 423424427

664

7070 70717072

429

7041

11484

1448

2136 2137

2123

1108 681

635

4695698699

3435603706 7078708709 711 712713 714715716717718719720721722723724725

727728 6611661266136614729 730

731 2560732734737738739 7407461741743 744745746 7477487082750753 756758759 760761762 763764 765766768769770771 774 775 778779 781782 783784 11436118831203170747075707670777079785786788789113711137211438 141047241828 829 8307308831832842

626

50

662

843

14501451

Nodes that must be
visited to find a refutation

Partial call graph for bloat

...

Start node

Teaser: Most transitions are irrelevant

2808

1114

787

1138

827

11443

425

1115

11441 233242467073 1144211448118184284675678679 7087837841

11196

1231937837309 7310

11471

217

11472

12475

117

1121

11473116

11814

21121152116 216

222 224

225

226227

663

6956

7069

7083

844

14021

120349

377

379 380381

383384 385

388389 391 392394 395397 398400 401402404 405407 408410 411413 414415 416418 420421 423424427

664

7070 70717072

429

7041

11484

1448

2136 2137

2123

1108 681

635

4695698699

3435603706 7078708709 711 712713 714715716717718719720721722723724725

727728 6611661266136614729 730

731 2560732734737738739 7407461741743 744745746 7477487082750753 756758759 760761762 763764 765766768769770771 774 775 778779 781782 783784 11436118831203170747075707670777079785786788789113711137211438 141047241828 829 8307308831832842

626

50

662

843

14501451

Nodes that must be
visited to find a refutation

Partial call graph for bloat

...

Start node

How do we soundly “jump” to the transitions that are
relevant for deriving the refutation?

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

NTU
Tomorrow

Fissile Types:
Checking
Almost

Everywhere
Invariants

[Coughlin+ POPL’14]

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

NTU
Tomorrow

Fissile Types:
Checking
Almost

Everywhere
Invariants

[Coughlin+ POPL’14]

Final Commentary: Design and apply analyses to the whole
bug mitigation process!

Facts

alarms
of

maybe
bugs

Tool

✔

✘

Manual
Triaging

Program Analyzer

Refuter

Spec-
ification

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Thank You!

Sankaranaryananan SomenziChangCerny

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Thank You!

Android
OS

Android
OS

... in the process of finding leaks in apps

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

Null object pattern: Should never be written to

Find Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

We reported this, Google fixed it
https://android-review.googlesource.com/#/c/52183/

Null object pattern: Should never be written to

https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/

