Type-Intertwined Heap Analysis

Devin Coughlin Ross Holland Bor-Yuh Evan Chang

University of Colorado Boulder

Aarhus University

May 18, 2015
&y oy

Lab: Program analysis in the whole bug mitigation process

Lab: Program analysis in the whole bug mitigation process

proof of no bug

Lab: Program analysis in the whole bug mitigation process

proof of no bug

LI <
&

Lab: Program analysis in the whole bug mitigation process

LI <
&

Lab: Program analysis in the whole bug mitigation process

Program

Thresher: Goal-Directed Refutation
| Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review

(&

Given a program
configuration goal,
derive a contradiction
w.r.t. its reachability

) - X ¥y gitY) = of no bug
(x— T %z f— a=xtrue) A a == null
backwards abstract interpretation of separation logic

Mﬁm v Alarm
fy Report

Thresher: Goal-Directed Refutation

Analysis
[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]
ﬁv-rvrrrv-vn ~ AV o O

<« \=

Triaging

1))

Lab: Program analysis in the whole bug mitigation process

Program

Thresher: Goal-Directed Refutation
| Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review

(&

Lab: Program analysis in the whole bug mitigation process

Program

v

proof of no bug

* Alarm

Verifier

Report
Thresher: Goal-Directed Refutation

Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’'13, under review]

Lab: Program analysis in the whole bug mitigation process

Program

Thresher: Goal-Directed Refutation
| Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’'13, under review]

Fissile Types: [
Checking Almost

Everywhere
Spec-

Invariants
[Coughlin+ POPL'14, in prep]
Progra m- 7 ification
ming v

proof of no bug

Program —> veriﬁer

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Triaging)
e

Fissile Types:

Checking Almost
Everywhere
Ipva ria nts Tost Test
[Coughlin+ POPL’14, in prep] \ Input —> RU nner g Output

P Spec-
rogram- 7 ification

- ming v

proof of no bug

Program —> Veriﬁer

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

S <« {e
Triaging
i

Fissile Types: MMM Diyva:. .Synthesizing Short-
Checking Almost Circuiting Data Structure
Everywhere [thecks |
unhder review
Invariants
) , Test \Y4 Test
oughlin+ ‘14, in pre
[Coughlin+ POPL'14, in p p]\ inpul — Runner — Output
Spec-

Progra m- 7 ification

~ ming v

proof of no bug

Program —> veriﬁer

Thresher: Goal-Directed Refutation
Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

| E—
o . (N e iy
TI'I a g IN g

1

Fissile Types:

Checking Almost

Everywhere

Invariants
[Coughlin+ POPL'14, in prep]

Circuiting Data Structure

Checks

[under review]

Divva: Synthesizing Short-

Program-
~ ming

Test — NS Laak
Input
\ Use static shape analysis to
Spec synthesize short-circuiting
ificati ° ° °
7 ifcation dynamic validation of data
structure invariants
Program — uninterpreted inductive separation logic predicates
Alarm
Report

Analysis

.. <
Triaging

1

Thresher: Goal-Directed Refutation

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Fissile Types: MMM Diyva:. .Synthesizing Short-
Checking Almost Circuiting Data Structure
Everywhere [thecks |
unhder review
Invariants
) , Test \Y4 Test
oughlin+ ‘14, in pre
[Coughlin+ POPL'14, in p p]\ inpul — Runner — Output
Spec-

Progra m- 7 ification

~ ming v

proof of no bug

Program —> veriﬁer

Thresher: Goal-Directed Refutation
Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

| E—
o . (N e iy
TI'I a g IN g

1

Fissile Types:

Checking Almost

Everywhere

Invariants
[Coughlin+ POPL'14, in prep]

L

Divva: Synthesizing Short-

Program-
~ ming

/ S o)
Github '

Test
Output

v

proof of no bug

Circuiting Data Structure

Checks

[under review]

Test V

\ meet > Runner -
Spec-
/ ification
Program —> veriﬁer

Thresher: Goal-Directed Refutation
Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

<

Triaging

1

[

Fissile Types: [
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL'14, in prep]

L

Divva: Synthesizing Short-

Program-

~ ming

Github '

N\

Test
Output

v

proof of no bug

Circuiting Data Structure

Checks

[under review]

Test \4

\ meet > Runner -
Spec-
7 ification
Program —> Veriﬁer

Thresher: Goal-Directed Refutation

Fixr: Mining Bug ﬁ [.‘

Fixes from Commits < (o

[in progress]

3]

Analysis

Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

Triaging

Fissile Types:

L

Divva: Synthesizing Short-

Checking Almost Circuiting Data Structure
Everywhere Checks

| ants [under review]

nvari

: . Test AV4 Test
Coughlint POPL' 14, in pre
[Coug prep] \ oot > Runner > Outpul

Program- Spec , ~

9 7 ification Jsana: Abstract Domain Combinators
ming for Dynamic Languages V
1 [Cox+ ECOOP'13, Cox+ SAS’14, Cox+ ESOP’15]
roof of no bug
Program —>

Github '

N\

Fixr: Mining Bug
Fixes from Commits

[in progress]

1

Verifier e Q
X

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

< (o

Triaging

Fissile Types: MMM Diyva:. .Synthesizing Short- §
Checking Almost Circuiting Data Structure
Everywhere [thecks |
unhder review
Invariants
[Coughlin+ POPL'14, in prep] |::sl:t — Runner A4 — —> O-Il-Jef::Ui'
Program- P . —
9 7 ffication Jsana: Abstract Domain Combinators
ming for Dynamic Languages /
L [Cox+ ECOOP’13, Cox+ SAS’14, Cox+ ESOP’15]
proof of no bug

y X
Github / l o
A Heap with set symbols °°"
A Fi- Vi | partitioning “open
Fixr: Mining Bug F2 V2 obieds”
Fixes from Commits — Fs Ay
[in progress]

\ separation logic with open object predicates
? % and desynchronized separation

Fissile Types:

L

Divva: Synthesizing Short-

Checking Almost Circuiting Data Structure
Everywhere Checks

| ants [under review]

nvari

: . Test AV4 Test
Coughlint POPL' 14, in pre
[Coug prep] \ oot > Runner > Outpul

Program- Spec , ~

9 7 ification Jsana: Abstract Domain Combinators
ming for Dynamic Languages V
1 [Cox+ ECOOP'13, Cox+ SAS’14, Cox+ ESOP’15]
roof of no bug
Program —>

Github '

N\

Fixr: Mining Bug
Fixes from Commits

[in progress]

1

Verifier e Q
X

Thresher: Goal-Directed Refutation
Analysis

[Blackshear+ SAS’11, Blackshear+ PLDI’13, under review]

< (o

Triaging

% ilysis in the whole bug mitigation process
Fissile Types: €™ ,

Checking Almost .
Everywhere This Talk
Invariants

[Coughlin+ POPL' 14, in prep] | —— 5—J

N\

Type-Intertwined Heap Analysis

Devin Coughlin Ross Holland Bor-Yuh Evan Chang

University of Colorado Boulder

Aarhus University

May 18, 2015
&y oy

How to type check a
program that is almost
welltyped?

How to type check a
program that is almost
welltyped?

almost?

Property of interest:
reflective method call safety

Specification system:
dependent-refinement types

Property of interest:
reflective method call safety

type safety

Specification system:
dependent-refinement types

simple types

Property of interest:
reflective method call safety

Specification system:
dependent-refinement types

Reflective method call is dispatch based on a run-time value

class Callback
var sel: Str
var obj: Obj

def call ()
this.obj.[this.sel] ()

class Callback

var sel: Str

var obj: Obj Calls method with name
(selector) stored in on sel

object stored in obj

def call ()
this.obj.[this.sel] ()

class Callback

var sel: Str

var obj: Obj Calls method with name
(selector) stored in on sel

object stored in obj

def call ()
this.obj.[this.sel] ()

If sel held string “notifyClick” would call

notifyClick () on obj.

class Callback

var sel: Str . |
var obj: Obj Calls method with name

(selector) stored in on sel
object stored in obj

def call ()
this.obj.[this.sel] ()

Run-time error if obj does not respond
to sel —i.e., method does not exist

L —

A dependent-refinement type expresses the required relationship

class Callback
var sel: Str
var obj: Obj

def call ()
this.obj.[this.sel] ()

class Callback obj must “respond to” sel
var sel: Str ' ‘

var obj: Obj(] r2 sel)

def call ()
this.obj.[this.sel] ()

class Callback obj must “respond to” sel
var sel: Str '

var obj: Obj(] r2 sel)

Shorthand for obj :: {v : Obj | v r2 sel}

def call ()
this.obj.[this.sel] ()

class Callback obj must “respond to” sel
var sel: Str ' ‘

var obj: Obj(] r2 sel)

def call ()
this.obj.[this.sel] ()

class Callback obj must “respond to” sel
var sel: Str '

var obj: Obj(] r2 sel)

def call ()
this.obj.[this.sel] ()

i

Guarantees no MethodNotFound
error in call () ‘

A dependent-refinement type expresses the required relationship

class Callback
var sel: Str

var obj: Obj([EZTEED)

def call ()
this.obj.[this.sel] ()

class Iterator
var i1dx: Int
var buf: Obj[](] indexedBy idx)

def get(): Obj
return this.buf[this.idx]

idx must be a valid

class Iterator
var 1dx: Int

var buf: Obj[](l] indexedBy idx)

index into buf

def get(): Obj
return this.buf[this.idx]

idx must be a valid

class Iterator
var 1dx: Int

var buf: Obj[](l] indexedBy idx)

index into buf

def get(): Obj
return this.buf[this.idx]

Guarantees no

ArrayOutOfBounds error here

idx must be a valid

class Iterator
var i1dx: Int |
var buf: Obj[](l] indexedBy idx)

index into buf

def get(): Obj
return this.buf[this.idx]

Recurring theme: Relationships are
important to many safety properties

Relationships can be broken

class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()

Relationships can be broken

class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()

class Callback

var sel: Str
var obj: Obj

def call ()

this.obj.[this.sel] ()

obj must always
respond to sel

r2 sel

(

def update(s:

this.sel
this.obj

S
o

Str,

O.

Ob3

r2 s)

~

class Callback

var sel: Str
var obj: Obj

def call ()

this.obj.[this.sel] ()
respond to s

obj must always
respond to sel

r2 sel

-

def update(s:

this.sel
this.obj

S
o

Str,

O.

Obj

r

2 S)

~

class Callback
var sel: Str
var obj: Obj

def call ()

obj must always
respond to sel

r2 sel

(

this.obj.[this.sel] ()
respond to s

def update(s:

this.sel
this.obj

Str, o: Obj |

' Type error: old obj may not

respond to new sel

2 S)

~

class Callback
var sel: Str
var obj: Obj

obj must always

respond to sel

| r2 sel

False alarm: no runtime MethodNotFound

def call\,

this.obj.[this.sel] ()
respond to s

-

def update(s: Str, o: Obj | r2 s)

this.sel
this.obj

~

o o Type error: old obj may not
respond to new sel

class Callback

var sel: Str
var obj: Obj

def call ()

this.obj.[this.sel] ()

def update(s:

this.sel
this.obj

S
O

r2 sel

Str,

O.

Ob4

r2 s)

class Callback
var sel: Str
var obj: Obj | r2 sel ;
Reasoning by global invariant: call |
def call () safe because relationship holds
(this.obj. [this.sel] ()

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o

class Callback
var sel: Str
var obj: Obj | r2 sel

Reasoning by global invariant: call |
def call () safe because relationship holds

(this.obj. [this.sel] ()

def update(s: Str, o: Obj | r2 s)
this.sel = s *
this.obj = o

Reasoning about
J local effects of

' imperative updates

class Callback
var sel: Str
var obj: Obj | r2 sel

Reasoning by global invariant: call |
def call () safe because relationship holds

(this.obj. [this.sel] ()

def update(s: Str, o: Obj (| r2 s)
this.sel = s *
this.obj = o

Reasoning about
J local effects of

' imperative updates

class Callback
var sel: Str
var obj: Obj | r2 sel ;
Reasoning by global invariant: call |
def call () safe because relationship holds
(this.obj. [this.sel] ()

def update(s: Str, o: Obj (| r2 s)
‘this.sel = *
this.obj = o

Relationship violated

Reasoning about
local effects of

' imperative updates

class Callback
var sel: Str
var obj: Obj | r2 sel S
Reasoning by global invariant: call |
def call () safe because relationship holds
(this.obj. [this.sel] ()

def update(s: Str, o: Obj (| r2 s)
this.sel = ~
\thi S. Obj - O Relationship restored

Relationship violated

Reasoning about
local effects of

' imperative updates

class two reasoning styles

var s | _
var obj: Obj | r2 sel ;

Reasoning by global invariant: call |
def call () safe because relationship holds
(this.obj. [this.sel] ()

def update(s: Str, o: Obj (| r2 s)
this.sel = ~
\thi S. Obj - O Relationship restored

Relationship violated

Reasoning about
local effects of

' imperative updates

two reasoning styles

T ———

ldea: Selectively alternate
between and intertwine these
two reasoning styles
~in verification

ldea: Selectively alternate
between and intertwine these
two reasoning styles
~in verification |

Xr .T,... LEHCAL*CAL]E%QA}*
flow-insensitive Alow-sensitive

typing abstract interpretation

Verification of almost-everywhere invariants with interiwined

type- and separation logic-based analysis

()
E
-
2

(7]
2

O

c

O

analysis time

fypes

X types violated

Switch to separation logic |

on type error: when glohal
type invariant violated

analysis time

fypes

separation logic

X types violated

types restored

Switch to separation logic |

on type error: when glohal
type invariant violated

Back to types when

invariant restored

analysis time

fypes

separation logic

types

X types violated

types restored

X types violated

Switch to separation logic |

on type error: when glohal
type invariant violated

Back to types when

invariant restored

Switch to separation logic |

on type error: when glohal
fypes type invariant violated

X types violated

separation logic

types restored
Back to types when
ypes X iolated
types violate

separation logic

analysis time

types restored

Switch to separation logic |

on type error: when glohal
fypes type invariant violated

X types violated

separation logic

types restored
Back to types when
ypes X iolated
types violate

separation logic

analysis time

types restored

types

Key Ideas

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

Key Ideas

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

b Type-intertwined framing with
gated separation

Under preparation.

Key Ideas

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

b Type-intertwined framing with

gated separation o\
\“\\\\\%% a8 “
N

Under preparation.

Key Ideas

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

Extend separation logic with a summary for an almost type-

consistent heap

Extend separation logic with a summary for an almost type-
consistent heap

(mmediately type-inconsistent

Summarize cells that are not immediately type-

inconsistent into single formula literal

local

ok

Summarize cells that are not immediately type-
inconsistent into single formula literal

local

ok

Summarize cells that are not immediately type- Describes storage without
inconsistent into single formula literal explicitly enumerating it

local

Summarize cells that are not immediately type- Describes storage without
inconsistent into single formula literal | explicitly enumerating it

(mmediately type-in

Value stored in location differs

)

local

from location’s declared type

Summarize cells that are not immediately type- Describes storage without
inconsistent into single formula literal | explicitly enumerating it

Not immediately type-inconsistent but J Value stored in location differs
still transitively type-inconsistent from location’s declared type

Summarize cells that are not immediately type- Describes storage without
inconsistent into single formula literal | explicitly enumerating it

(mmediately type-in

- /

Value stored in location differs

Not immediately type-inconsistent but
from location’s declared type

still transitively type-inconsistent

Summarize cells that are not immediately type- Describes storage without
inconsistent into single formula literal | explicitly enumerating it

(mmediately type-in

Not immediately type-inconsistent but

- /

Value stored in location differs

still transitively type-inconsistent from location’s declared type

Split heap into two regions: almost type-consistent
and (potentially) immediately type-inconsistent

R ——

Separation logic can materialize from the almost type-consistent
summary

Hum!oﬂ to separation def update(s: Str, o: Obj | r2 s)
logic on type error, [y NSNS

heap is consistent with this.obj ; -

declared types

a4 N\
0 > ok

s// al

this
N 4

Hum!oﬂ to separation def update(s: Str, o: Obj | r2 s)
logic on type error, [y NSNS

heap is consistent with this.obj -
declared types

= O

4 I
° g O k Entire heap consists

/ | of the almost type-
S — al consistent summary
ey T
this.sel this.obj ‘

this
. %

Handoff to separation def update(s: Str, o: Obj | r2 s)

logic on type error, [y NSNS
heap is consistent with this.obj

declared types

= O

4 N
° g O k Entire heap consists
of the almost type-

s e | consistent summary
g ’
this.sel this.obj :
this
-

materialize
this.sel
this.obj

Handoff to separation def update(s: Str, o: Obj | r2 s)

logic on type error, [y NSNS
heap is consistent with this.obj

declared types

= O

4 N
° g O k Entire heap consists
- of the almost type-

s e consistent summary
g ’
this.sel this.obj :
this
\ ,

/

Analysis reasons explicitly

about contents of
materialized cells

Values in materialized storage allowed to
differ from dedared types

Analysis performs strong def update(s: Str, o: Obj | r2 s)

updates on materialized _>this sel = s

cells this.obj = o

4 N\
0 - ok

s / X
oz £
this.sel this.obj
this
(S /

Analysis performs strong

o def update(s: Str, o: Obj | r2 s)
updates on materialized this . sel =

= s
cells — i his. ob3

= O

this.sel this.obj

this

Analysis performs strong

o def update(s: Str, o: Obj | r2 s)
updates on materialized this sel =

= s
cells — i his. ob3

= O

After first update,
storage is immediately
type-inconsistent

this

Analysis performs strong

4 . def update(s: Str, o: Obj | r2 s)
updates on materialized this sel =

cells — i his. ob3

S
= O

0
After first update,
) storage is immediately
tis.se tis.cbj BN type-inconsistent
this |

this.obj does not
respond to this.sel

Analysis performs strong

def update(s: Str, o: Obj | r2 s)

updates on materialized this sel = s

cells

> this.obj = o

e I
0 - O k
// \ After first update,
S % storage is immediately
this.sel this.obj | type-inconsistent
this /
_ /

this.obj does not

respond to this.sel

Analysis performs strong

cells

s def update(s: Str,
updates on materialized this sel =

b this.obj

= S
= O

O.

Ob3j

r2 s)

/'

§
- ok

\

this.sel

this

)

After second update, storage is

no longer immediately type-
inconsistent again

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

this.sel

Can summarize not immediately type-inconsistent locations back
into the almost type-consistent heap

def update(s:

Str, o: Obj | r2 s)

this.sel = s
. this.obj = o
4)
° ok
) // \ No explicit
reasoning about
this.sel this.obj .
> summarized storage
this
(S J

def update(s: Str, o: Obj | r2 s)
this.sel =

= s
> this.obj = o

N
- ok

/
// \ No explicit
: reasoning about
this.sel this.obj .
> summarized storage

-)

this

If entire heap does not have immediately type-
inconsistent locations then the heap is type-consistent

—

def update(s: Str, o: Obj | r2 s)

this.sel = s
= 0

Safe to return to

type checking R s el

N
- ok

/
// \ No explicit
: reasoning about
this.sel this.obj .
summarized storage

-)

this

If entire heap does not have immediately type-
inconsistent locations then the heap is type-consistent

Soundness [Fissile Types, POPL 2014]

Soundness [Fissile Types, POPL 2014]

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

> Wa S
h

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

— ’ _ =

| <=5 — jF-sane

Theorem (Soundness of Materialization/Summarization).

Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

| a7 7> — Hlem 5

(& J (S J

J

Case Study: Reflection in Objective-C

Prototype analysis implementation

Plugin for clang static analyzer in C++

9 Objective-C benchmarks

6 libraries and 3 applications

1,000 to 176,000 lines of code

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Case Study: Reflection in Objective-C

Prototype analysis implementation

Plugin for clang static analyzer in C++

9 Obiective-C benchmarks Including Skim,

6 libraries and 3 applications Adium, and

1,000 to 176,000 lines of code

OmniGraffle

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Case Study: Reflection in Objective-C

Why Obijective-C2

Statically typed plus reflective method call
Prototype analysis implementation

Plugin for clang static analyzer in C++

9 Obiective-C benchmarks Including Skim,
Adium, and

6 libraries and 3 applications

OmniGraffl
1,000 to 176,000 lines of code ety

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Precision: What is improvement over
flow-insensitive checking alone?

Cost: What is the cost of analysis in
running time?

size false alarms
benchmark (loc) reflec_tive call _ f|OV\{-. almost-
sites insensitive everywhere
OAUTH 1248 7 7 2 (-71%)
SCRECORDER 2716 12 2 0 (-100%)
ZIPKIT 3301 28 0 0 (-)
SPARKLE 5289 40 4 1 (-75%)
ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)
VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)
combined 461080 1327 334 238 (-29%)

size e Jalse alarms
benchmark t00) | Gites “Wlinsensitivs] everywhere
OAUTH 1248 7 7 2 (-71%)
SCRECORDER 2716 12 2 0 (-100%)
ZIPKIT 3301 28 0 0 (-)
SPARKLE 5289 40 4 1 (-75%)
ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

switching

size false alarm
2L e reﬂe:ittit‘e’: - insl;lz:;:tive |
OAUTH 1248 7 7
SCRECORDER 2716 12 2 0 (-100%)
ZIPKIT 3301 28 0 0 (-)
SPARKLE 5289 40 4 1 (-75%)
ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

switching

size false alarms
benchmark (loc) reflec_tive call _ f|OV\{-. almost-
sites insensitive everywhere
OAUTH 1248 7 7 2 (-71%)
SCRECORDER 2716 12 2 0 (-100%)
ZIPKIT 3301 28 0 0 (-)
SPARKLE 5289 40 4 1 (-75%)
ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)
VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)
combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

SV
Almost everywhere techniques show 29%
improvement in false alarms

size false alarms
reflective call flow- almost-
benchmark (loc) : : o
sites Insensitive everywhere
OAUTH 1248 7 7 2 (-71%)
. 2716 12 2 0 (-100%)
Also found a real reflection 301 - . 00
bug in Vienna, which we
. 5289 40 4 1 (-75%)
reported and which was
14620 68 50 10 (-80%)
fixed
160769 192 82 74 (-10%)
———————————eee
VIENNA 37327 186 59 38 (-36%)
SKIM 60211 207 43 43 (-0%)
ADIUM 176629 587 87 70 (-20%)
combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

sy \
Almost everywhere techniques show 29%

improvement in false alarms

size analysis time

benchmark (loc) Time (kT:Ss)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s 7.9
ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8

VIENNA 37327 2.79s 13.4
SKIM 60211 2.49s 24.1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

size analysis time
benchmark (loc) :]‘ime (k?c?ct;s)

OAUTH 1248 /0.248 5.3

SCRECORDER 2455 0.28s 10.8

ZIPKIT 3301 0.10s 33

- 5289 0.67s 7.9

2 b 14620 0.50s 27.2

¢ . 160769 4.25s 37.8
. m

SKIVI 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

size analysis time
Does not include oas /0.243 -
system headers
2% 0.28s 10.8
3301 0.10s 33
- 5289 0.67s 7.9
des ana e b 14620 0.50s 27.2
)¢ 1, be . 160769 4.25s 37.8
‘ 37327 2.79s 13.4
o 60211 2.49s 24 1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

size analysis timef \
benchmark (loc) Time /f/- \\'
g loc/s) |
OAUTH 1248 0.24s 53 |
SCRECORDER 2716 0.28s 10.8 |
ZIPKIT 3301 0.10s " 33 }\
SPARKLE 5289 0.67s ! : 7.9
ASIHTTPREQUEST 14620 0.50s ’E 27.2
OMNIFRAMEWORKS 160769 4.25s 1, 37.8
VIENNA 37327 2.79s
SKIM 60211 2.49s) i
ADIUM 176629 8.79s ' ¥
combined 461080 20.09s

Fast: 5 to 38 kloc/s with most time spent analy

system headers

/
\ 4
y

|
zing

size analysis timgf’ '\
f)
benchmark (loc) Time /c?ct;s)\a\ |
OAUTH 1248 0.24s 53 |
SCRECORDER 2716 0.28s 108 |
ZIPKIT 3301 0.10s ; 33 |
SPARKLE 5289 0.67s : 7.9 |
ASIHTTPREQUEST 14620 0.50s ’E 27.2
OMNIFRAMEWORKS 160769 4.25s i 37.8
VIENNA 37327
SKIM
ADIUM
combined

Fast: 5 to 38 kloc/s with most time spent (lmlly':

system headers Interactive

speeds

size analysis time
benchmark (loc) Time (kT:Ss)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s \\
ASIHTTPREQUEST 14620 0.50s § 27.2
OMNIFRAMEWORKS 160769 4.25s

VIENNA 37327 2.79s
SKIM 60211 2.49s 24.1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing
system headers

Higher rate for projects with larger translation units

size analysis time
benchmark (loc) Time (kT:c?s)
OAUTH 1248 0.24s 5.3
SCRECORDER 2716 0.28s 10.8
ZIPKIT 3301 0.10s 33
SPARKLE 5289 0.67s 7.9
ASIHTTPREQUEST 14620 0.50s 27.2
OMNIFRAMEWORKS 160769 4.25s 37.8
m
SKIM 60211 2.49s 24 1
ADIUM 176629 8.79s 20.1
combined 461080 20.09s 23

Fast: 5 to 38 kloc/s with most time spent analyzing

: l\ilainiains key benefit of flow-

: . units
insensitive analyses: speed

Key Ideas

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

b Type-intertwined framing with
gated separation

Under preparation.

Key Ideas

b Type-intertwined framing with
gated separation

Under preparation.

Key Ideas

b Type-intertwined framing with
gated separation

Under preparation.

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

— ’ _ =

| <=5 — jF-sane

Theorem (Soundness of Materialization/Summarization).

Locations that are not immediately type-inconsistent can be safely
materialized and summarized into the almost type-consistent heap ok.

| a7 7> — Hlem 5

(& J (S J

Recall: Soundness

[Fissile Types, POPL 2014]

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

> e >
h

Recall: Soundness

[Fissile Types, POPL 2014]

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

> e >
h

Theorem (Soundness of Handoff).

The entire state is type-consistent iff all locations are not immediately
type-inconsistent.

T _ =

No way to frame and then
handoff to types

Type-intertwined frame rule with standard separating conjunction
is unsound

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s

| - this.call ()
this.obj = o

Immediately type-
inconsistent portion of
heap is disjoint from
almost type-consistent

summary

4)

this.obj

this

Immediately type-

inconsistent portion of

heap is disjoint from
almost type-consistent
summary

def badUpdate(s:
this.sel = s

| p this.call ()

this.obj = o

Str, o: Obj | r2 s)

After framing out, entire

/?

this

heap is almost type-
consistent

Immediately type-

inconsistent portion of

heap is disjoint from
almost type-consistent
summary

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s

| - this.call ()

this.obj = o

/?

After framing out, entire

this

> | heap is almost type-
consistent

Analysis might unsoundly

switch to back to type
checking

Immediately type-

inconsistent portion of
heap is disjoint from

almost type-consistent

summary

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s

| - this.call () X

this.obj = o

After framing out, entire

/?

> | heap is almost type-
consistent

Points to type-

inconsistent memory

Analysis might unsoundly

switch to back to type
checking

So what if there’s no type-intertwined framing?

So what if there’s no type-intertwined framing?

class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()

class Callback
var sel: Str
var obj: Obj | r2 sel

def call ()
this.obj.[this.sel] ()

var o ... object with a method m ...

var cb = new Callback(“m”,b o)
cb.call ()

var Callback = Class ({
~1nit : function(s,0){..}, i
call: function() {
return thilis.obj[this.sel] . appiy (this.obj)

}
})

var o ... object with a method m ...
var cb = New(Callback,“'m”, o)
cb.call ()

| A class “meta-feature”

var Callback = Class ({
~1nit : function (s,0)({..}, AP
call: function() {
return thilis.obj[this.sel] . appiy (this.obj)

}
})

var O = .. objectwith a method m ...
var cb = New(Callback,“'m”, o)
cb.call ()

| A class “meta-feature”

var Callback = Class ({
~1nit : function (s,0)({..}, AP
call: function() {
return thilis.obj[this.sel] . appiy (this.obj)

}
})

var O = .. objectwith a method m ...

var cb = New(Callback,“'m”, o)
(cb.call ())

| A class “meta-feature”

var Callback = Class ({
~1nit : function (s,0)({..}, AP
call: function() {
return thilis.obj[this.sel] . appiy (this.obj)

}
})

var o ... objec
var cb = New

(cb.call ())

Want to type check this call “like before”
— i.e., using the same type system

| A class “meta-feature”

var Callback = Class ({
~1nit : function(s,0){..}, JavaScript
call: function() {
return this.obj[this.sel] . appiy (this.obj)

}
})

var o ... objec
var cb = New

(cb.call ())

Want to type check this call “like before”
— i.e., using the same type system

@ gated separation

Gated separation expresses a dis-pointing relation between
foregate and aftgate

foregate aftgate

Gated separation expresses a dis-pointing relation between

foregate and aftgate

Mtore @ M

foregate aftgate

Mfore @ Maft

Foregate cunnot

directly point foregate -, aftgate

into aftgate 'x_>

Mtore @ M

Foregate ¢annot : But aftgate can |

directly point foregate . aftgate point into
into aftgate 'x_> foregate

Aftgate may be Mfore @ Maﬂ

indirectly reachable |
from foregate

P But aftgate can |
directly point foregate - . aftgate point into

into aftgate 'x_> ‘ foregate

Foregate cunnot

Aftgate may be Mfore @ Maﬂ

indirectly reachable |
from foregate

!

Foregate ¢annot - But aftgate can |
directly point foregate - . aftgate point into

into aftgate l 'x_> ‘ foregate

Gated separation is a non-commutative strengthening |
of standard separating conjunction restricting the

contents of the foregate @

var Callback = Class ({
~1nit ! function(s,0){..},
call: function() {
return this.obj[this.sel] . appiy (this.obj)

}
})

var O

var cb = New(Callback,“m”,6 o)
(cb.call())

... object with a method m ...

Callback in JavaScript

B
o)

var O = .. objectwitha method m ...
pVar cb = New(Callback, "'m”, o)

:
y

cb

cb.obj

A
y

Callback

-l

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())

C b cb.sel cb.obj

i\

-
var O = .. objectwith a method m ...

pVar cb = New(Callback, “'m”,b o)
(cb.call ())

Callback

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())

Callback

var O = ..

ol

pyVar cb = N

(cb.call ())

Callback

var O = .. objectwith a method m ...
pVar cb = New(Callback, “'m”,b o)
(cb.call ())

Strong enough to ensure type-intertwined frame rule is sound

B
B

var O = .. objectwitha method m ...
pVar cb = New(Callback, "'m”, o)

Heap is now type-

/ i consistent, so switch
o to type checking
cb
var O = .. objectwith a method m ...

pVar cb = New(Callback, “'m”,b o)
(cb.call ())

Heap is now type-

/ i consistent, so switch
o < to type checking
cb Q cb.obj

var o = ..ob prgmed-out memory cannot be

pvar cb = Ne 44yched during type checking
(cb.call () because of gating

Challenge: Static analysis with gated separation

Challenge: Static analysis with gated separation

Challenge: Static analysis with gated separation

y—1y

(x.f

Value to be
written

Cell to write in a foregate |

y—1y

(x.f

Value to be
written

(x.f
T-f—y
N Value to be
y —> y written

y)

Cell to write in a foregate [x.f

T fr=y

Sound? Not if ¥ may R Value to be
be the address of a f yr—y

cell in the 4—)
concretization of the :

aftgate

y)

Cell to write in a foregate (x.f

T fe

Sound? Not if ¥ may R Value to be
be the address of a f yr—y

cell in the 4—)
concretization of the :

aftgate

Transfer functions for writes require rearrangement
and weakening of gated separation

How to type check a
program that is almost
welltyped?

How to type check a
program that is almost
welltyped?

almost?

Type-Intertwined Separation Logic

Type-Intertwined Separation Logic

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

Type-Intertwined Separation Logic

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

Type-Intertwined Separation Logic

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

« Type-intertwined framing with
gated separation

Under preparation.

Type-Intertwined Separation Logic

ok Tolerating temporary violations

with almost type-consistent heaps
Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

« Type-intertwined framing with
gated separation

Under preparation.

When the type invariant applies to only part of the heap

gan. TS

o

¢ : - N e
s s Ay S Ry
L st o 2NN Woarse

-

Y BT 60T 5o AT o SRR et | B e
: ¥).',IM'P 1 L B | R SR SO oA) "6!"~¥__-“ |) :
ah) ~ AR | &

%" www.cs.colorado.edu/ " bec ;

i
" pl.cs.colorado.edu

e —
f .

: .

Hammer &4

a A \

\ Sgnkaranary;-ap‘anan

http://www.cs.colorado.edu/~bec

