Type-Intertwined Heap Analysis

University of Colorado Boulder

Aarhus University May 18, 2015

Lab:

Type-Intertwined Heap Analysis

University of Colorado Boulder

Aarhus University May 18, 2015

How to type check a program that is almost well-typed?

How to **type check** a program that is **almost** well-typed?

almost?

A motivating example

Property of interest: reflective method call safety

Specification system:

dependent-refinement types

A motivating example

Property of interest: reflective method call safety

type safety

Specification system:

dependent-refinement types

simple types

A motivating example

Property of interest: reflective method call safety

Specification system:

dependent-refinement types

```
class Callback
  var sel: Str
  var obj: Obj

def call()
  this.obj.[this.sel]()
```

```
class Callback
var sel: Str
var obj: Obj

def call()
   this.obj.[this.sel]()
Calls method with name
(selector) stored in on sel
object stored in obj
```

```
class Callback
var sel: Str
var obj: Obj

def call()
    this.obj.[this.sel]()
Calls method with name
(selector) stored in on sel
object stored in obj
```

If sel held string "notifyClick" would call notifyClick() on obj.

```
class Callback
var sel: Str
var obj: Obj

def call()
    this.obj.[this.sel]()
Calls method with name
(selector) stored in on sel
object stored in obj
```

Run-time error if obj does not respond to sel — i.e., method does not exist

```
class Callback
  var sel: Str
  var obj: Obj

  def call()
    this.obj.[this.sel]()
```

```
class Callback obj must "respond to" sel var sel: Str var obj: Obj | r2 sel |

def call() Shorthand for obj:: {\nu : Obj | \nu r2 sel} this.obj. [this.sel]()
```

Guarantees no MethodNotFound error in call()

A dependent-refinement type expresses the required relationship

```
class Iterator
  var idx: Int
  var buf: Obj[] | indexedBy idx

  def get(): Obj
   return this.buf[this.idx]
```

```
class Iterator
var idx: Int
var buf: Obj[] | indexedBy idx
```

```
def get(): Obj
return this.buf[this.idx]
```

class Iterator

var idx: Int

var buf: Obj[] | indexedBy idx

def get(): Obj
return this.buf[this.idx]

Guarantees no
ArrayOutOfBounds error here

idx must be a valid

index into buf

class Iterator

var idx: Int

var buf: Obj[](| indexedBy idx)

```
def get(): Obj
return this.buf[this.idx]
```

Recurring theme: **Relationships** are important to **many safety properties**

idx must be a valid

index into buf

```
class Callback
  var sel: Str
  var obj: Obj | r2 sel

  def call()
  this.obj.[this.sel]()
```

```
class Callback
var sel: Str
var obj: Obj | r2 sel
def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```

```
obj must always
class Callback
                  respond to sel
 var sel: Str
var obj: Obj | r2 sel
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```

```
obj must always
class Callback
                    respond to sel
 var sel: Str
 var obj: Obj | r2 sel
 def call()
                              o guaranteed to
  this.obj.[this.sel]()
                               respond to s
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```

```
obj must always
class Callback
                     respond to sel
 var sel: Str
 var obj: Obj | r2 sel
 def call()
                                 o guaranteed to
  this.obj.[this.sel]()
                                  respond to s
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
                      Type error: old obj may not
  this.obj = o
                        respond to new sel
```

```
obj must always
class Callback
                      respond to sel
 var sel: Str
 var obj: Obj | r2 sel
             False alarm: no run-time MethodNotFound
 def call,
                                  o guaranteed to
  this.obj.[this.sel]()
                                   respond to s
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
                       Type error: old obj may not
  this.obj = o
                         respond to new sel
```

```
class Callback
 var sel: Str
var obj: Obj | r2 sel
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
                      Reasoning by global invariant: call
                       safe because relationship holds
 def call()
  (this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
                        Reasoning by global invariant: call
                         safe because relationship holds
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
                                 Reasoning about
  this.obj = o
                                  local effects of
                                imperative updates
```

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
                        Reasoning by global invariant: call
                         safe because relationship holds
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
                                 Reasoning about
  this.obj = o
                                  local effects of
                                imperative updates
```

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
                         Reasoning by global invariant: call
                          safe because relationship holds
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s∢
                     Relationship violated
                                   Reasoning about
  this.obj = o
                                    local effects of
                                  imperative updates
```

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
                          Reasoning by global invariant: call
                           safe because relationship holds
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s∢
                       Relationship violated
                                    Reasoning about
   this.obj = o
                       Relationship restored
                                     local effects of
                                   imperative updates
```

```
class
         two reasoning styles
 var s
 var obj: Obj | r2 sel
                         Reasoning by global invariant: call
                           safe because relationship holds
 def call()
  this.obj.[this.sel]()
 def update(s: Str, o: Obj | r2 s)
  this.sel = s
                      Relationship violated
                                    Reasoning about
  this.obj = o
                      Relationship restored
                                    local effects of
                                   imperative updates
```

two reasoning styles

Idea: Selectively alternate between and intertwine these two reasoning styles

in verification

ldea: Selectively alternate between and intertwine these

two reasoning styles

in verification

 $x: au,\ldots$ flow-insensitive typing

$$x \mapsto \hat{a} * \hat{a} \cdot f \mapsto \hat{v} * \cdots$$
 flow-sensitive abstract interpretation

Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

ok

Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

Extend separation logic with a summary for an almost type-consistent heap

Extend separation logic with a summary for an almost type-consistent heap

Summarize cells that are **not immediately type-inconsistent** into single formula literal

Summarize cells that are **not immediately type-inconsistent** into single formula literal

Extend separation logic with a summary for an almost type-consistent heap

ok

Summarize cells that are **not immediately type-inconsistent** into single formula literal

immediately type-inconsistent local

Describes storage without explicitly enumerating it

Extend separation logic with a summary for an almost type-consistent heap

Extend separation logic with a summary for an almost type-consistent heap

Extend separation logic with a summary for an almost type-consistent heap

ok

Split heap into two regions: almost type-consistent and (potentially) immediately type-inconsistent

```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
Handoff to separation logic on type error, heap is consistent with declared types

def update(s: Str, o: Obj | r2 s)

this.sel = s
this.obj = o
```


Handoff to separation logic on type error, heap is consistent with declared types

def update(s: Str, o: Obj | r2 s)

this.sel = s

this.obj = o


```
Handoff to separation logic on type error, heap is consistent with declared types

def update(s: Str, o: Obj | r2 s)

this.sel = s
this.obj = o
```



```
Handoff to separation logic on type error, heap is consistent with declared types

def update(s: Str, o: Obj | r2 s)

this.sel = s

this.obj = o
```



```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
Analysis performs strong updates on materialized cells

def update(s: Str, o: Obj | r2 s)

this.sel = s

this.obj = o
```



```
Analysis performs strong
updates on materialized
cells

def update(s: Str, o: Obj | r2 s)
this.sel = s
this.obj = o
```



```
Analysis performs strong updates on materialized cells

def update(s: Str, o: Obj | r2 s)

this.sel = s

this.obj = o
```



```
Analysis performs strong updates on materialized cells

def update(s: Str, o: Obj | r2 s)

this.sel = s

this.obj = o
```


Analysis performs strong updates on materialized cells

```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```


Analysis performs strong updates on materialized cells

```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```



```
def update(s: Str, o: Obj | r2 s)
  this.sel = s
  this.obj = o
```


If **entire heap** does **not** have immediately type-inconsistent locations then the heap is type-consistent

If **entire heap** does **not** have immediately type-inconsistent locations then the heap is type-consistent

Theorem (Soundness of Handoff).

The entire state is **type-consistent** iff all locations are **not immediately type-inconsistent**.

Theorem (Soundness of Handoff).

The entire state is **type-consistent** iff all locations are **not immediately type-inconsistent**.

Theorem (Soundness of Materialization/Summarization).

Locations that are **not immediately type-inconsistent** can be safely materialized and summarized into the almost type-consistent heap **ok**.

Plugin for clang static analyzer in C++

9 Objective-C benchmarks

6 libraries and 3 applications

1,000 to 176,000 lines of code

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Plugin for clang static analyzer in C++

9 Objective-C benchmarks

6 libraries and 3 applications

1,000 to 176,000 lines of code

Including Skim, Adium, and OmniGraffle

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Case Study: Reflection in Objective-C

Why Objective-C?
Statically typed plus reflective method call
Prototype analysis implementation

Plugin for clang static analyzer in C++

9 Objective-C benchmarks

6 libraries and 3 applications

1,000 to 176,000 lines of code

Including Skim,
Adium, and
OmniGraffle

Manual type annotations

76 r2 annotations on system libraries

136 annotations on benchmark code

Empirical Evaluation Questions

Precision: What is improvement over flow-insensitive checking alone?

Cost: What is the cost of analysis in running time?

	size		false alarms	
benchmark	(loc)	reflective call sites	flow- insensitive	almost- everywhere
ОАитн	1248	7	7	2 (-71%)
SCRECORDER	2716	12	2	0 (-100%)
ZIPKIT	3301	28	0	0 (-)
Sparkle	5289	40	4	1 (-75%)
ASIHTTPREQUEST	14620	68	50	10 (-80%)
OmniFrameworks	160769	192	82	74 (-10%)
Vienna	37327	186	59	38 (-36%)
SKIM	60211	207	43	43 (-0%)
Adium	176629	587	87	70 (-20%)
combined	461080	1327	334	238 (-29%)

	size		false alarms	
benchmark	(loc)	reflective ca	flow- insensitive	almost- everywhere
ОАитн	1248	7	7	2 (-71%)
SCRECORDER	2716	12	2	0 (-100%)
ZIPKIT	3301	28	0	0 (-)
Sparkle	5289	40	4	1 (-75%)
ASIHTTPREQUEST	14620	68	50	10 (-80%)
OmniFrameworks	160769	192	82	74 (-10%)
VIENNA	37327	186	59	38 (-36%)
SKIM	60211	207	43	43 (-0%)
ADIUM	176629	587	87	70 (-20%)
combined	461080	1327	334	238 (-29%)

Baseline: standard, **flow-insensitive** type analysis – no switching

	size		false alarms	
benchmark	(loc)	reflective call sites	flow- insensitive	almost- everywhere
ОАИТН	1248	7	7	2 (-71%)
SCRECORDER	2716	12	2	0 (-100%)
ZIPKIT	3301	28	0	0 (-)
Sparkle	5289	40	4	1 (-75%)
ASIHTTPREQUEST	14620	68	50	10 (-80%)
OmniFrameworks	160769	192	82	74 (-10%)
VIENNA	37327	186	59	38 (-36%)
SKIM	60211	207	43	43 (-0%)
Adium	176629	587	87	70 (-20%)
combined	461080	1327	334	238 (-29%)

Baseline: standard, **flow-insensitive** type analysis – no switching

	size		false alarms	
benchmark	(loc)	reflective call sites	flow- insensitive	almost- everywhere
ОАИТН	1248	7	7	2 (-71%)
SCRECORDER	2716	12	2	0 (-100%)
ZIPKIT	3301	28	0	0 (-)
Sparkle	5289	40	4	1 (-75%)
ASIHTTPREQUEST	14620	68	50	10 (-80%)
OmniFrameworks	160769	192	82	74 (-10%)
Vienna	37327	186	59	38 (-36%)
SKIM	60211	207	43	43 (-0%)
Adium	176629	587	87	70 (-20%)
combined	461080	1327	334	238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

Almost everywhere techniques show 29% improvement in false alarms

		size		false alarms	
	benchmark	(loc)	reflective call sites	flow- insensitive	almost- everywhere
	ОАитн	1248	7	7	2 (-71%)
Also found a real reflection bug in Vienna, which we reported and which was fixed		2716	12	2	0 (-100%)
		3301	28	0	0 (-)
		5289	40	4	1 (-75%)
		14620	68	50	10 (-80%)
		160769	192	82	74 (-10%)
	VIENNA	37327	186	59	38 (-36%)
	SKIM	60211	207	43	43 (-0%)
	ADIUM	176629	587	87	70 (-20%)
	combined	461080	1327	334	238 (-29%)

Baseline: standard, flow-insensitive type analysis - no

Almost everywhere techniques show 29% improvement in false alarms

Cost: Analysis Time

	size	analy	sis time
benchmark	(loc)	Time	Rate (kloc/s)
ОАитн	1248	0.24s	5.3
SCRECORDER	2716	0.28s	10.8
ZIPKIT	3301	0.10s	33
Sparkle	5289	0.67s	7.9
ASIHTTPREQUEST	14620	0.50s	27.2
OmniFrameworks	160769	4.25s	37.8
Vienna	37327	2.79s	13.4
SKIM	60211	2.49s	24.1
ADIUM	176629	8.79s	20.1
combined	461080	20.09s	23

Cost: Analysis Time

		size	analysis time	
	benchmark	(loc)	Time	Rate (kloc/s)
	ОАитн	1248	0.24s	5.3
	SCRECORDER	27 0	0.28s	10.8
	ZIPKIT	3301	0.10s	33
		5289	0.67s	7.9
Inclu	des analysis time but	14620	0.50s	27.2
not	parsing, base type	160769	4.25s	37.8
	checking	37327	2.79s	13.4
	JKIIW	60211	2.49s	24.1
	ADIUM	176629	8.79s	20.1
	combined	461080	20.09s	23

Cost: Analysis Time

	size	analy	sis time
	l (loc)	Time	Rate (kloc/s)
Does not include system headers	1248	0.24s	5.3
system neuders	27 5	0.28s	10.8
	3301	0.10s	33
	5289	0.67s	7.9
Includes analysis time but	14620	0.50s	27.2
not parsing, base type	160769	4.25s	37.8
checking	37327	2.79s	13.4
SKIIVI	60211	2.49s	24.1
ADIUM	176629	8.79s	20.1
combined	461080	20.09s	23

	size	analysis time	
benchmark	(loc)	Time	Rate kloc/s)
ОАитн	1248	0.24s	5.3
SCRECORDER	2716	0.28s	10.8
ZIPKIT	3301	0.10s	33
Sparkle	5289	0.67s	7.9
ASIHTTPREQUEST	14620	0.50s	27.2
OmniFrameworks	160769	4.25s	37.8
VIENNA	37327	2.79s	13.4
SKIM	60211	2.49s	24.1
ADIUM	176629	8.79s	20.1
combined	461080	20.09s	23

Fast: 5 to 38 kloc/s with most time spent analyzing system headers

	size	analysis time			
benchmark	(loc)	Time		Rate kloc/s)	
ОАитн	1248	0.24s		5.3	
SCRECORDER	2716	0.28s		10.8	
ZIPKIT	3301	0.10s		33	
Sparkle	5289	0.67s		7.9	
ASIHTTPREQUEST	14620	0.50s		27.2	
OmniFrameworks	160769	4.25s		37.8	
Vienna	37327	2.79s	Ka Ka	13.4	id N
SKIM	60211	2.49s		24.1	
ADIUM	176629	8.79s		20.1	
combined	461080	20.09s		23	

Fast: 5 to 38 kloc/s with most time spent analy. The system headers

Interactive

speeds

	size	analysis time	
benchmark	(loc)	Time	Rate (kloc/s)
ОАитн	1248	0.24s	5.3
SCRECORDER	2716	0.28s	10.8
ZIPKIT	3301	0.10s	33
Sparkle	5289	0.67s	7.9
ASIHTTPREQUEST	14620	0.50s	27.2
OmniFrameworks	160769	4.25s	37.8
VIENNA	37327	2.79s	13.4
SKIM	60211	2.49s	24.1
ADIUM	176629	8.79s	20.1
combined	461080	20.09s	23

Fast: 5 to 38 kloc/s with most time spent analyzing system headers

Higher rate for projects with larger translation units

	size	analysis time	
benchmark	(loc)	Time	Rate (kloc/s)
ОАитн	1248	0.24s	5.3
SCRECORDER	2716	0.28s	10.8
ZIPKIT	3301	0.10s	33
Sparkle	5289	0.67s	7.9
ASIHTTPREQUEST	14620	0.50s	27.2
OmniFrameworks	160769	4.25s	37.8
Vienna	37327	2.79s	13.4
SKIM	60211	2.49s	24.1
ADIUM	176629	8.79s	20.1
combined	461080	20.09s	23

Fast: 5 to 38 kloc/s with most time spent analyzing

Maintains key benefit of flowinsensitive analyses: speed

Key Ideas

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

Key Ideas

ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

Key Ideas

ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Type-intertwined framing with gated separation

Under preparation.

The entire state is **type-consistent** iff all locations are **not immediately type-inconsistent**.

Theorem (Soundness of Materialization/Summarization).

Locations that are **not immediately type-inconsistent** can be safely materialized and summarized into the almost type-consistent heap **ok**.

The entire state is **type-consistent** iff all locations are **not immediately type-inconsistent**.

Theorem (Soundness of Materialization/Summarization).

Locations that are **not immediately type-inconsistent** can be safely materialized and summarized into the almost type-consistent heap **ok**.

The entire state is type-consistent iff all locations are not immediately type-inconsistent.

Theorem (Soundness of Materialization/Summarization).

Locations that are **not immediately type-inconsistent** can be safely materialized and summarized into the almost type-consistent heap **ok**.

The entire state is type-consistent iff all locations are not immediately type-inconsistent.

No way to **frame** and then handoff to types

```
def badUpdate(s: Str, o: Obj | r2 s)
    this.sel = s
    this.call()
    this.obj = o
```


Immediately typeinconsistent portion of heap is disjoint from almost type-consistent summary

def badUpdate(s: Str, o: Obj | r2 s)
this.sel = s
this.call()
this.obj = o

this.obj

this.sel

S

this

So what if there's no type-intertwined framing?

So what if there's no type-intertwined framing?

```
class Callback
  var sel: Str
  var obj: Obj | r2 sel

  def call()
  this.obj.[this.sel]()
```

So what if there's no type-intertwined framing?

```
class Callback
 var sel: Str
 var obj: Obj | r2 sel
 def call()
  this.obj.[this.sel]()
var o = ... object with a method m ...
var cb = new Callback("m",o)
cb.call()
```

```
var Callback = Class({
                                             JavaScript
    init : function (s, o) {...},
 call: function(){
  return this.obj[this.sel].apply(this.obj)
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```

A class "meta-feature" library

```
var Callback = Class({
                                             JavaScript
    init : function (s, o) {...},
 call: function(){
  return this.obj[this.sel].apply(this.obj)
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```

A class "meta-feature" library

```
var Callback = Class({
                                             JavaScript
    init : function (s, o) {...},
 call: function(){
  return this.obj[this.sel].apply(this.obj)
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```

A class "meta-feature" library

```
var Callback = Class({
    init_: function(s,o){...},
    call: function() {
    return this.obj[this.sel].apply(this.obj)
    },
})
```

```
var o = ... object
var cb = New
cb.call()
```

Want to **type check** this call "like before" — i.e., using the same type system

A class "meta-feature" library

```
var Callback = Class({
    _init__: function(s,o){...},
    call: function() {
    return this.obj[this.sel].apply(this.obj)
    },
})
```

```
var o = ... object
var cb = New
cb.call()
```

Want to **type check** this call "like before" – i.e., using the same type system

gated separation

M_{fore} \ll M_{aft}

Gated separation is a non-commutative strengthening of standard separating conjunction restricting the contents of the foregate

```
var Callback = Class({
    init : function (s, o) {...},
 call: function(){
  return this.obj[this.sel].apply(this.obj)
 },
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```



```
var o = ... object with a method m ...
var cb = New(Callback, "m", o)
cb.call()
```


Heap is now typeconsistent, so switch to type checking

var o = ...ob
var cb = Ne
cb.call()

Framed-out memory cannot be touched during type checking because of gating

x.f = y

Transfer functions for writes require rearrangement and weakening of gated separation

How to type check a program that is almost well-typed?

How to **type check** a program that is **almost** well-typed?

almost?

Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

Type-intertwined framing with gated separation

Under preparation.

Ok Tolerating temporary violations with almost type-consistent heaps

Coughlin and Chang. POPL 2014.

When the type invariant is temporarily broken

Type-intertwined framing with gated separation

Under preparation.

When the type invariant applies to only part of the heap

