An Application for a Certified Grid Computing Framework

Bor-Yuh Evan Chang

Advisors: Professors Robert Harper and Frank Pfenning

Carnegie Mellon University
October 31, 2001

The Big Picture - ConCert

The Big Picture - ConCert

Vision: Distributed-application developer utilization of donated resources is completely transparent to the donator, but the donator is confident the specified safety, security, and privacy policies will not be violated.

ConCert Framework - Conductor

- Joshua Dunfield
 - basic protocol and system for distributing and verifying software
 - makeshift certifying Standard ML compiler
- Margaret DeLap
 - examining load balancing and task brokering issues

My Research Plan

 Develop a substantial application using the ConCert framework and make the ConCert framework capable of supporting such an application

Goals

- make apparent the current shortcomings
- drive the architecture to a more robust and stable state
- work on the framework top-down

What Application?

- Parallel Theorem Prover
- Why?
 - Check validity of results easily
 - Build upon my previous experience

What's Happening

- Investigated adapting existing theorem provers (Gandalf, E)
- Decided to develop our own a subgoal-reduction based parallel theorem prover for intuitionistic linear logic
 - Advantages:
 - * focusing strategy helps with independent subproblems
 - * few existing linear logic provers
 - Concerns:
 - * uncertain about cost of communication

Utilizing the ConCert Framework

- Parallelism in theorem proving
 - AND-parallelism
 - OR-parallelism ← exploitable
- Conductor requirements
 - program can specify new thread on this machine or another machine
 - framework manages how thread is distributed
 - program can signal thread to terminate

How do we write code for Conductor?

Next Steps

- 1. Complete an implementation of the theorem prover in CML
- 2. Develop mechanism to communicate with the framework to spawn a thread on another machine
- 3. Factor out functions to spawn
- 4. Develop means for the developer to kill threads on other machines