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class Callback

var sel: Str . |
var obj: Obj Calls method with name

(selector) stored in on sel
object stored in obj

def call ()
this.obj.[this.sel] ()

Run-time error if obj does not respond
to sel —i.e., method does not exist
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idx must be a valid

class Iterator
var i1dx: Int |
var buf: Obj[](l] indexedBy idx)

index into buf

def get(): Obj
return this.buf[this.idx]

Recurring theme: Relationships are
important to many safety properties
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Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.
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Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.
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Theorem (Soundness of Materialization/Summarization).

Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.
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Case Study: Reflection in Objective-C

Why Obijective-C2

Statically typed plus reflective method call
Prototype analysis implementation

Plugin for clang static analyzer in C++

9 Obiective-C benchmarks Including Skim,
Adium, and

6 libraries and 3 applications

OmniGraffl
1,000 to 176,000 lines of code ety

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code




Precision: What is improvement over
flow-insensitive checking alone?

Cost: What is the cost of analysis in
running time?



size false alarms
benchmark (loc) reflec_tive call _ f|OV\{-. almost-
sites insensitive everywhere
OAUTH 1248 7 7 2 (-71%)
SCRECORDER 2716 12 2 0 (-100%)
ZIPKIT 3301 28 0 0 (-)
SPARKLE 5289 40 4 1 (-75%)
ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)
VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)
combined 461080 1327 334 238 (-29%)
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ADIUM 176629 587 87 70 (-20%)
combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

sy \
Almost everywhere techniques show 29%

improvement in false alarms




size analysis time

benchmark (loc) Time (kT:Ss)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s 7.9
ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4
SKIM 60211 2.49s 24.1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23




size analysis time
benchmark (loc) :]‘ime (k?c?ct;s)

OAUTH 1248 /0.248 5.3

SCRECORDER 2455 0.28s 10.8

ZIPKIT 3301 0.10s 33

- 5289 0.67s 7.9

2 b 14620 0.50s 27.2

¢ . 160769 4.25s 37.8
. m

SKIVI 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23




size analysis time
Does not include oas /0.243 -
system headers
2% 0.28s 10.8
3301 0.10s 33
- 5289 0.67s 7.9
des ana e b 14620 0.50s 27.2
)¢ 1, be . 160769 4.25s 37.8
‘ 37327 2.79s 13.4
o 60211 2.49s 24 1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23




size analysis timef \
benchmark (loc) Time /f/- \\'
g loc/s) |
OAUTH 1248 0.24s 53 |
SCRECORDER 2716 0.28s 10.8 |
ZIPKIT 3301 0.10s " 33 }\
SPARKLE 5289 0.67s ! : 7.9
ASIHTTPREQUEST 14620 0.50s ’E 27.2
OMNIFRAMEWORKS 160769 4.25s 1, 37.8
VIENNA 37327 2.79s
SKIM 60211 2.49s ) i
ADIUM 176629 8.79s ' ¥
combined 461080 20.09s

Fast: 5 to 38 kloc/s with most time spent analy

system headers

/
\ 4
y
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size analysis timgf’ '\
f )
benchmark (loc) Time /c?ct;s)\a\ |
OAUTH 1248 0.24s 53 |
SCRECORDER 2716 0.28s 108 |
ZIPKIT 3301 0.10s ; 33 |
SPARKLE 5289 0.67s : 7.9 |
ASIHTTPREQUEST 14620 0.50s ’E 27.2
OMNIFRAMEWORKS 160769 4.25s i 37.8
VIENNA 37327
SKIM
ADIUM
combined

Fast: 5 to 38 kloc/s with most time spent (lmlly':

system headers Interactive

speeds




size analysis time
benchmark (loc) Time (kT:Ss)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s \\
ASIHTTPREQUEST 14620 0.50s § 27.2
OMNIFRAMEWORKS 160769 4.25s

VIENNA 37327 2.79s
SKIM 60211 2.49s 24.1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers

Higher rate for projects with larger translation units




size analysis time
benchmark (loc) Time (kT:c?s)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s 7.9
ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8
m
SKIM 60211 2.49s 24 1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing

: l\ilainiains key benefit of flow-

: . units
insensitive analyses: speed
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Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

— ’ _ =

| <=5 — jF-sane

Theorem (Soundness of Materialization/Summarization).

Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

| a7 7> — Hlem 5

(& J (S J




Recall: Soundness
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Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

T _ =

No way to frame and then
handoff to types




Type-intertwined frame rule with standard separating conjunction
is unsound




def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s

| - this.call ()
this.obj = o

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary
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Immediately type-

inconsistent portion of
heap is disjoint from

almost type-consistent

summary

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s

| - this.call () X

this.obj = o

After framing out, entire

/?

> | heap is almost type-
consistent

Points to type-

inconsistent memory

Analysis might unsoundly

switch to back to type
checking




So what if there’s no type-intertwined framing?




So what if there’s no type-intertwined framing?

class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()



class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()

var o ... object with a method m ...

var cb = new Callback(“m”,b o)
cb.call ()



var Callback = Class ({
~1nit : function(s,0){..}, i
call: function() {
return thilis.obj[this.sel] . appiy (this.obj)

}
})

var o ... object with a method m ...
var cb = New(Callback,“'m”, o)
cb.call ()
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| A class “meta-feature”

var Callback = Class ({
~1nit : function(s,0){..}, JavaScript
call: function() {
return this.obj[this.sel] . appiy (this.obj)

}
})

var o ... objec
var cb = New

(cb.call ())

Want to type check this call “like before”
— i.e., using the same type system

@ gated separation




Gated separation expresses a dis-pointing relation between
foregate and aftgate
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Aftgate may be Mfore @ Maﬂ

indirectly reachable |
from foregate

P But aftgate can |
directly point foregate - . aftgate point into

into aftgate 'x_> ‘ foregate

Foregate cunnot




Aftgate may be Mfore @ Maﬂ

indirectly reachable |
from foregate

!

Foregate ¢annot - But aftgate can |
directly point foregate - . aftgate point into

into aftgate l 'x_> ‘ foregate

Gated separation is a non-commutative strengthening |
of standard separating conjunction restricting the

contents of the foregate @




var Callback = Class ({
~1nit ! function(s,0){..},
call: function() {
return this.obj[this.sel] . appiy (this.obj)

}
})

var O

var cb = New(Callback,“m”,6 o)
(cb.call())

... object with a method m ...




Callback in JavaScript

B
o)

var O = .. objectwitha method m ...
pVar cb = New(Callback, "'m”, o)




:
y

cb

cb.obj

A
y

Callback

-l

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())




C b cb.sel cb.obj

i\

-
var O = .. objectwith a method m ...

pVar cb = New(Callback, “'m”,b o)
(cb.call ())




Callback

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())




Callback

var O = ..

ol

pyVar cb = N

(cb.call ())




Callback

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())




Strong enough to ensure type-intertwined frame rule is sound

B
B

var O = .. objectwitha method m ...
pVar cb = New(Callback, "'m”, o)



Heap is now type-

/ i consistent, so switch
o to type checking
cb
var O = .. objectwith a method m ...

pVar cb = New(Callback, “'m”,b o)
(cb.call ())




Heap is now type-

/ i consistent, so switch
o < to type checking
cb Q cb.obj

var o = ..ob prgmed-out memory cannot be

pvar cb = Ne 44yched during type checking
(cb.call () because of gating




Challenge: Static analysis with gated separation




Challenge: Static analysis with gated separation




Challenge: Static analysis with gated separation




y—1y

(x.f

Value to be
written




Cell to write in a foregate |

y—1y
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Value to be
written
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T-f—y
N Value to be
y —> y written
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y )

Cell to write in a foregate ( x.f

T fe

Sound? Not if ¥ may R Value to be
be the address of a f yr—y

cell in the 4—)
concretization of the :

aftgate

Transfer functions for writes require rearrangement
and weakening of gated separation
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How to type check a
program that is almost
welltyped?

almost?
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Type-Intertwined Separation Logic

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

« Type-intertwined framing with
gated separation

Under preparation.

When the type invariant applies to only part of the heap
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