
Type-Intertwined Heap Analysis

Aarhus University
May 18, 2015

Ross Holland Bor-Yuh Evan ChangDevin Coughlin

University of Colorado Boulder

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

false false false false
false

(x 7! x̂ x̂ · f 7! â true) ^ â 6= null

Given a program
configuration goal,
derive a contradiction
w.r.t. its reachability

backwards abstract interpretation of separation logic

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Use static shape analysis to
synthesize short-circuiting
dynamic validation of data
structure invariants

uninterpreted inductive separation logic predicates

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Github�

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Github�

Fixr: Mining Bug
Fixes from Commits

[in progress]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, Cox+ ESOP’15]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Github�

Fixr: Mining Bug
Fixes from Commits

[in progress]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, Cox+ ESOP’15]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Github�

Fixr: Mining Bug
Fixes from Commits

[in progress]

A1

F1 V1

F2 V2

F3 A2

x

Heap with set symbols
partitioning “open
objects”

separation logic with open object predicates
and desynchronized separation

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, Cox+ ESOP’15]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

Github�

Fixr: Mining Bug
Fixes from Commits

[in progress]

Lab: Program analysis in the whole bug mitigation process

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, Cox+ ESOP’15]

Divva: Synthesizing Short-
Circuiting Data Structure

Checks
[under review]

This Talk

Github�

Fixr: Mining Bug
Fixes from Commits

[in progress]

Type-Intertwined Heap Analysis

Aarhus University
May 18, 2015

Ross Holland Bor-Yuh Evan ChangDevin Coughlin

University of Colorado Boulder

How to type check a
program that is almost

well-typed?

How to type check a
program that is almost

well-typed?

almost?

A motivating example

Specification system:
dependent-refinement types

Property of interest:
reflective method call safety

A motivating example

Specification system:
dependent-refinement types

Property of interest:
reflective method call safety

type safety

simple types

A motivating example

Specification system:
dependent-refinement types

Property of interest:
reflective method call safety

Reflective method call is dispatch based on a run-time value

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

Reflective method call is dispatch based on a run-time value

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

Calls method with name
(selector) stored in on sel

object stored in obj

Reflective method call is dispatch based on a run-time value

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

Calls method with name
(selector) stored in on sel

object stored in obj

If sel held string “notifyClick” would call
notifyClick() on obj.

Reflective method call is dispatch based on a run-time value

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

Calls method with name
(selector) stored in on sel

object stored in obj

Run-time error if obj does not respond
to sel — i.e., method does not exist

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

| r2 sel

obj must “respond to” sel

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

| r2 sel

obj must “respond to” sel

Shorthand for
obj :: {⌫ : Obj | ⌫ r2 sel}

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

| r2 sel

obj must “respond to” sel

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

| r2 sel

obj must “respond to” sel

Guarantees no MethodNotFound
error in call()

class Callback
 var sel: Str
 var obj: Obj

def call()
 this.obj.[this.sel]()

A dependent-refinement type expresses the required relationship

| r2 sel

Array indexing safety is a similar relationship

class Iterator
 var idx: Int
 var buf: Obj[]

def get(): Obj
 return this.buf[this.idx]

| indexedBy idx

Array indexing safety is a similar relationship

class Iterator
 var idx: Int
 var buf: Obj[]

def get(): Obj
 return this.buf[this.idx]

| indexedBy idx

idx must be a valid
index into buf

Array indexing safety is a similar relationship

class Iterator
 var idx: Int
 var buf: Obj[]

def get(): Obj
 return this.buf[this.idx]

| indexedBy idx

idx must be a valid
index into buf

Guarantees no
ArrayOutOfBounds error here

Array indexing safety is a similar relationship

class Iterator
 var idx: Int
 var buf: Obj[]

def get(): Obj
 return this.buf[this.idx]

| indexedBy idx

idx must be a valid
index into buf

Recurring theme: Relationships are
important to many safety properties

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

obj must always
respond to sel

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

o guaranteed to
respond to s

obj must always
respond to sel

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

o guaranteed to
respond to s

Type error: old obj may not
respond to new sel

obj must always
respond to sel

Relationships can be broken

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

o guaranteed to
respond to s

Type error: old obj may not
respond to new sel

False alarm: no run-time MethodNotFound

obj must always
respond to sel

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

Reasoning by global invariant: call
safe because relationship holds

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

Reasoning by global invariant: call
safe because relationship holds

Reasoning about
local effects of

imperative updates

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

| r2 s

Reasoning by global invariant: call
safe because relationship holds

Reasoning about
local effects of

imperative updates

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

| r2 s

Reasoning by global invariant: call
safe because relationship holds

Relationship violated

Reasoning about
local effects of

imperative updates

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

| r2 s

Reasoning by global invariant: call
safe because relationship holds

Relationship violated

Relationship restored
Reasoning about
local effects of

imperative updates

Why is this a false alarm?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

def update(s: Str, o: Obj | r2 s)
 this.sel = s
 this.obj = o

| r2 s

Reasoning by global invariant: call
safe because relationship holds

Relationship violated

Relationship restored
Reasoning about
local effects of

imperative updates

two reasoning styles

two reasoning styles

Idea: Selectively alternate
between and intertwine these

two reasoning styles
in verification

two reasoning styles

Idea: Selectively alternate
between and intertwine these

two reasoning styles
in verification

two reasoning styles

x : ⌧, . . .
flow-insensitive

typing

x 7! â â · f 7! v̂ · · ·
flow-sensitive

abstract interpretation

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

12

an
al

ys
is

tim
e

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

types violated
types

Switch to separation logic
on type error: when global

type invariant violated

12

an
al

ys
is

tim
e

✘

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

separation logic

types violated
types

types restored

Switch to separation logic
on type error: when global

type invariant violated

12

Back to types when
invariant restored

an
al

ys
is

tim
e

✘

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

separation logic

types violated
types

types restored
types

types violated

Switch to separation logic
on type error: when global

type invariant violated

12

Back to types when
invariant restored

an
al

ys
is

tim
e

✘

✘

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

separation logic

types violated
types

types restored
types

separation logic
types violated

types restored

Switch to separation logic
on type error: when global

type invariant violated

12

Back to types when
invariant restored

an
al

ys
is

tim
e

✘

✘

Verification of almost-everywhere invariants with intertwined
type- and separation logic-based analysis

separation logic

types violated
types

types

types restored
types

separation logic
types violated

types restored

Switch to separation logic
on type error: when global

type invariant violated

12

Back to types when
invariant restored

an
al

ys
is

tim
e

✘

✘

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

/⇤
1 /⇤ M

Under preparation.

Extend separation logic with a summary for an almost type-
consistent heap

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Summarize cells that are not immediately type-
inconsistent into single formula literal

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Summarize cells that are not immediately type-
inconsistent into single formula literal

ok

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without
explicitly enumerating it

ok

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Value stored in location differs
from location’s declared type

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without
explicitly enumerating it

ok

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Value stored in location differs
from location’s declared type

Not immediately type-inconsistent but
still transitively type-inconsistent

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without
explicitly enumerating it

ok

ok

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Value stored in location differs
from location’s declared type

Not immediately type-inconsistent but
still transitively type-inconsistent

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without
explicitly enumerating it

ok

ok

ok â · f 7! v̂

Extend separation logic with a summary for an almost type-
consistent heap

immediately type-inconsistent

local

Value stored in location differs
from location’s declared type

Not immediately type-inconsistent but
still transitively type-inconsistent

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without
explicitly enumerating it

ok

ok

Split heap into two regions: almost type-consistent
and (potentially) immediately type-inconsistent

ok â · f 7! v̂

Separation logic can materialize from the almost type-consistent
summary

this.sel this.obj

o

s

this

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

ok

Separation logic can materialize from the almost type-consistent
summary

this.sel this.obj

o

s

this

Handoff to separation
logic on type error,

heap is consistent with
declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

ok

Separation logic can materialize from the almost type-consistent
summary

this.sel this.obj

o

s

this

Handoff to separation
logic on type error,

heap is consistent with
declared types

Entire heap consists
of the almost type-
consistent summary

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

ok

Separation logic can materialize from the almost type-consistent
summary

this.sel this.obj

o

s

this

Handoff to separation
logic on type error,

heap is consistent with
declared types

Entire heap consists
of the almost type-
consistent summary

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

ok

materialize
this.sel
this.obj

Separation logic can materialize from the almost type-consistent
summary

this.sel this.obj

o

s

this

Handoff to separation
logic on type error,

heap is consistent with
declared types

Entire heap consists
of the almost type-
consistent summary

Analysis reasons explicitly
about contents of
materialized cells

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

ok

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

o
ok

this.sel this.obj

s

this

ok

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

o
ok

this.sel this.obj

s

this

Analysis performs strong
updates on materialized

cells

ok

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o
ok

s

this

Analysis performs strong
updates on materialized

cells

ok

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o
ok

s

this

Analysis performs strong
updates on materialized

cells

After first update,
storage is immediately

type-inconsistent

ok

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o
ok

s

this

Analysis performs strong
updates on materialized

cells

After first update,
storage is immediately

type-inconsistent

this.obj does not
respond to this.sel

ok

this.sel this.obj

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

o
ok

s

this

Analysis performs strong
updates on materialized

cells

After first update,
storage is immediately

type-inconsistent

this.obj does not
respond to this.sel

ok

this.sel this.obj

ok

Values in materialized storage allowed to
differ from declared types

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

o
ok

s

this

Analysis performs strong
updates on materialized

cells

After second update, storage is
no longer immediately type-

inconsistent again

ok

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o

s

this

ok

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o

s

this

ok

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o

s

this

No explicit
reasoning about

summarized storage

ok

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o

s

this

No explicit
reasoning about

summarized storage

If entire heap does not have immediately type-
inconsistent locations then the heap is type-consistent

ok

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

this.sel this.obj

o

s

this

No explicit
reasoning about

summarized storage

If entire heap does not have immediately type-
inconsistent locations then the heap is type-consistent

Safe to return to
type checking

ok

Soundness [Fissile Types, POPL 2014]

Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

[Fissile Types, POPL 2014]

Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

9 Objective-C benchmarks

Case Study: Reflection in Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

9 Objective-C benchmarks

Case Study: Reflection in Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

Including Skim,
Adium, and
OmniGraffle

9 Objective-C benchmarks

Case Study: Reflection in Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

Including Skim,
Adium, and
OmniGraffle

Why Objective-C?
Statically typed plus reflective method call

Empirical Evaluation Questions

Precision: What is improvement over
flow-insensitive checking alone?

Cost: What is the cost of analysis in
running time?

Precision
size false alarms

benchmark (loc) reflective call
sites

flow-
insensitive

almost-
everywhere

OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Precision
size false alarms

benchmark (loc) reflective call
sites

flow-
insensitive

almost-
everywhere

OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis – no
switching

Precision
size false alarms

benchmark (loc) reflective call
sites

flow-
insensitive

almost-
everywhere

OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis – no
switching

Precision
size false alarms

benchmark (loc) reflective call
sites

flow-
insensitive

almost-
everywhere

OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis – no
switching

Almost everywhere techniques show 29%
improvement in false alarms

Precision
size false alarms

benchmark (loc) reflective call
sites

flow-
insensitive

almost-
everywhere

OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis – no
switching

Almost everywhere techniques show 29%
improvement in false alarms

Also found a real reflection
bug in Vienna, which we
reported and which was

fixed

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Includes analysis time but
not parsing, base type

checking

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Includes analysis time but
not parsing, base type

checking

Does not include
system headers

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers Interactive

speeds

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Higher rate for projects with larger translation units

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers

Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
(kloc/s)

OAUTH 1248 0.24s 5.3

SCRECORDER 2716 0.28s 10.8

ZIPKIT 3301 0.10s 33

SPARKLE 5289 0.67s 7.9

ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4

SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Higher rate for projects with larger translation units

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers

Maintains key benefit of flow-
insensitive analyses: speed

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

Key Ideas

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

Recall: Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

Recall: Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

Recall: Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

entire

Recall: Soundness

Theorem (Soundness of Handoff).
The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

Theorem (Soundness of Materialization/Summarization).
Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

entire

No way to frame and then
handoff to types

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

this.sel this.obj

o

s

this

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

this.sel this.obj

o

s

this

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

o

s

this

After framing out, entire
heap is almost type-

consistent

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

o

s

this

After framing out, entire
heap is almost type-

consistent

Analysis might unsoundly
switch to back to type

checking

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

o

s

this

After framing out, entire
heap is almost type-

consistent

Analysis might unsoundly
switch to back to type

checking
Points to type-

inconsistent memory

✘

✘

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary

So what if there’s no type-intertwined framing?

So what if there’s no type-intertwined framing?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

So what if there’s no type-intertwined framing?

class Callback
 var sel: Str
 var obj: Obj | r2 sel

def call()
 this.obj.[this.sel]()

var o = … object with a method m …
var cb = new Callback(“m”,o)
cb.call()

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

A class “meta-feature” library

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

A class “meta-feature” library

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

A class “meta-feature” library

Want to type check this call “like before”
— i.e., using the same type system

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

A class “meta-feature” library

Want to type check this call “like before”
— i.e., using the same type system

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

gated separation

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate

Mfore Maft

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate
Foregate cannot

directly point
into aftgate ✘

Mfore Maft

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate
Foregate cannot

directly point
into aftgate

But aftgate can
point into
foregate ✘

Mfore Maft

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate
Foregate cannot

directly point
into aftgate

But aftgate can
point into
foregate

Aftgate may be
indirectly reachable

from foregate

✘

Mfore Maft

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Gated separation expresses a dis-pointing relation between
foregate and aftgate

aftgateforegate
Foregate cannot

directly point
into aftgate

But aftgate can
point into
foregate

Aftgate may be
indirectly reachable

from foregate

✘

Gated separation is a non-commutative strengthening
of standard separating conjunction restricting the

contents of the foregate

Mfore Maft

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Callback in JavaScript

var Callback = Class({
 __init__: function(s,o){…},
 call: function(){
 return this.obj[this.sel].apply(this.obj)
 },
})

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

Callback in JavaScript

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb cb.sel cb.obj

Callback in JavaScript

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb

Callback

cb.sel cb.obj

Callback in JavaScript

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb

Callback

cb.sel cb.obj cb.__proto__

o.__proto__

Callback in JavaScript

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb

Callback

cb.sel cb.obj cb.__proto__

o.__proto__

Callback in JavaScript

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb

Callback

cb.sel cb.obj cb.__proto__

o.__proto__

“Non-typeable heap” is
gate-separated

Strong enough to ensure type-intertwined frame rule is sound

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb

Callback

cb.sel cb.obj cb.__proto__

o.__proto__

Strong enough to ensure type-intertwined frame rule is sound

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb cb.sel cb.obj

Strong enough to ensure type-intertwined frame rule is sound

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb cb.sel cb.obj

Heap is now type-
consistent, so switch

to type checking

Strong enough to ensure type-intertwined frame rule is sound

var o = … object with a method m …
var cb = New(Callback,“m”,o)
cb.call()

o

cb cb.sel cb.obj

Heap is now type-
consistent, so switch

to type checking

Framed-out memory cannot be
touched during type checking

because of gating

Challenge: Static analysis with gated separation

Challenge: Static analysis with gated separation

x.f = y

Challenge: Static analysis with gated separation

x.f = y

Challenge: Static analysis with gated separation

x.f = y

y 7! ŷ
Value to be

written

Challenge: Static analysis with gated separation

x.f = y

x̂ · f 7!�

y 7! ŷ
Value to be

written

Cell to write in a foregate

Challenge: Static analysis with gated separation

x.f = y

x̂ · f 7!

y 7! ŷ
Value to be

written

Cell to write in a foregate

ŷ

Challenge: Static analysis with gated separation

x.f = y

x̂ · f 7!

y 7! ŷ
Value to be

written

Cell to write in a foregate

ŷ

Sound? Not if may
be the address of a

cell in the
concretization of the

aftgate

ŷ

Challenge: Static analysis with gated separation

x.f = y

x̂ · f 7!

y 7! ŷ
Value to be

written

Cell to write in a foregate

ŷ

Sound? Not if may
be the address of a

cell in the
concretization of the

aftgate

ŷ

Transfer functions for writes require rearrangement
and weakening of gated separation

How to type check a
program that is almost

well-typed?

How to type check a
program that is almost

well-typed?

almost?

Type-Intertwined Separation Logic

Type-Intertwined Separation Logic

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-Intertwined Separation Logic

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

Type-Intertwined Separation Logic

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

When the type invariant is temporarily broken

Type-Intertwined Separation Logic

Tolerating temporary violations
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [?]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1) M0
1 M2) M0

2
M1 /⇤ M2) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

When the type invariant applies to only part of the heap

When the type invariant is temporarily broken

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

Sankaranaryananan SomenziChangCerny Hammer

http://www.cs.colorado.edu/~bec

