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of type Activity

of type Activity
Android 

OS

a_static_field

program heap

Activity objects 
encapsulate the UI

I 
can’t collect 

this dead 
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”

How?!?
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I don’t know how I 
created a long-lived 
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a library causes the 
library to keep the 
Activity reference.
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The expert recommendation ...

A Specific Property to Check:
No Activity is ever reachable from a static field.

“Do not keep long-lived references to a context-activity”
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A candidate for statically answering,
“Is there an Activity leak?”

Is there a program 
execution where at 
some time

 ?

a_static_field

of type Activity

Can be answered with a 
points-to analysis

Compute a points-to 
graph and look for such 
points-to paths

This won’t work because …
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And noisily 
repeated over 

and over!

Oh 
Verifier, help 
me prove my 

program has no 
bugs

On line 142, 
there may be a 

bug

Isn’t it obvious 
this can’t 

happen!?!?

Known: Precise points-to analysis challenging
impossible?enough^

Hind (2001). “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses
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Recognize strength in combining MC-AI approaches

This talk: 
Applied to heap 

reachability
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A candidate for statically answering,
“Is there an Activity leak?”

Is there a program 
execution where at 
some time

 ?

a_static_field

of type Activity

Can be answered with a 
points-to analysis

Compute a points-to 
graph and look for such 
points-to paths

Let’s make it work!
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Proof Obligation User-Query
[Dillig, Dillig, Aiken (2012)] 

Alarm Clustering
[Lee, Lee, Yi (2012)] 
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Manual triage for heap reachability reports

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.javaGet abstract heap path + allocation sites
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Assuming the user starts to triage an alarm …

What does the user need to do? He starts at, 
say, line 142 and traces back to see if a bug is 
possible given what’s happening.

If we filter most false alarms, the user can triage 
more quickly and get to true bugs earlier 
(without frustration).

We can do this with analysis!
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Related: Staged analysis
[Fink, Yahav, Dor, Ramalingam, Geay (2006)] 
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A top-level filter:
Filter leak alarms by refuting points-to edges

1

Is there a program 
execution where at 
some time

 ?

a_static_field

of type Activity

Select a points-to 
edge in the path

Try to refute the 
edge with a 
symbolic analysis

✔
Refuted ✘

Not Refuted

Repeat

False Alarm
Soundly Filtered

Refutation: Derive a contradiction, that a points-to 
relation can’t actually hold
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Refuting a points-to edge:
What are we up against?

1

Null object pattern: Should never be written to

Need interprocedural path-sensitivity

arr0 act0: Activity

Need strong updates
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A refutation analysis: Try to derive a
contradiction with a backwards symbolic analysis

1

Derive a contradiction 
along all “backwards”
path programs
[Beyer, Henzinger, Majumdar, Rybalchenko (2007)] 

false false falsefalse
false

Derive refutations by trying to find witnesses

arr0·[-] ↦ act0 * true
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Abstract
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If                   such that              ,
then               for some              .

“Total” Witness Soundness Criteria Post: Goal

Ball, Kupferman, and Yorsh (2005)

Snugglebug, Alter, DART, … are under-approximate
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If                   such that               and              ,
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Refutation Soundness Criteria

Refutations: Prove alarms false with “partial” witnesses, 
an “easier condition” for loops

If a loop may “produce” a conjunct of the query, we can 
“assume it does” (weaken the query) only at the cost of 
precision.
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from constraints: Reducing separation constraints
with points-to facts

Points-To 
Facts

2

o from { …,        ,… }ai

symbolic object 
instance (an address)

abstract loc in points-to
(set of addresses)

Refute (derive false) if:
i > j ∧ i < j
or o·f↦p * o·f↦q ∧ p≠q
or o from ∅

Generalized disalias check:
pt(x) ∩ pt(y) = ∅

Restriction on possible abstract 
locations based on flow in the 

backwards analysis



Leak
Alarms

Tool

Roadmap: Thresher filters out false alarms by
refuting them one-by-one.

✔

✘

Manual
Triaging

Program
Points-To 
Analyzer

(off-the-shelf)

Points-To 
Facts

Filter with 
Thresher

Idea  1 : Refute points-to on-demand with second precise “filter” analysis

Idea  2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2



Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android 
framework code

Off-the-shelf, state-of-the-art points-to 
analysis from WALA

1



Is Thresher effective at filtering?
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Alarms

Thresher 
Refuted

True
Bugs

Thresher 
Time (s)

False 
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88
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False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program LOC Points-To 
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Some Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Assume alarms false, prove them so (refute) automatically with a 
“partial” witness search

‣ Reduced separation constraints with points-to facts

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Application: Find memory leaks and eliminate crashes in Android

Leak
Alarms

Filter with 
Thresher



Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f ( . . .) {} else {}

Q

while Qinv ( . . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to 
maintain separation)

Points-To 
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards 
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but 
more sophisticated techniques possible if needed



Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f ( . . .) {} else {}

Q

while Qinv ( . . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to 
maintain separation)

Points-To 
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards 
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but 
more sophisticated techniques possible if needed



Roadmap: Precise but with scalability challenges 1

Q1 _ Q2

x . f

Q

Q1 _ Q2

i f ( . . .) {} else {}

Q

while Qinv ( . . .) {}

Q

Alias path explosion for strong updates
(On write, case split for each possible alias in Q to 
maintain separation)

Points-To 
Facts

2

Control-flow path explosion:
Ignore for now, reasonable if number of guards 
relevant to Q is small (e.g., [Das et al. (2002)])

Loops:
Simple loop invariant inference sufficient so far but 
more sophisticated techniques possible if needed



Teaser: Most transitions are irrelevant

2808

1114

787

1138

827

11443

425

1115

11441 233242467073 1144211448118184284675678679 7087837841

11196

1231937837309 7310

11471

217

11472

12475

117

1121

11473116

11814

21121152116 216

222 224

225

226227

663

6956

7069

7083

844

14021

120349

377

379 380381

383384 385

388389 391 392394 395397 398400 401402404 405407 408410 411413 414415 416418 420421 423424427

664

7070 70717072

429

7041

11484

1448

2136 2137

2123

1108 681

635

4695698699

3435603706 7078708709 711 712713 714715716717718719720721722723724725

727728 6611661266136614729 730

731 2560732734737738739 7407461741743 744745746 7477487082750753 756758759 760761762 763764 765766768769770771 774 775 778779 781782 783784 11436118831203170747075707670777079785786788789113711137211438 141047241828 829 8307308831832842

626

50

662

843

14501451

Nodes that must be 
visited to find a refutation

Partial call graph for bloat

...

Start node



Teaser: Most transitions are irrelevant

2808

1114

787

1138

827

11443

425

1115

11441 233242467073 1144211448118184284675678679 7087837841

11196

1231937837309 7310

11471

217

11472

12475

117

1121

11473116

11814

21121152116 216

222 224

225

226227

663

6956

7069

7083

844

14021

120349

377

379 380381

383384 385

388389 391 392394 395397 398400 401402404 405407 408410 411413 414415 416418 420421 423424427

664

7070 70717072

429

7041

11484

1448

2136 2137

2123

1108 681

635

4695698699

3435603706 7078708709 711 712713 714715716717718719720721722723724725

727728 6611661266136614729 730

731 2560732734737738739 7407461741743 744745746 7477487082750753 756758759 760761762 763764 765766768769770771 774 775 778779 781782 783784 11436118831203170747075707670777079785786788789113711137211438 141047241828 829 8307308831832842

626

50

662

843

14501451

Nodes that must be 
visited to find a refutation
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...
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How do we soundly “jump” to the transitions that are 
relevant for deriving the refutation?
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We reported this, Google fixed it
https://android-review.googlesource.com/#/c/52183/
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https://android-review.googlesource.com/#/c/52183/
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