
Materialization in Shape Analysis Materialization in Shape Analysis
with Structural Invariant Checkerswith Structural Invariant Checkers

BorBor--YuhYuh Evan ChangEvan Chang
Xavier Rival

George C. Necula

University of California, Berkeley

August 27, 2007
ITU Copenhagen

2

WhatWhat’’s shape analysis? Whats shape analysis? What’’s special?s special?

• Memory manipulationMemory manipulation
– Particularly important in systems code (in C)

• FlowFlow--sensitivesensitive
– Many important properties

• E.g., Is an object freed? Is a file open?

– Heap abstracted differently at different points
• E.g., Not based on allocation site

Shape analysis tracks memory manipulationmemory manipulation
in a flowflow--sensitivesensitive manner.

3

Example: Example: TypestateTypestate with shape analysiswith shape analysis

cur = l;
while (cur != null) {

assert(cur is red);
make_purple(cur);

cur = cur→next;
}

l

cur

l

Concrete ExampleConcrete Example AbstractionAbstraction

“red list”l

“purple
list segment”

“red
list”

l

cur

program-specific predicate

flow-sensitive heap abstraction
make_purple(·) could be
• lock(·)
• free(·)
• open(·)
• …

4

Shape analysis is not yet practicalShape analysis is not yet practical

UsabilityUsability: Choosing the heap abstraction difficult

TVLA
[Sagiv et al.]

“red list”
red(n) ∧
n ∈ reach(l)

“red list”

Space Invader
[Distefano et al.]

“red list”

Our Proposal

Built-in high-level predicates
-- Hard to extend
++ No additional user effort

Parametric in low-level,
analyzer-oriented predicates
++ Very general and expressive
-- Hard for non-expert

Parametric in high-level,
developer-oriented predicates
++ Extensible
++ Easier for developers

5

Shape analysis is not yet practicalShape analysis is not yet practical

ScalabilityScalability: Finding right level of abstraction difficult
Over-reliance on disjunction for precision

“purple
list segment”

“red
list”

l

cur
developer

curl curlcurl curl

l,cur l, curl l
emp

∨ ∨ ∨

∨ ∨ ∨ ∨ ∨

shape analyzer

6

HypothesisHypothesis

The developerdeveloper can describe the memory in a
compactcompact manner at an abstraction level sufficient
for the properties of interest (at least informally).

• Good abstraction is program-specific

shape analyzerdeveloper

“purple
list segment”

“red
list”

l

cur

??

abstraction

7

ObservationObservation

bool redlist(List* l) {
if (l == null)

return true;
else

return
l→color == red

&& redlist(l→next);
}

Checking codeChecking code expresses a shape invariant and an
intended usage pattern.

l

l

l

l

8

ProposalProposal

• Extensible
– Abstraction based on the developer-supplied checkers

• Targeted for Usability
– Global data structure specification, local invariant inference

• Targeted for Scalability
– Based on the hypothesis

An automated shape analysisshape analysis with a memory
abstraction parameterized by invariant checkersinvariant checkers.

shape analyzer

bool redlist(List* l) {
if (l == null)
return true;

else
return

l→color == red
&& redlist(l→next);

}

checkers

9

Shape analysis is an abstract interpretation Shape analysis is an abstract interpretation
on memory states with on memory states with ……

• MaterializationMaterialization (partial concretization)

• To perform strong updates

• And wideningwidening for termination

“red list”l, cur l, cur “red list”

l “red list”
cur

l, cur “red list”

l “red list”
cur

“purple
list segment”

“red
list”

l

cur

10

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Materialization by forward unfolding
– Where and how
– Challenge: Unfolding segments

• Materialization by backward unfolding
– Challenge: Back pointers

• Deciding where to unfold generically

11

Abstract memory using checkersAbstract memory using checkers

α values
(address or null)

points-to relation
α@f a β

α β
f

checker run
c(α)

α
c

partial run
?

α β
c

GraphsGraphs

ExampleExample
“Disjointly, α→next = β, γ→next = β, and β is a list.”

list
β

next
α

γ

“Some number of
points-to edges that
satisfies checker c”

next

disjointdisjoint memory regions (∗∗)

12

Checkers as inductive definitionsCheckers as inductive definitions

bool list(List* l) {
if (l == null)

return true;
else

return list(l→next);
}

:= ∃β.α
list

α = null

α β
next list

α ≠ null

∨emp

list(l)

list(…)

DisjointnessDisjointness
Checker run can
dereference any
object field only
once

emp (α = null)

…

next
α null

next
α

next
null

13

What can a checker do?What can a checker do?

• In this talk, a checker …
– is a pure, recursive function
– dereferences any object field only once during a run
– only one argument can be dereferenced (traversal arg)
– has only additional pointer parameters

bool dll(Dll* l, Dll* prev) {
if (l == null) return true;
else

return l→prev == prev
&& dll(l→next);

}

Traversal
argument

:= ∃β.α
dll(ρ)

∨
α = null

emp

α ≠ null

α
next dll(α)

βρ
prev

Only fields
from traversal
argument

14

next

Example checker: TwoExample checker: Two--level skip listlevel skip list

:= ∃β,γ.α
skip1

∨
α = null

emp

α ≠ null

α
skip1

γ
next skip0(γ)

β

skip

:= ∃β.α
skip0(γ)

∨
α = γ

emp

α ≠ γ

α
skip0(γ)

β

skip null

skip

next

skip

next

skip

next

skip

next

skip

next

skip

next

back to the abstract domain back to the abstract domain ……

shape analyzer

bool redlist(List* l) {
if (l == null)
return true;

else
return

l→color == red
&& redlist(l→next);

}

checkers

16

Challenge: Intermediate invariantsChallenge: Intermediate invariants

assert(redlist(l));

cur = l;

while (cur != null) {

make_purple(cur);

cur = cur→next;

}

assert(purplelist(l));

l
redlist

cur
purplelist

l
redlist

l
purplelist

Prefix SegmentPrefix Segment
Described
by ?

SuffixSuffix
Described
by checkers

17

Prefix segments as partial checker runsPrefix segments as partial checker runs

c(…) c(…)

l cur
purplelist

purplelist(l)

purplelist(…)

purplelist(cur)

AbstractionAbstraction

Checker RunChecker Run

α β
c

c(α)

c(…) c(…)

c(…) c(β)

FormulaFormula c(α) ∗– c(β) ??

Doesn’t quite work
because we need
materialization

18

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Materialization by forward unfolding
– Where and how
– Challenge: Unfolding segments

• Materialization by backward unfolding
– Challenge: Back pointers

• Deciding where to unfold generically

19

Flow function: Unfold and update edgesFlow function: Unfold and update edges

listnext next
x

materialize: x→next, x→next→next

update: x→next = x→next→next

list

next

next
x

x→next =
x→next→next;

UnfoldUnfold inductive
definition

Strong updates
using disjointnessdisjointness
of regions

listx
next

next
x

∨

20

Unfolding: where, how, and why okUnfolding: where, how, and why ok

• Where
– “Reach” a traversal argument with x→next

• How and Why Ok (concretizations same)
– By definition

listnext next
x

materialize: x→next, x→next→next

x→next =
x→next→next; listx

next

next
x

∨

21

list

list

What about unfolding segments?What about unfolding segments?

materialize: x→next

α
listx

β

α

x, y
∨

y

list
β

list
α γ

next
x y

α = β

list(α) ∗– list(β)

emp ∨ α@f a γ ∗ (list(γ) ∗– list(β))

22

Segment connector (for unfolding)Segment connector (for unfolding)

Concrete
store σ : Val → Val
valuation ν : SymVal → Val

c(α) ∗= c0(α0)σ, ν ²
iff there exists an i such that c(α) ∗=i c0(α0)

[·], ν ² c(α) ∗=0 c(α0)
iff ν(α) = ν(α0)

σ, ν ² c(α) ∗=i+1 c0(α0)
iff there exists a disjunct (Mu ∗ Mf ∗ c00(β) ∧ F) such that

ν satisfies [actuals/formals]F and
σ, ν ² [actuals/formals](Mu ∗ Mf ∗ c00(β) ∗=i c0(α0))

Inductive Definitions
c(α) :=

… ∨ (Mu ∗ Mf ∧ F) ∨ …

“unfolded”
points-to

“folded”
recursive

calls

pure
formula

23

Basic properties of segmentsBasic properties of segments

• If σ, ν ² c(α) ∗= c0(α0), then σ, ν ² c(α) ∗– c0(α0)

– If σ, ν ² (c(α) ∗= c0(α0)) ∗ c0(α0), then σ, ν ² c(α)
(elimination)

• [·], ν ² c(α) ∗= c(α) (reflexivity)

• If σ, ν ² (c(α) ∗= c0(α0)) ∗ (c0(α0) ∗= c 00(α00)),
then σ, ν ² c(α) ∗= c 00(α00) (transitivity)

α
c

α00α0

c0 c0 c00 c00

24

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Materialization by forward unfolding
– Where and how
– Challenge: Unfolding segments

• Materialization by backward unfolding
– Challenge: Back pointers

• Deciding where to unfold generically

25

• Traversal on ‘next’ field to find
element to remove:

• Materialize ‘cur→prev’ and
remove ‘cur’:

Challenge: Back pointersChallenge: Back pointers

:= ∃β.α
dll(ρ)

∨α = null
emp

α ≠ null

α
next dll(α)

βρ
prev

l cur
dll(γ)dll(null)

:= ∃β.α
dll0(ρ)

∨α = null
emp

α ≠ null

α
prevprev dll0(α)

βρ
nextnext

ExampleExample: Removal in doubly-linked lists

l cur
dll(γ)dll(null) dll(γ)

l cur
dll(γ)dll(null)

γ

next

prev

dll(γ)

Need to unfold
“backward”

26

Backwards unfolding by forwards unfoldingBackwards unfolding by forwards unfolding

β
dll(null) dll(γ)

i+1

γ
prev

split (lemma)

dll(null) dll(ε)

i 1
δ β

γ
prev

dll(γ)dll(ε)

i

unfold forward at δ

dll(null) dll(ε)

i 0
δ

γ
prev

dll(γ)
ε

prev

βη
next dll(δ)

nextdll(null) dll(ε)
δ

prevε
prev

β

reduce η = β, δ = γ

27

OutlineOutline

• Memory abstraction
– Restrictions on checkers
– Challenge: Intermediate invariants

• Materialization by forward unfolding
– Where and how
– Challenge: Unfolding segments

• Materialization by backward unfolding
– Challenge: Back pointers

• Deciding where to unfold generically

28

Deciding where to unfoldDeciding where to unfold

•• ObservationsObservations: Can indicate (with types) what
fields are materialized for a checker parameter

types τ ::= { f1hl1i, …, fnhlni }
levels l ::= n | unk

hl1i hlni

A pointer that
may materialize

these fields

Where in the
traversal it may
be materialized

c0 c1 cmc-1c-n ……

• Levels

Level 0:
Materialized in
this call.

Level -1:
Materialized just
before this call

29

Example: DoublyExample: Doubly--linked listslinked lists

:=

∃(β : {nexth1i, prevh1i}).

α
dll(ρ)

∨
α = null

emp

α ≠ null

α
next dll(α)

βρ
prev

α : {nexth0i, prevh0i},
ρ : {nexth-1i, prevh-1i}

Before:
Traversal argument had
level 0 fields (implicitly)

Backward unfolding
parameter ρ has level -1

30

Example: Alternative doublyExample: Alternative doubly--linked listlinked list

:=

∃(β : {nexth2i, prevh1i}).

α
npdll

∨
α = null

emp

α ≠ null

α
next npdll0(α)

β

α : {nexth0i, prevh-1i}

:=

∃(β : {nexth1i, prevh1i}).

α
npdll0(ρ)

∨
α = null

emp

α ≠ null

α
npdll

ρ
prev

α : {nexth1i, prevh0i},
ρ : {nexth-1i, prevh-2i}

31

Types can be inferred automaticallyTypes can be inferred automatically

Checking

α
f

{ fh0i } <: typeof(α)

c
β

typeof(β) – 1
<: declared_typeof(π)

(where c(π) := …)

{ }

{ fh0i, ghunki }

{ fh0i } { gh1i }

{ fhunki, ghunki }

Inference using a fixed-
point computation with
types initialized to { }

32

Summary:Summary:
Enabling materialization anywhereEnabling materialization anywhere

• Defined segments as partial checker runs
directly (inductively)
– For forward unfolding
– Backward unfolding derived from forward

unfolding

• Checker parameter types with levels
– For deciding where to unfold
– Inferable and does not affect soundness

33

Summary:Summary:
Given checkers, everything is automaticGiven checkers, everything is automatic

bool redlist(List* l) {
if (l == null)
return true;

else
return

l→color == red
&& redlist(l→next);

}

checkers

shape analyzer

typetype
prepre--analysisanalysis

abstract interpretation

unfoldingunfolding
andand

updateupdate
widening

34

ConclusionConclusion

• Invariant checkers can form the basis of a
memory abstraction that
– Is easily extensible on a per-program basis
– Expresses developer intent

• Critical for usability
• Prerequisite for scalability

• Enabling materialization anywhere
– Inductive segments
– Pre-analysis on checkers to decide where to

unfold robustly

What can checker-based
shape analysis do for you?

36

Challenge: Termination and precisionChallenge: Termination and precision

last = l;
cur = l→next;
while (cur != null) {

// … cur, last …
if (…) last = cur;
cur = cur→ next;

}

list
l, last

next
cur

list
l

next next
curlast

list
l

next next next
curlast

widen (canonicalize, blur)

list list list
l

next
curlast

ObservationObservation
Previous iterates
are “less unfolded”

FoldFold into
checker edges

But where and
how much?

37

HistoryHistory--guided foldingguided folding

listnext

listnext next

listnextlist

l, last

last

cur

cur

l

l

last cur

l,

list ?

v

?

list

Yes

last = l;
cur = l→next;
while (cur != null) {

if (…) last = cur;
cur = cur→ next;

}
• Match edges to

identify where
to fold

• Apply local
folding rules

next
l last

l last

l, last

38

Summary:Summary:
Enabling checkerEnabling checker--based shape analysisbased shape analysis

• Built-in disjointness of memory regions
– As in separation logic
– Checkers read any object field only once in a run

• Generalized segment abstraction
– Based on partial checker runs

• Generalized folding into inductive predicates
– Based on iteration history (i.e., a widening operator)

α β
c

next list
l cur

list
l, cur

list list
l cur

39

Experimental resultsExperimental results

0420.010s023search tree find

0640.016s027list remove element

1649.710s894scull driver

0760.087s033skip list rebalance

0740.021s056list insertion sort

0310.007s019list reverse

Max. Num
Iterations at a
Program Point

Max. Num.
Graphs at a

Program Point

Analysis
Time

Lines of
Code

Benchmark

• Verified structural invariants as given by checkers are
preserved across data structure manipulation

• Limitations (in scull driver)
– Arrays not handled (rewrote as linked list), char arrays ignored

• Promising as far as number of disjuncts

