Shape Analysis with Structural
Invariant Checkers

Bor-Yuh Evan Chang
Xavier Rival
George C. Necula

May 10, 2007
0OSQ Retreat

What’s shape analysis? What’s special?

% -9

analyzer shape analyzer heap-aware analyzer

Shape analysis tracks memory manipulation
flow-sensitively.

Typestate with shape analysis

. 1 region 1 region
s> = “list points to “list points to

cur = list; a red region” a red region”
while (cur = null) {

assert(cur Is red); ” () b
make_purple(-) could be
hakécum)rple(c - freedj g 1ts to

list —>-—> e open(-)

T\JJ

_) to
ur N cor—orra—C Ul
Cur = cur—next; or purple” points to a

] red region”

Shape analysis Is not yet practical

e Scalability
- Finding right amount of abstraction difficult
=P Over-reliance on disjunction for precision

-

e Repeated work to transition on each disjunct
e Usability
- Choosing the abstraction difficult
e Depends on the program and the properties to verify

Hypothesis

The developer can describe the memory with
a small number of abstract descriptions
sufficient for the properties of interest.

e Good abstraction Is program-specific
e Developer can only keep a few cases in her head

e |f only the shape analysis could get the
developer’s abstraction (easily)

Observation

Checking code expresses a shape invariant
and an intended usage pattern.

———

bool redlist(List* I) {

~if (1 == null) | — e

return true; “\}

i ; next
. else d

return ——— next
| |—color == red | —

—color == red | next
&& redlist(l—next); | '

Proposal

An automated shape analysis with a memory
abstraction based on invariant checkers.

e Given: Program + Checker code

e Extensible

- Abstraction based on the developer-supplied checkers
on a per-structure basis

e Scalable (hopefully, based on hypothesis)

Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results

Abstract memory using checkers

Graphical Diagram Formula
() —>(a@nexti> B« list(B) “a is a list with at
‘ '3/ least one element”
. - . + t
disjoint arnex s
valu B - B
(men : y > list
~ddrl regions

or nu (I-€-, sets
of fields)

Checkers as inductive predicates

““

bool list(List* 1) { list(a) = 3B.

- if (1 == null) ~ (emp A o =null)
 return true; oV
 else — (a@nexti— B x list(B)
 return list(I—next); | Ao znull) |
) ’ ‘

e Disjoint memory regions
=P Checker run can dereference a field
only once

10

Challenge: Intermediate invariants

assert(redlist(l)); O_red.ist I

|
cur = |;

while (cur !'= null) {

: : redlist

I purplelist curﬂ
v
make_purple(cur); |Prefix Segment Suffix
i Described Described
Cur = cur—next
’ by ? by checkers

}
assert(purplelist(l));

I purplelist

11

Prefix segments as partial checker runs

Abstraction (O

rpleli
| burple st cur

Computation
Tree of a
Checker Run

purplelist(cur)

Formula c(a) *— c(p)

12

Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results

13

Flow function: Unfold and update edges

~ Xx—next—next; | x " ot

: : M
Unfold inductive materialize: x—next, x—next—next
definition {}

::: next ::: \/ ::: next ::: next ::: list
X X

-
Strong updates update: x—next = x—next—next

using disjointness {}
next list
X

of regions

Challenge: Termination and precision

last =) i (j—)O—
5 : — next list

. § Observation |, last cur

[g Previous iterates

are “less unfolded” O O O N
../ TaoC — our, next next list

| I last cur
cur = cur— next; g

| | I as cur
Fold into]
checker edges j“}r

But where and CHO—)CHO‘
list next list list

how much? I last cur

' last = I;

History-guided folding e @t 1=

if (..) last=cur; |
e Traverse starting | cur=curm next;
from variables B

e Match same edges ‘next "_nst)

to identify where I st~ cure,

to fold o M
= Apply weakening S
rules : . .

16

Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results

17

Qualitative comparison with TVLA

® Scal_a_blllt)-/ Cost 1: Spec less general
- Disjunctions Cost 2: Folding complicated

~ : =
Proposal 7 list list

empVO\/O@VOv O@v

1, cur I, CUF

OLONY O»O@ Vv O>©>O V O>©>O>©

I cur I cur cur cur

TVLA

e Expressiveness
- Currently, limited in comparison (no data properties)

18

Preliminary results

Benchmark Lines Analysis| Max. Num. Max. Num
of Code Time Graphs ata | Iterations at a
Program Point | Program Point
list reverse 31 0.007s 1 3
list insertion sort 80 0.021s 4 7
skip list rebalance 43 0.087s 6 7
scul l driver 894 9.710s 4 16

e Verified structural invariants as given by checkers are
preserved across data structure manipulation

e Limitations (in scull driver)
- Arrays not handled (rewrote as linked list), char arrays ignored

e Promising as far as number of disjuncts

19

Conclusion

e Shape analysis can improve higher-level
analyses

AR S

analyzer shape analyzer heap-aware analyzer

e |nvariant checkers can form the basis of a
memory abstraction that

- Is easily extensible on a per-program basis
- Expresses developer intent

20

