Mixing Type Checking and
Symbolic Execution

Khoo Yit Phang (UMD College Park)
Bor-Yuh Evan Chang (CU Boulder)
Jeffrey S. Foster (UMD College Park)

FRACTAL - December 5, 2009

An all too common scenario ...

Oh Verifier, On line 142, Isn’t it obvious
help me prove there may this can’t

my program be a bug. happen!?!?

has no bugs.

Static verifiers must over-approximate
and thus raise false alarms.

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

False alarm example: %
The need for path sensitivity % unlockO; $€

if (multithreaded) fork();

.. statements, ... é% mislabels
if (multithreaded) Tock(Q);9 good code
... statements, ... % as buggy

if (multithreaded) unlock(); $¢

This abstraction is too coarse. Standard
practice is to re-design it to be precise
enough for this example.

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

unlock Q) ; €

Re-design with path sensitivity % L% }

if (multithreaded) fork();

... statements, ... %

if (multithreaded) Tock(); multithreaded A b
... statements, ... V N

—multithreaded A

1if (multithreaded) unlock();

Bad: Too much precision leads to slow,
%I » inefficient analysis

| Bad: Ad-hoc addition of precision leads
©% =< to brittle analyzers

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution 4

Observation: Just need %
precision in select places % unlockO; $€

if (multithreaded) fork();

... statements; ... %
if (multithreaded) 1ock();?
... statements, ... %

if (multithreaded) unlock(Q); 3¢

assume(multithreaded); assume(!mu1titgé§aded);

v

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Approach: Split the program %
between analyses unTock; $€
if (multithreaded) fork();

... statements, ...
if (multithreaded)|lock(); coowse
statementsz coowrse

if (multithreaded)|unlock(); coarse

precise

coarse

Switch to precise analysis only where needed

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

MIX 1S ...

A tunable program analysis that alternates between
type inference and symbolic execution

—= Mix

e Standard, off-the-shelf type inference
e Standard, off-the-shelf symbolic execution

e Mixing rules to translate information at
block boundaries

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Why type inference and symbolic execution?

o Case study of extremes

Type Inference Symbolic Execution
* *-insensitive e *-sensitive
* terminating analysis * may not terminate
» constraint graph simulation + SMT solver

Simple, well-understood algorithms

Hard to imagine how to combine in more intricate ways
(e.g., in contrast to combining abstract interpreters)

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Qutline

e Mixing rules

« Examples and idioms for switching blocks

e Preliminary experience with Mixy, a mixed
type qualifier inference engine for C

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Type checking and symbolic execution
at a glance

Type checking Symbolic execution
Typing context Symbolic context
X : int, b: bool, y : int 0 ; X = a:int, b = G:bool, y = ~v:int

x + (if b then y else 3) X + (if b then y else 3)

:int =(0N0B; a+v:int
type of the (& 7)
expression = (6 A =B a+3:int)
path symbolic result
condition along the path

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution 10

Mixing rules: Conservatively translate states

Nes o o S 1tion

5 x Formalized and proven sound for an ML-like

language with references
~:int
Mixing rules are not particularly surprising
X +
What may be surprising is that such simple
__ rules with off-the-shelf algorithms yield
_ (s Increased precision in many ways
| ymexs
| :int
symen type

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution 11

Qutline

e Mixing rules

« Examples and idioms for switching blocks

e Preliminary experience with Mixy, a mixed
type qualifier inference engine for C

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

12

Flow, path, and context sensitivity

X 1= 1; . 31X = “hello”; -]
type type

symex

let pred n = 1f n = 0 then |“err”| else|[n-1

type type

in|.. +|(pred 3)

symer

type

symen

Static type checking for dynamically-typed code

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Local refinement

it (x > 0) {

X : posint type
¥
else if (x == 0) {

X : zero

type

¥
else {

X : negint type
¥

symexs

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

Abstraction during symbolic execution

Tet x = | unknown_function() type in

let y = recurswe_functmn()type/ in

let z =| .. operation not supported by solver type 1n
symen

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

15

Qutline

e Mixing rules

« Examples and idioms for switching blocks

e Preliminary experience with Mixy, a mixed
type qualifier inference engine for C

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

16

Preliminary experience

e MIXY, a prototype mixed type qualifier inference
engine for C

« Applied to check that a free function is called
only with a non-null pointer (using nonnul1 type
qualifier)

- On vsftpd 2.0.7
- Eliminated 2 false warnings

- A combination of flow, path, and context-
sensitivity was required

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution 17

Conclusion

 New approach for trading off precision and
efficiency in static program analysis

o Key: Nestable switching blocks to
alternate between different off-the-shelf
analyses

 Studied the mixing of type checking and
symbolic evaluation

- Proven soundness of symbolic execution/mix

Khoo Yit Phang, Bor-Yuh Evan Chang, Jeffrey S. Foster - Mixing Type Checking and Symbolic Execution

18

