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What’s shape analysis? What’s special?
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Shape analysis tracks memory manipulation
flow-sensitively.



Typestate with shape analysis
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Shape analysis Is not yet practical

e Scalability
- Finding right amount of abstraction difficult
=P Over-reliance on disjunction for precision

-

e Repeated work to transition on each disjunct
e Usability
- Choosing the abstraction difficult
e Depends on the program and the properties to verify




Hypothesis

The developer can describe the memory with
a small number of abstract descriptions
sufficient for the properties of interest.

e Good abstraction Is program-specific
e Developer can only keep a few cases in her head

e |f only the shape analysis could get the
developer’s abstraction (easily)



Observation

Checking code expresses a shape invariant
and an intended usage pattern.
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bool redlist(List* I) {

~if (1 == null) | — e

return true; “\}
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return ——— next
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Proposal

An automated shape analysis with a memory
abstraction based on invariant checkers.

e Given: Program + Checker code

e Extensible

- Abstraction based on the developer-supplied checkers
on a per-structure basis

e Scalable (hopefully, based on hypothesis)



Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results



Abstract memory using checkers
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Checkers as inductive predicates
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bool list(List* 1) { list(a) = 3B.
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e Disjoint memory regions
=P Checker run can dereference a field
only once
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Challenge: Intermediate invariants

assert(redlist(l)); O_red.ist I

|
cur = |;

while (cur !'= null) {

: : redlist

I purplelist curﬂ
v
make_purple(cur); |Prefix Segment Suffix
i Described Described
Cur = cur—next
’ by ? by checkers

}
assert(purplelist(l));

I purplelist
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Prefix segments as partial checker runs

Abstraction (O

rpleli
| burple st cur

Computation
Tree of a
Checker Run

purplelist(cur)

Formula c(a) *— c(p)
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Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results
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Flow function: Unfold and update edges

_____________________________________
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Unfold inductive materialize: x—next, x—next—next
definition {}

::: next ::: \/ ::: next ::: next ::: list
X X

-
Strong updates update: x—next = x—next—next

using disjointness {}
next list
X
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Challenge: Termination and precision

_____________________________________________
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' last = I;

History-guided folding e @t 1=

if (..) last=cur; |
e Traverse starting | cur=curm next;
from variables B

e Match same edges ‘next "_nst )

to identify where I st~ cure,

to fold o M
= Apply weakening S
rules : . .
_________________
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Outline

e Memory abstraction
- Challenge: Intermediate invariants

e Analysis algorithm
- Challenge: Blurring to ensure termination

e Comparison with TVLA
e Experimental Results
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Qualitative comparison with TVLA

® Scal_a_blllt)-/ Cost 1: Spec less general
- Disjunctions Cost 2: Folding complicated
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e Expressiveness
- Currently, limited in comparison (no data properties)
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Preliminary results

Benchmark Lines Analysis| Max. Num. Max. Num
of Code Time Graphs ata | Iterations at a
Program Point | Program Point
list reverse 31 0.007s 1 3
list insertion sort 80 0.021s 4 7
skip list rebalance 43 0.087s 6 7
scul l driver 894 9.710s 4 16

e Verified structural invariants as given by checkers are
preserved across data structure manipulation

e Limitations (in scull driver)
- Arrays not handled (rewrote as linked list), char arrays ignored

e Promising as far as number of disjuncts
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Conclusion

e Shape analysis can improve higher-level
analyses
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e |nvariant checkers can form the basis of a
memory abstraction that

- Is easily extensible on a per-program basis
- Expresses developer intent
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