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Array indexing safety is a similar relationship

class Iterator 
 var idx: Int 
 var buf: Obj[]          

def get(): Obj 
 return this.buf[this.idx]

| indexedBy idx

idx must be a valid 
index into buf

Recurring theme: Relationships are 
important to many safety properties
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Type-intertwined framing with 
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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1 /⇤ M

Under preparation.
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consistent heap

immediately type-inconsistent

local

Value stored in location differs 
from location’s declared type

Not immediately type-inconsistent but 
still transitively type-inconsistent

Summarize cells that are not immediately type-
inconsistent into single formula literal

Describes storage without 
explicitly enumerating it

ok

ok

Split heap into two regions: almost type-consistent 
and (potentially) immediately type-inconsistent

ok â · f 7! v̂
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Separation logic can materialize from the almost type-consistent 
summary

this.sel this.obj

o

s

this

Handoff to separation 
logic on type error, 

heap is consistent with 
declared types

Entire heap consists 
of the almost type-
consistent summary

Analysis reasons explicitly 
about contents of 
materialized cells

def update(s: Str, o: Obj | r2 s) 
this.sel = s 
this.obj = o

ok
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this.obj = o

o
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Can summarize not immediately type-inconsistent locations back 
into the almost type-consistent heap

def update(s: Str, o: Obj | r2 s) 
this.sel = s 
this.obj = o

this.sel this.obj

o

s

this

No explicit 
reasoning about 

summarized storage

If entire heap does not have immediately type-
inconsistent locations then the heap is type-consistent

Safe to return to 
type checking

ok
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Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

[Fissile Types, POPL 2014]



Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Locations that are not immediately type-inconsistent can be safely 
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]
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9 Objective-C benchmarks

Case Study: Reflection in Objective-C

76 r2 annotations on system libraries

6 libraries and 3 applications

136 annotations on benchmark code

Manual type annotations

1,000 to 176,000 lines of code

Plugin for clang static analyzer in C++

Prototype analysis implementation

Including Skim, 
Adium, and 
OmniGraffle

Why Objective-C? 
Statically typed plus reflective method call



Empirical Evaluation Questions

Precision: What is improvement over 
flow-insensitive checking alone?

Cost: What is the cost of analysis in 
running time?



Precision
size false alarms

benchmark (loc) reflective call 
sites

flow-
insensitive
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everywhere
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SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)
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OAUTH 1248 7 7 2 (-71%)

SCRECORDER 2716 12 2 0 (-100%)

ZIPKIT 3301 28 0 0 (-)

SPARKLE 5289 40 4 1 (-75%)

ASIHTTPREQUEST 14620 68 50 10 (-80%)
OMNIFRAMEWORKS 160769 192 82 74 (-10%)

VIENNA 37327 186 59 38 (-36%)

SKIM 60211 207 43 43 (-0%)

ADIUM 176629 587 87 70 (-20%)

combined 461080 1327 334 238 (-29%)

Baseline: standard, flow-insensitive type analysis – no 
switching

Almost everywhere techniques show 29% 
improvement in false alarms

Also found a real reflection 
bug in Vienna, which we 
reported and which was 

fixed



Cost: Analysis Time
size analysis time

benchmark (loc) Time Rate
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SKIM 60211 2.49s 24.1

ADIUM 176629 8.79s 20.1

combined 461080 20.09s 23

Higher rate for projects with larger translation units

Fast: 5 to 38 kloc/s with most time spent analyzing 
system headers

Maintains key benefit of flow-
insensitive analyses: speed
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Type-intertwined framing with 
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
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Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.



Key Ideas

Tolerating temporary violations 
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with 
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.



Recall: Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Locations that are not immediately type-inconsistent can be safely 
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]



Recall: Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Locations that are not immediately type-inconsistent can be safely 
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]



Recall: Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Locations that are not immediately type-inconsistent can be safely 
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

entire



Recall: Soundness

Theorem (Soundness of Handoff). 
The entire state is type-consistent iff all locations are not immediately 
type-inconsistent.

Theorem (Soundness of Materialization/Summarization). 
Locations that are not immediately type-inconsistent can be safely 
materialized and summarized into the almost type-consistent heap ok.

[Fissile Types, POPL 2014]

entire

No way to frame and then 
handoff to types



Type-intertwined frame rule with standard separating conjunction 
is unsound

def badUpdate(s: Str, o: Obj | r2 s) 
this.sel = s 
this.call() 
this.obj = o

this.sel this.obj

o

s

this



Type-intertwined frame rule with standard separating conjunction 
is unsound

def badUpdate(s: Str, o: Obj | r2 s) 
this.sel = s 
this.call() 
this.obj = o

this.sel this.obj

o

s

this

Immediately type-
inconsistent portion of 
heap is disjoint from 
almost type-consistent 

summary



Type-intertwined frame rule with standard separating conjunction 
is unsound

def badUpdate(s: Str, o: Obj | r2 s) 
this.sel = s 
this.call() 
this.obj = o

o

s

this

After framing out, entire 
heap is almost type-

consistent

Immediately type-
inconsistent portion of 
heap is disjoint from 
almost type-consistent 

summary



Type-intertwined frame rule with standard separating conjunction 
is unsound

def badUpdate(s: Str, o: Obj | r2 s) 
this.sel = s 
this.call() 
this.obj = o

o

s

this

After framing out, entire 
heap is almost type-

consistent

Analysis might unsoundly 
switch to back to type 

checking

Immediately type-
inconsistent portion of 
heap is disjoint from 
almost type-consistent 

summary



Type-intertwined frame rule with standard separating conjunction 
is unsound

def badUpdate(s: Str, o: Obj | r2 s) 
this.sel = s 
this.call() 
this.obj = o

o

s

this

After framing out, entire 
heap is almost type-

consistent

Analysis might unsoundly 
switch to back to type 

checking
Points to type-

inconsistent memory

✘

✘

Immediately type-
inconsistent portion of 
heap is disjoint from 
almost type-consistent 

summary



So what if there’s no type-intertwined framing?



So what if there’s no type-intertwined framing?

class Callback 
 var sel: Str 
 var obj: Obj | r2 sel 

def call() 
 this.obj.[this.sel]()



So what if there’s no type-intertwined framing?

class Callback 
 var sel: Str 
 var obj: Obj | r2 sel 

def call() 
 this.obj.[this.sel]()

var o = … object with a method m … 
var cb = new Callback(“m”,o) 
cb.call()



Callback in JavaScript

var Callback = Class({ 
 __init__: function(s,o){…}, 
 call: function(){ 
  return this.obj[this.sel].apply(this.obj) 
 }, 
})

var o = … object with a method m … 
var cb = New(Callback,“m”,o) 
cb.call()



Callback in JavaScript

var Callback = Class({ 
 __init__: function(s,o){…}, 
 call: function(){ 
  return this.obj[this.sel].apply(this.obj) 
 }, 
})

var o = … object with a method m … 
var cb = New(Callback,“m”,o) 
cb.call()

A class “meta-feature” library 



Callback in JavaScript

var Callback = Class({ 
 __init__: function(s,o){…}, 
 call: function(){ 
  return this.obj[this.sel].apply(this.obj) 
 }, 
})

var o = … object with a method m … 
var cb = New(Callback,“m”,o) 
cb.call()

A class “meta-feature” library 



Callback in JavaScript

var Callback = Class({ 
 __init__: function(s,o){…}, 
 call: function(){ 
  return this.obj[this.sel].apply(this.obj) 
 }, 
})

var o = … object with a method m … 
var cb = New(Callback,“m”,o) 
cb.call()

A class “meta-feature” library 

Want to type check this call “like before” 
— i.e., using the same type system 



Callback in JavaScript

var Callback = Class({ 
 __init__: function(s,o){…}, 
 call: function(){ 
  return this.obj[this.sel].apply(this.obj) 
 }, 
})

var o = … object with a method m … 
var cb = New(Callback,“m”,o) 
cb.call()

A class “meta-feature” library 

Want to type check this call “like before” 
— i.e., using the same type system 

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
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Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
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We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
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M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}
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respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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foregate and aftgate
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}
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respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
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outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0
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M1 /⇤ M2 ) M0
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2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:
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semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}
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Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:
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3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with
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K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions
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respect to implication. That is, it supports the inference rule:
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Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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ŷ

Sound? Not if    may 
be the address of a 

cell in the 
concretization of the 

aftgate

ŷ
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Tolerating temporary violations 
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with 
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
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respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us

3 2014/7/4

Under preparation.

When the type invariant is temporarily broken



Type-Intertwined Separation Logic

Tolerating temporary violations 
with almost type-consistent heaps

ok

Coughlin and Chang. POPL 2014.

Type-intertwined framing with 
gated separation

will formally describe the details of the type-intertwined frame rule
in Section 4.4. Here, we define the syntax and concretization of
gated separating conjunction (Section 3.1) for a simpler formula
language; describe key axioms for this operator, showing both its
similarities and differences with standard separating conjunction, as
well as how the two operators interact (Section 3.2); and demonstrate
that gated separation permits local reasoning because it allows its
own gated version of the frame rule (Section 3.4).TODO:

Consider
intertwining

syntax and
semantics?

3.1 Memory Formulas and Concretization
Figure 1 describes the syntax and concretization of gated separation
for a simple separation logic in which addresses point only to single
values. We employ this simple model of memory for explanatory
purposes—as we will show in Section 4, gated separation is also
applicable to more complex memory representations. Figure 1a
gives the syntax of memory formulas: a formula can be empty emp;
a single heap cell ba1 7� ba2 with (symbolic) address ba1 storing address
ba2; an arbitrary heap true (which we include as the simplest memory
formula that is not precise [? ]); or a separating conjunction of sub-
heaps M1 M2. Lastly and most importantly, it can be a gated
separating conjunction M1 /⇤ M2 (shown shaded, for emphasis),
which separates a foregate M1 from an aftgate M2. We use the
symbol /⇤ to connote that the aftgate sub-heap can directly point
into the foregate but not the other way around.

We define concretization for gated separation (Figures 1b and 1c)
in terms of a model relation. For our explanatory model of memory,
a concrete store s is a finite map from addresses to addresses
(which in this model are the only form of values) and a valuation
(or interpretation) V maps symbolic addresses to concrete addresses.
Here a relation of the form s ✏V M says that a store s is a model
for the formula M under valuation V —so the empty formula emp is
modeled by the empty store; a singleton formula ba1 7� ba2 is modeled
by a store with exactly one cell, mapping the valuation of ba1 to the
valuation of ba2; and true is modeled by any store. Our concretization
of separating conjunction is entirely standard: a store s is a model
for M1 M2 iff s is the union of two stores s1 and s2 that are
models of M1 and M2 respectively and that have disjoint domains—
that is, the addresses of the stores in s1 and s2 are distinct.

The concretization of gated separating conjunction (/⇤ ) is a non-
commutative strengthening of that for normal separating conjunc-
tion: in addition to the usual disjoint domain restriction on the store,
we require that the range of the left sub-heap (the foregate) be dis-
joint from the domain of the right sub-heap (the aftgate). In other
words, the foregate must not directly point into the aftgate (but
pointers in the other direction are allowed). This “gate” between the
foregate sub-heap and aftgate sub-heap enables the type-intertwined
frame rule—it protects the aftgate sub-heap from type-intertwined
interference. Also crucially for local reasoning, the gated separation
constraint is not too strong: it does not restrict the foregate from
reaching the aftgate via a third disjoint sub-heap.

3.2 Axioms of Gated Separation
Gated separating conjunction is similar in many ways to standard
separating conjunction, but it also differs in key respects. We give the
key axiom schemata characterizing gated separating conjunction—
and in particular describing how it interacts with normal separating
conjunction—in Figure 2. Here we write M1 ) M2 to mean that for
all stores s and valuations V , s ✏V M1 implies s ✏V M2.

Gated separating conjunction shares many properties with stan-
dard separating conjunction. Like , the gated separation operator
/⇤ has emp and true as neutral and absorbing elements, respectively
(Schema 1). Also, like separating conjunction, the gated version is
associative (Schema 2). Gated separation is similarly monotone with

(1) Neutral and Absorbing Elements
emp/⇤ M , M M/⇤ emp, M

true/⇤ M ) true M/⇤ true) true

(2) Associativity
(M1 /⇤ M2)/⇤ M3 , M1 /⇤ (M2 /⇤ M3)

(3)/⇤ Weakening
M1 /⇤ M2 ) M1 M2

(4) Foregate Shrinking
(M1 M2)/⇤ M3 ) M1 (M2 /⇤ M3)

(5) Aftgate Shrinking
M1 /⇤ (M2 M3)) (M1 /⇤ M2) M3

(6) Gate Partitioning
(M1 M2)/⇤ (M3 M4)) (M1 /⇤ M3) (M2 /⇤ M4)

(7) Strengthening
K[M1 M2]) K[M1 /⇤ M2] if outptrs(M1)v domaddrs(K)

(8) Aftgate Strengthening
M/⇤ (K[M1 M2])) M/⇤ (K[M1 /⇤ M2]) if outptrs(M1)v addrs(M)

K ::= • | K <M | M <K memory contexts
< ::= |/⇤ separating conjunctions

outptrs : Formulas! Pfin(SymbolicAddrs)> outptrs(ba1 7� ba2) , {ba2}
domaddrs : Formulas! Pfin(SymbolicAddrs)> domaddrs(ba1 7� ba2) , {ba1}

addrs : Formulas! Pfin(SymbolicAddrs)> addrs(ba1 7� ba2) , {ba1,ba2}

Figure 2. Axiom Schemata of Gated Separation

respect to implication. That is, it supports the inference rule:

M1 ) M0
1 M2 ) M0

2
M1 /⇤ M2 ) M0

1 /⇤ M0
2

Unlike normal separating conjunction, however, the restriction
gated separating conjunction imposes on the left sub-heap differs
from that imposed on the right—gated separation is not commuta-
tive:

M1 /⇤ M2 6) M2 /⇤ M1

Extending separation logic with gated separating conjunction yields
an ordered logic, in which the exchange rule (for gate-separated con-
juncts) is inadmissable. Note that rearranging -separated conjuncts
within a given branch of a gated separating conjunction is allowed,
by the monotone property of/⇤ and the commutativity of .

Weakening Gated Separation. Gated separating conjunction can
always be weakened to normal standard conjunction (Schema 3).
This property is evident from the definition given in Figure 1c: the
concretization of gated separating conjunction is identitical to that
for standard separating conjunction, except that it adds the additional
range restriction on the context. When gated separating conjunction
interacts with traditional separating conjunction, we can also always
selectively loosen the gated separation constraint. That is, it is safe
push in /⇤ over to shrink the foregate (Schema 4), shrink the
aftgate (Axiom 5), or partition the gate (Schema 6) to create two
separate foregates and aftgates (the analogous pushing-out is not
always safe).

Strengthening Standard Separation. Ordinary separating con-
junction can sometimes be strengthened to gated separating
conjunction—but doing so requires additional auxiliary informa-
tion. Following the concretization, we can strengthen M1 M2 to
M1 /⇤ M2 if we can prove that the range in any concretization of
M1 is disjoint from the domain of any concretization of M2. Let us
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When the type invariant applies to only part of the heap

When the type invariant is temporarily broken
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