
Shape Analysis with Structural Shape Analysis with Structural
Invariant CheckersInvariant Checkers

BorBor--YuhYuh Evan ChangEvan Chang
Xavier Rival

George C. Necula

May 10, 2007
OSQ Retreat

2

WhatWhat’’s shape analysis? Whats shape analysis? What’’s special?s special?

Shape analysis tracks memory manipulationmemory manipulation
flowflow--sensitivelysensitively.

+ =
analyzer shape analyzer heap-aware analyzer

3

TypestateTypestate with shape analysiswith shape analysis

cur = list;
while (cur != null) {

assert(cur is red);
make_purple(cur);

cur = cur→next;
}

list

cur

list
1 region
“list points to
a red region”

1 region
“list points to
a red region”

1 region
“list and cur
point to a
region that
may be red
or purple”

2 regions
“list points to
a purple
region up to
cur and cur
points to a
red region”

make_purple(·) could be
• free(·)
• open(·)
• …

lock(cur);

4

• Scalability
– Finding right amount of abstraction difficult

Over-reliance on disjunction for precision

• Repeated work to transition on each disjunct

• Usability
– Choosing the abstraction difficult

• Depends on the program and the properties to verify

Shape analysis is not yet practicalShape analysis is not yet practical

∨ ∨ ∨ ∨ …

5

HypothesisHypothesis

• Good abstraction is program-specific
• Developer can only keep a few cases in her head

• If only the shape analysis could get the
developer’s abstraction (easily)

The developerdeveloper can describe the memory with
a small numbersmall number of abstract descriptions
sufficient for the properties of interest.

6

ObservationObservation

bool redlist(List* l) {
if (l == null)

return true;
else

return
l→color == red

&& redlist(l→next);
}

l

red

red

red

Checking codeChecking code expresses a shape invariant
and an intended usage pattern.

next

next

next

7

ProposalProposal

• Given: Program + Checker code

• Extensible
– Abstraction based on the developer-supplied checkers

on a per-structure basis

• Scalable (hopefully, based on hypothesis)

An automated shape analysisshape analysis with a memory
abstraction based on invariant checkersinvariant checkers.

8

OutlineOutline

• Memory abstraction
– Challenge: Intermediate invariants

• Analysis algorithm
– Challenge: Blurring to ensure termination

• Comparison with TVLA
• Experimental Results

9

Abstract memory using checkersAbstract memory using checkers

α
list

β
next

α@next a β ∗ list(β) “α is a list with at
least one element”

Graphical Diagram Formula

βα+next
β

list
values
(memory
address
or null)

disjoint
memory
regions
(i.e., sets
of fields)

∗

disjoint

10

Checkers as inductive predicatesCheckers as inductive predicates

• Disjoint memory regions
Checker run can dereference a field
only once

bool list(List* l) {
if (l == null)

return true;
else

return list(l→next);
}

list(α) = ∃β.
(emp ∧ α = null)
∨

(α@next a β ∗ list(β)
∧ α ≠ null)

∗

11

Challenge: Intermediate invariantsChallenge: Intermediate invariants

assert(redlist(l));

cur = l;

while (cur != null) {

make_purple(cur);

cur = cur→next;

}

assert(purplelist(l));

l
redlist

cur
purplelist

l
redlist

l
purplelist

Prefix SegmentPrefix Segment
Described
by ?

SuffixSuffix
Described
by checkers

12

Prefix segments as partial checker runsPrefix segments as partial checker runs

c(…) c(…)

l cur
purplelist

purplelist(l)

purplelist(…)

purplelist(cur)

AbstractionAbstraction

ComputationComputation
Tree of aTree of a
Checker RunChecker Run

FormulaFormula c(α) ∗– c(β)

α β
c

c(α)

c(…) c(…)

c(…) c(β)

13

OutlineOutline

• Memory abstraction
– Challenge: Intermediate invariants

• Analysis algorithm
– Challenge: Blurring to ensure termination

• Comparison with TVLA
• Experimental Results

14

Flow function: Unfold and update edgesFlow function: Unfold and update edges

listnext next
x

materialize: x→next, x→next→next

update: x→next = x→next→next

list

next

next
x

x→next =
x→next→next;

UnfoldUnfold inductive
definition

Strong updates
using disjointnessdisjointness
of regions

listx
next

next
x

∨

15

Challenge: Termination and precisionChallenge: Termination and precision

last = l;
cur = l→next;
while (cur != null) {

// … cur, last …
if (…) last = cur;
cur = cur→ next;

}

list
l, last

next
cur

list
l

next next
curlast

list
l

next next next
curlast

blur

list list list
l

next
curlast

ObservationObservation
Previous iterates
are “less unfolded”

FoldFold into
checker edges

But where and
how much?

16

HistoryHistory--guided foldingguided folding

listnext

listnext next

listnextlist

• Traverse starting
from variables

• Match same edges
to identify where
to fold

• Apply weakening
rules

l, last

last

cur

cur

l

l

last cur

l

next

v

?

list ?

v

?

list

Yes

last = l;
cur = l→next;
while (cur != null) {

if (…) last = cur;
cur = cur→ next;

}

17

OutlineOutline

• Memory abstraction
– Challenge: Intermediate invariants

• Analysis algorithm
– Challenge: Blurring to ensure termination

• Comparison with TVLA
• Experimental Results

18

Qualitative comparison with TVLAQualitative comparison with TVLA

• Scalability
– Disjunctions

• Expressiveness
– Currently, limited in comparison (no data properties)

curl curlcurl curl

l,cur l, curl l
emp

∨ ∨ ∨

∨ ∨ ∨ ∨ ∨

list
l cur

listProposalProposal

TVLATVLA

Cost 1Cost 1: Spec less general
Cost 2Cost 2: Folding complicated

19

Preliminary resultsPreliminary results

1649.710s894scull driver
760.087s43skip list rebalance

740.021s80list insertion sort

310.007s31list reverse

Max. Num
Iterations at a
Program Point

Max. Num.
Graphs at a

Program Point

Analysis
Time

Lines
of Code

Benchmark

• Verified structural invariants as given by checkers are
preserved across data structure manipulation

• Limitations (in scull driver)
– Arrays not handled (rewrote as linked list), char arrays ignored

• Promising as far as number of disjuncts

20

ConclusionConclusion

• Shape analysis can improve higher-level
analyses

• Invariant checkers can form the basis of a
memory abstraction that
– Is easily extensible on a per-program basis
– Expresses developer intent

+ =
analyzer shape analyzer heap-aware analyzer

