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Developers
Avoiding memory leaks
SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
Search very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
N oT1l68 On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(65) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
» 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
2009 (63)
» December (7) @override
» November (5) protected void onCreate(Bundle state) {
» October (5) super.onCreate(state);
» September (8)

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");
July (1)




Ask framework devs ...

“Do not keep long-lived references to a context-activity”
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Search very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012(31)
N On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(65) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
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Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

RCHIVE the faster it will be for the user to switch between his apps. As part of my job, I ran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
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receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
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Elsewhere, following the state of practice
for debugging leaks ...
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Developers
Memory Analysis for Android Applications
SEARCH
[This post is by Patrick Dubroy, an Android engineer who writes about programming,
Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
~ atsome of the memory profiling tools in the Android SDK that can help you trim your
20100 application's memory usage.
December (7)
November (7) Some memory usage problems are obvious. For example, if your app leaks memory
October (5) every time the user touches the screen, it will probably trigger an
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
August (3)
Tools of the trade
July (7)
June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and

(VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a
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SEARCH
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Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
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November (7) Some memory usage problems are obvious. For example, if your app leaks memory
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September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
August (3)
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June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
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. Run the app
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Info hreads VM Heap Allocation Tracker Sysinfo Emulator Contro Event Log

Heap updates will hannen after every GC for this client

Allocated Free % Used # Objects Cause GC

320 KB 98.62% 59,281
Display:  Stats *

Andr0|d Developers B|Og Type Count Total Size Smallest Largest Median Average

free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B

data object 40,528 1.229 MB 16 B 1.047 KB 328B 318B

class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B

1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB

Developers 2-byte array (short(], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
Memory Analysis for Android Applications 4-byte array (object(], int[], float()) 3,663 276.812 KB 24B| 16.023 KB 40 B 778

SeAReH [This post is by Patrick Dubroy, an Android engineer who writes about programming, 8-byte array (longf], double()) 283 14.875 KB 248 4.000 KB 328 538
Search usability, and interaction on his personal blog. — Tim Bray] non-Java object 92 14.219 KB 16 B 8.023 KB 328B 158 B

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore

ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
~ atsome of the memory profiling tools in the Android SDK that can help you trim your
S2017CE application's memory usage.
December (7)
November (7) Some memory usage problems are obvious. For example, if your app leaks memory
October (5) every time the user touches the screen, it will probably trigger an
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
August (3)
. Tools of the trade
> July (7)
June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
(VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

|. Run the app
2. Woatch the heap usage
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September (5)
August (3)
July (7)

June (3)
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Developers
SEARCH
Search
ARCHIVE
2012 (31)
2011 (68)

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

. Run the app

2. Woatch the heap usage
3. Dump the heap. Dig around
and finally find the culprit!

Info VM Heap Allocation Tracke nf wulator Co )
Heap updates will fter every GC for this client
ID Heap Allocated Free % Used # Objects Cause GC
1 8.570 8.452 MB 12)°320 KB 98.62% 59,281
Display:  Stats
:’y.)e ®00 Eclipse Memory Analyzer o
L
ree £, Inspector $3 % = B |2 leak-converted.hprof 3 =8
data obje i ——=
iml B PEIY Y| O [ B ehv | Ml
class objt¢
i Overview | lil Histogram | [r] list_objects [selection of 'byte(]'] -inbound §3
l_by[e at Class Name Shallow Heap Retained Heap
2-byte at j <Regex> <Numeric>  <Numeric> m
» 0] byte(8] @ 0x429b69c8 HPDS. 24 24
4_by[e at v |0] byte[2797568) @ 0x426fe780 '2".&11.'25.(3%.&.#.#+ . (..5.." . %...S.. 4. +..,7&2>*.0 2,797,584 2,797,584 :
B—byte at VL’mBuﬁer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640 \
v ] value java.util. HashMapSHashMapEntry @ 0x40adceb8 24 5,595,472 \
NON-JaVa | seaics| Awributes | Class Hierarchy 70 [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960 !
Type Name Value table java.util. HashMap @ 0x40801a98 48 32,803,008 |
" i ache class com. le.android.hcgallery.ContentFragment ( 8 32,803,056 !
The culprit ) >:_1 <class> com.example.android.hcgallery.ContentFragment @ 0x408( 128 384 !
. A »'[ ] value java.util.HashMapSHashMapEntry @ 0x408009¢0 24 152 !
| > Total: 2 entries |
P (0] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA;.F?9.92,.4-".C;8.MEB.@.8. 7 <. 2,797,584 2,797,584 |
P (0] byte[2797568] @ 0x421a8750 .. FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.ule.z.\.syU. 2,797,584 2,797,584 !
» 0] byte[2797568] @ 0x41efd120 njg.pli.kgd.bA[.da\.olg.tgl.gni.roh.urk.wtm.spi.lib.heA.k 2,797,584 2,797,584 |
» (0] byte[3252224] @ 0x41be3108 3,252,240 3,252,240 |
» (0] byte[2797568] @ 0x419380f0 2,797,584 2,797,584 |
» (0] byte[2797568] @ 0x4168d0d8 d.B. .B. h.B.i.C.9.C.f.B.f.C 2,797,584 2,797,584 |
> (0] byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584 :
> (0] byte[2797568] @ 0x411370a8 2,797,584 2,797,584 |
» (] byte[2797568] @ 0x40e8c090 2,797,584 2,797,584 |
» (0] byte[1572864] @ 0x40d0c078 ".JdB.ON9.65 .! .. 1,572,880 1,572,880 |
» (0] byte[2797568] @ 0x40a61060 2,797,584 2,797,584 |
» 0] byte(62100] @ 0x40a51db8 62,112 62,112 |
» 0] byte[24] @ Ox40adcd1l ... 40 40 |
» (1] byte[4096) @ Ox40adaas50 4,112 4,112 |
» [1] byte[24] @ Ox40a4a7al ... 40 40 |
» [1] byte[4096) @ 0x40a48148 4,112 4,112 |
» (0] byte[24) @ Ox40a464f1 40 40 |
» 0] byte[84] @ 0x40a40560 ... @ fMEMEM 96 96 !
» (0] byte[768] @ 0x40a40200 .. ~.MM_.MM..MM..MM..MM..MM..MM..MM..MM. 784 784 |
b (0] byte[1572864] @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E 1,572,880 1,572,880 &
» 0] byte[84] @ 0x408bal88 oo B 96 96
» (0] byte[960] @ 0x408b9d68 ........ \~(e... ]~ ~). 0SUJ~)J~)~). )%, OSUL*.] 976 976
» |0] byte[84] @ 0x408b9%a48 ‘S= 96 96
» (0] byte[960] @ Ox408b9628 ........ A~ ~(..0QS\~(\~(.\~(.]~)..0QS] 976 976 3
P (0] byte[56] @ 0x408b9318 ...H..@P..@................. X..@... = Shoo 72 72 b 4
[ ] <1 r 1L e [l hvrel192) @ 0x408h91£R_0NOS.ORT OSLLOSULITY 1TV 1TV 1UW 1UIW 2VX 2WY 2X7 2X; 208 208

36Mlof 81M  |[]
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. Run the app
2. Woatch the heap usage
3. Dump the heap. Dig around
and finally find the culprit!

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore

memory management. You should be especially mindful of memory usage on mob:.
devices, where memory is more constrained. In this article, we're going to take a loc'
atsome of the memory profiling tools in the Android SDK that can help you trim yo.,
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks mem
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more s
performance of both your app (as garbage collections are more frequent and tak

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of
heap dumps. The Allocation Tracker is useful when vou want to get a se

Vi Heap Allocation Tracker Sysinfo Emulator Cor

Info

Heap updates will fter every GC for this client

ID Heap Allocated Free % Used # Objects Cause GC
1 8.570 8.452 MB 12)°320 KB 98.62% 59,281
Display:  Stats
®00 Eclipse Memory Analyzer X
[ Inspector 83 % = B |2 leak-converted.hprof 3 =8
inl % | MElY& | Q| Evehy |l
i Overview | lil Histogram | [r] list_objects [selection of 'byte(]'] -inbound §3
Class Name Shallow Heap Retained Heap
» 0] byte(8] @ 0x429b69c8 HPDS. 24 24 lm
v |0] byte[2797568) @ 0x426fe780 '2".&11.'25.(3%.&.#.#+ . (..5.." . %...S.. 4. +..,7&2>*.0 2,797,584 2,797,584 |
VL mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640 |
V’u value java.util.HashMapSHashMapEntry @ Ox40a4ceb8 24 5,595,472 \
ibutes | Class Hierarchy V'@ [13] java.util.HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960 \
Value table java.util.HashMap @ 0x40801a98 48 32,803,008 |
’&J i ache class com. le.android.hcgallery.ContentFragment ( 8 32,803,056 !
The culpri't ) >:_1 <class> com.example.android.hcgallery.ContentFragment @ 0x408( 128 384 !
. A »'[ ] value java.util.HashMapSHashMapEntry @ 0x408009¢0 24 152 !
2 Total: 2 entries |
P (0] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA;.F?9.92,.4-".C;8.MEB.@.8. 7 <. 2,797,584 2,797,584 |
P (0] byte[2797568] @ 0x421a8750 .. FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.ule.z.\.syU. 2,797,584 2,797,584 |
» 0] byte[2797568] @ 0x41efd120 njg.pli.kgd.bA[.da\.olg.tgl.gni.roh.urk.wtm.spi.lib.heA.k 2,797,584 2,797,584 |
» (0] byte[3252224] @ 0x41be3108 3,252,240 3,252,240 |
» (0] byte[2797568] @ 0x419380f0 2,797,584 2,797,584 |
» (0] byte[2797568] @ 0x4168d0d8 d.B. .B. h.B.i.C.9.C.f.B.f.C 2,797,584 2,797,584 |
> (0] byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584 :
> (0] byte[2797568] @ 0x411370a8 2,797,584 2,797,584 |
» (] byte[2797568] @ 0x40e8c090 2,797,584 2,797,584 |
» (0] byte[1572864] @ 0x40d0c078 ".JdB.ON9.65 .! .. 1,572,880 1,572,880 |
» (0] byte[2797568] @ 0x40a61060 2,797,584 2,797,584 |
» 0] byte(62100] @ 0x40a51db8 62,112 62,112 |
» 0] byte[24] @ Ox40adcd1l ... 40 40 |
» (1] byte[4096) @ Ox40adaas50 4,112 4,112 |
» 0] byte[24] @ Ox40ada7al ... 40 40 !
» [1] byte[4096) @ 0x40a48148 4,112 4,112 |
» (0] byte[24) @ Ox40a464f1 40 40 |
» 0] byte[84] @ 0x40a40560 ... @ fMEMEM 96 96 |
» (0] byte[768] @ 0x40a40200 .. ~.MM_.MM..MM..MM..MM..MM..MM..MM..MM. 784 784 |
b (0] byte[1572864] @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E 1,572,880 1,572,880 d’
» 0] byte[84] @ 0x408bal88 oo B 96 96
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Heap updates will fter every GC for this client
ID Heap Allocated Free % Used # Objects Cause GC
1 8.570 8.452 MB | 1207320 KB 98.62% 59,281
Display:  Stats

Andr0|d Developers B|Og pe e 00 » - Eclips;Me};rloryAnalyzer.

r
LS
[ Inspector 83 % = B |2 leak-converted.hprof 3 =8
inl % | MElY& | Q| Evehy |l
i Overview | lil Histogram | [r] list_objects [selection of 'byte(]'] -inbound §3
Class Name Shallow Heap Retained Heap
Developers ° 2 b V|8’]'(;0 29b69c8 HPDS. o 2' h 2 m
. 5 5 5 » (1] byte[8] @ Ox4; c8 Hi 4 4
|
Memory Analysis for Android Applications v ] byiel2797568) @ OxA261eTB0 281125 GR&H 4+ . (.5, 5n Ko St +.,782500 2797584 2797584 ||
SEARCH ) . . . ) ) ) ") mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640 |
[Th/seosr/s byParnck Dubmy,’ an Android eng/neer who writes about programming, ¥ value java.util.HashMapSHashMapEntry @ Ox40adceb8 24 5,595,472 !
Search usability, and interaction on his personal blog. — Tim Bray] ibutes | Class Hierarchy ¥ [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960 |
. . ) . Value table java.util.HashMap @ 0x40801a98 48 32,803,008 |
The Dalvik runtime may be garbage{ollec(edl, butthat doesn't mean you can ignore @ : TGS & le.android.hcgallery.ContentFragment ( 8 32,803,056 |
ARCHIVE memory management. You should be especially mindful of memory usage on mob. The cul rit »7 ] <class> com.example.android.hcgallery.ContentFragment @ 0x408( 128 384 \
2012 (31 d N 4 1 d s T »_| value java.util. HashMapSHashMapEntry @ Ox: Id !
2 ) devices, where memory is more constrained. In this article, we're going to take a loc s ulp - " lue j |.HashMapSHashMapEntry @ 0x408009¢0 24 152
2011 (68) atsome of the memory profiling tools in the Android SDK that can help you trim yo., > Total: 2 entries |
application's memory usage. P (0] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA;.F?9.92,.4-".C;8.MEB.@.8. 7 <. 2,797,584 2,797,584 |
December (7) ) ) » [] byte[2797568) @ 0x421a8750 ......z.FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.uje.2.\.syU. 2,797,584 2,797,584 |
November (7) Some memory usage problems are obvious. For example, if your app leaks mem » (0] byte[2797568) @ Ox41efd120 njg.pli.kgd.bAl.da\.olg.tql.qni.roh.urk.wtm.spi.lib.heA.k 2,797,584 2,797,584 |
October (5) every time the user touches the screen, it will probably trigger an » (0] byte[3252224] @ 0x41be3108 3,252,240 3.252.240 \
OutOfMemoryError eventually and crash your app. Other problems are more s » (0] byte[2797568] @ 0x419380f0 2,797,584 2,797,584 |
September (5) performance of both your app (as garbage collections are more frequent and taki » [1] byte[2797568) @ 0x4168d0d8 d.B. .B. 1.B.i.C.0.C.f.B.f.C 2,797,584 2,797,584 :
August (3) > (0] byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584 !
Juy @) Tools of the trade » [1] byte[2797568) @ 0x411370a8 2,797,584 2,797,584 |
o/ » (] byte[2797568] @ 0x40e8c090 2,797,584 2,797,584 |
June(3) The Android SDK provides two main ways of profiling the memory usage of » (] byte[1572864] @ 0x40d0c078 *.JdB.ON9.65 .! .. 1,572,880 1,572,880 |
Maws 161 heap dumps. The Allocation Tracker is useful when vou want to get a se’ » (0] byte[2797568) @ 0x40a61060 2,797,584 2,797,584 |
» (0] byte[62100] @ 0x40a51db8 62,112 62,112 |
» 0] byte[24] @ Ox40adcd1l ... 40 40 |
» (0] byte[4096] @ Ox40a4aa50 4,112 4,112 !
» 0] byte[24] @ Ox40ada7al ... 40 40 !
» (0] byte[4096] @ 0x40a48148 4,112 4,112 |
[ ] » (0] byte[24) @ Ox40a464f1 40 40 !
» 0] byte[84] @ 0x40a40560 ... @ fMEMEM 96 96 |
» (0] byte[768] @ 0x40a40200 .. ~.MM_.MM..MM..MM..MM..MM..MM..MM..MM. 784 784 |
b (0] byte[1572864] @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E 1,572,880 1,572,880 d’
» 0] byte[84] @ 0x408bal88 oo B 96 96
» (0] byte[960] @ 0x408b9d68 J~).]~). 0SUJ~).]~).]~).).*. OSUL.*.] 976 976
[ » |0] byte[84] @ 0x408b9%a48 ‘S= 96 96
» (0] byte[960] @ Ox408b9628 ........ A~ ~(..0QS\~(\~(.\~(.]~)..0QS] 976 976 3
P (0] byte[56] @ 0x408b9318 ...H..@P..@................. X..@... = Shoo 72 72 b 4
[ ] < v |1 [l hvtel1921. @ 0x408h91f8_00S.0RT OSLLOSUITY. 1TV 1TV 1UM. 1LIW 2VX 2WY 2X7 2X7 208 208

3. Dump the heap. Dig around
and finally find the culprit!
4. Commit a bugfix
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Elsewhere, following the state of practice
for debugging leaks ...

@Issues - android - Android Android Developers Blog: A Android Developers Blog: I

C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Dalvik Debug Monitor

Android Developers Blog

Developers
Memory Analysis for Android Applications

EARCH
SeaRe [This post is by Patrick Dubroy, an Android engineer who writes about programming,
Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mob.
2012 (31) devices, where memory is more constrained. In this article, we're going to take a loc'
2011 (68) atsome of the memory profiling tools in the Android SDK that can help you trim yo.,

application's memory usage.
December (7)

Some memory usage problems are obvious. For example, if your app leaks mem
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more s
performance of both your app (as garbage collections are more frequent and tak

November (7)
October (5)
September (5)

August (3)
Tools of the trade
July (7)
June (3) The Android SDK provides two main ways of profiling the memory usage of
(VR heap dumps. The Allocation Tracker is useful when vou want to get a se

Run the app
Watch the heap usage
Dump the heap. Dig around
and finally find the culprit!
Commit a bugfix

Bugfix is picked up by Fixr

GitHub

Info VM Heap Allocation Tracker nf wulator Co )
Heap updates will fter every GC for this client
ID Heap Allocated Free % Used # Objects Cause GC
1 8.570 8.452 MB 12)°320 KB 98.62% 59,281
Display:  Stats
®00 Eclipse Memory Analyzer o
L
£, Inspector $3 % = B |2 leak-converted.hprof 3 =8
inl % | MElY& | Q| Evehy |l
i Overview | lil Histogram | [r] list_objects [selection of 'byte(]'] -inbound §3
Class Name Shallow Heap Retained Heap
» 0] byte(8] @ 0x429b69c8 HPDS. 24 24 T
v |0] byte[2797568) @ 0x426fe780 '2".&11.'25.(3%.&.#.#+ . (..5.." . %...S.. 4. +..,7&2>*.0 2,797,584 2,797,584 |
VL mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640 \
V’u value java.util.HashMapSHashMapEntry @ Ox40a4ceb8 24 5,595,472 \
ibutes | Class Hierarchy V'@ [13] java.util.HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960 \
Value table java.util. HashMap @ 0x40801a98 48 32,803,008 |
" i ache class com. le.android.hcgallery.ContentFragment ( 8 32,803,056 !
The culprit ) >:_1 <class> com.example.android.hcgallery.ContentFragment @ 0x408( 128 384 !
. A »'[ ] value java.util.HashMapSHashMapEntry @ 0x408009¢0 24 152 !
2. Total: 2 entries |
P (0] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA;.F?9.92,.4-".C;8.MEB.@.8. 7 <. 2,797,584 2,797,584 |
P (0] byte[2797568] @ 0x421a8750 .. FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.ule.z.\.syU. 2,797,584 2,797,584 |
» 0] byte[2797568] @ 0x41efd120 njg.pli.kgd.bA[.da\.olg.tgl.gni.roh.urk.wtm.spi.lib.heA.k 2,797,584 2,797,584 |
» (0] byte[3252224] @ 0x41be3108 3,252,240 3,252,240 |
» (0] byte[2797568] @ 0x419380f0 2,797,584 2,797,584 |
» (0] byte[2797568] @ 0x4168d0d8 d.B. .B. h.B.i.C.9.C.f.B.f.C 2,797,584 2,797,584 |
> (0] byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584 :
> (0] byte[2797568] @ 0x411370a8 2,797,584 2,797,584 |
» (] byte[2797568] @ 0x40e8c090 2,797,584 2,797,584 |
» (0] byte[1572864] @ 0x40d0c078 ".JdB.ON9.65 .! .. 1,572,880 1,572,880 |
» (0] byte[2797568] @ 0x40a61060 2,797,584 2,797,584 |
» 0] byte(62100] @ 0x40a51db8 62,112 62,112 |
» 0] byte[24] @ Ox40adcd1l ... 40 40 |
» (1] byte[4096) @ Ox40adaas50 4,112 4,112 |
» [1] byte[24] @ Ox40a4a7al ... 40 40 |
» [1] byte[4096) @ 0x40a48148 4,112 4,112 |
» (0] byte[24) @ Ox40a464f1 40 40 |
» 0] byte[84] @ 0x40a40560 ... @ fMEMEM 96 96 !
» (0] byte[768] @ 0x40a40200 .. ~.MM_.MM..MM..MM..MM..MM..MM..MM..MM. 784 784 |
b (0] byte[1572864] @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E 1,572,880 1,572,880 &
» 0] byte[84] @ 0x408bal88 oo B 96 96
» (0] byte[960] @ 0x408b9d68 ........ \~(e... ]~ ~). 0SUJ~)J~)~). )%, OSUL*.] 976 976
» |0] byte[84] @ 0x408b9%a48 ‘S= 96 96
» (0] byte[960] @ Ox408b9628 ........ A~ ~(..0QS\~(\~(.\~(.]~)..0QS] 976 976 3
P (0] byte[56] @ 0x408b9318 ...H..@P..@................. X..@... ase Senee 72 72 b 4
[ ] <1 r 1L e [l hvrel192) @ 0x408h91£R_0NOS.ORT OSLLOSULITY 1TV 1TV 1UW 1UIW 2VX 2WY 2X7 2X; 208 208
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A Fixr-enabled IDE responds ...
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It looks like you've created a memory leak like N» ! I
& ‘: ,\‘;&v

| don’t know how | created a
long-lived reference to an
Activity!

ad o
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One Sentence Summary: Mine
specifications of framework rules
(indirectly) from bugfixes

Leverage volume and variety of bugfixes made
by the crowd of client app developers

\
|=I stackoverflow

Android: Crash on rotation, horizontal to vertical

_— ————

Crash is detected after rotating phone in Gmail Sync now view &

phonegap »
[important bug]cordova 1.9 crash on rotation android
5 posts by 2 authors () K+ \

|=I stackoverflow

App crashes when rotating Samsung phone

—_— ———




One Sentence Summary: Mine
specifications of framework rules
(indirectly) from bugfixes

Leverage volume and variety of bugfixes made
by the crowd of client app developers

I=| stackoverflow

Android: Crash on rotation, horizontal to vertical

~ Crash is detected after rotating phone in Gmail Sync now view &

phoneagap » e—
[irr {
o p

“toolify” stackoverflow




Simple motivating example:

A well-understood
Android bug



Simple motivating example:

A well-understood
Android bug

a common misuse of the framework



g aView.setTag(..., anObject)
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(on Andl;l'gd <4) aVI- S EtTag ( "
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anject)

B .
onmacs <o AView.setTag(...,

_ e — —
= = - I
e - = ,,<’«"

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Object-> sTags;

. Object mTag;
Invariant } . J



Bug

(on Android <4)

Framework
lnvariant

, anject)

.

e, e

e

aVi.setTag(...

if anObject can reach aView

class View {
static WeakHashMap<View, sparsearay<Object-> sTags;
Object mTag;

5

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)



ol aView.setTag(..., anObject)

\- "“

e

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Object-> sTags;

. Object mTag;
Invariant } . J

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

S SV S L et Ffs=-~~~.»»-:-_,.f*-f‘_%y%fw-,-, ;
A Fix A ey S )
aView.setTag(anObject)



B .
(on Andl;l'gd <4) aVI- S etTag ( "

, anject)

\- "“

e

if anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Object-> sTags;

. Object mTag;
Invariant } . J

because of an unspecified class invariant: sTags’
values (:Object) must not reach their keys (:View)

L - —

" ~ Al MA1 -~
s _— A = 5 = | b S —_— = S e ’ ——~ g e = - — A
s =, - - = e — o> = P = - = |
M & O YV = ~ > QY [ \J LJ

aView.setTaa(anOhiect)

uses mTag instead

A Fix



on A <4 aV|ew setTag( , anObject)

bug bre
——Jlf anObject can reach aView

class View {
Framework static WeakHashMap<View, sparsearay<Object-> sTags;
Invariant Object mTag. ’
} Invariant |

—— —_—
because of an unspecified class invariant: sTags’

values (:Object) must not reach their keys (:View)

Goal: Produce this repair specification: bug pre,

framework invariant, fix suggestion
S— NE—

“
:
|




Mining framework specifications with
bugfixes
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Framework ~
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Observe a Bugfix /
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Posterior
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Mining framework specifications with

bugfixes
Prior Hypothesis
of a
Framework ~ .
Invariant/Rule Baye5|an
Update

Observe a Bugfix /

The Fixr Loop:

—)

Posterior
Hypothesis

Create as many observations as possible

{
l
!

:—_——*



The Fixr Loop:

Component by
Component
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Fixr: Proposed System

Deltar: Inferring Semantic
Deltas and Repair
Specifications

N
o semantic
E.g., Diff in relevant delt\/
flow-insensitive

N\
summary
\v
fix MUSE
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Fixr: Proposed System

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

semantic
delta

fix




FiXr: Propo-;.-.System

invariant + app “bug
pre”’ + suggestions

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair
specification

semantic
delta

fix




o
FIXr: Propo-..-.

-~ -

5

invariant + app “bug
pre”’ + suggestions

Deltar: Inferring Semantic

fix

repair

Deltas and Repair specification
Specifications
semantic
delta
N

Y

MUSE

Component: Deltar maps fixes to semantic

N—

ystem

|

difference summaries and candidate repair

specifications

|

R



Deltar



Deltar

ﬁ_a ._ - W e
\ 171\

aV|ew setTag(anObject)

‘ 4

a _ Y o i _ Y u
= = o y-—-—F:M—» = o= e — -

A Fix



Deltar

a
—— . Ca —

- .
\.“J RNJ I\

aV|ew setTag(anObject)

Problem: Need to mine and check
candidate framework invariants

‘ A _ Q - ) - )

e —— B

_._3
o oY B

A Fix



Deltar

- - A .
e e« et e = e ——

aV|ew setTag(anObject)

Problem: Need to mine and check
candidate framework invariants

‘ A a ,____,7»

B - =
e -_—c— — N
L
o

A Fix

Delta




Deltar

.

= . Tt

‘ A - L a : -_v;-._—\_“»_‘a ~ve
y W

~“CA VW

AT aView.setTag(anObject)

Problem: Need to mine and check
candidate framework invariants

Delta

Candidate
Invariant

sTags == null A mTag != null

-
\.“J RNJ I\

= = i — e~

R



Deltar

- -_ .

= . Tt

- N
-ﬂfc~~@'ﬁ - -

-
. N

aView.setTag(anObject)

Problem: Need to mine and check
candidate framework invariants

xz

~“CA VW

A Fix

Delta

Candidate
Invariant

sTags == null A mTag != null

Approach: Refine coarse, global summaries and
verify candidate invariant on fixed version ‘l
|

I I 2 (¥4 e 99 !
(scalably with “almost everywhere type analysis”)




FiXr: Propo-;.-.System

invariant + app “bug
pre” + fixes

Deltar: Inferring Semantic
Deltas and Repair
Specifications

repair Prepair: pgrlylng
specification Probabilistic
Repair Specifications

semantic
delta

fix




FIXr: Propo-..-.System

invariant + app “bug

pre” + fixes
Deltar: Inferring Semantm repair Prepair: pgrlylng
Deltas and Repair specification Probabilistic
Specifications Repair Specifications
)
N
MUSE
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Fixr: Proposed System

Deltar: Inferring Semantic repair Prepair: Deriving

Deltas and Repair specification Probabilistic
Specifications Repair Specifications
E.g., generalized
repair spec with

O confidence measure
probabilistic repair
MUSE specification

Component: Prepair reduces candidate repair

specifications to generalized probabilistic repair
specifications

!

SR ——
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Prepair

sTags == null A mTaqg !'= null
Candidate J : J

Invariant V¢ sTags[v][i] » v

vu. sTags[v][0] »* v

Problem: Multiple (overly-specific or under-
specified) candidate repair specifications

: : : |
Approach: Static analysis as a form of Bayesian
updating of priors to derive posteriors. Prevalence

of fixes in MUSE database provides priors. |




Prepair

sTags == null mTa =null 0.9 |
Candidate J : J — 9_...;

invariant  ¥¢ sTags[u]li] » v |_|

vu. sTags[v][0] »* v

Problem: Multiple (overly-specific or under-
specified) candidate repair specifications

: : : |
Approach: Static analysis as a form of Bayesian
updating of priors to derive posteriors. Prevalence

of fixes in MUSE database provides priors. |
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Specifications
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Prepair: Deriving
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Fixr: Proposed System

Deltar: Inferring Semantic Prepair: Deriving
Deltas and Repair Probabilistic
Specifications Repair Specifications
N
N

probabilistic repair

MUSE specification
pa,:: «r Patchr: Detecting Potential
p /\ N Bugs and Synthesizing
Patches
} E.g., bug evidence
k and patch E
)

e o




Fixr: Proposed System

Deltar: Inferring Semantic
Deltas and Repair
Specifications

patch

Component: Patchr '

maps (likely buggy) £ bug evidence

and patch
apps to patches |
—

Prepair: Deriving
Probabilistic
Repair Specifications

probabilistic repair
specification

Patchr: Detecting Potential
Bugs and Synthesizing
Patches




Patchr



Patchr

Candidate

. sTags == null A mTag != null 0.9
Invariant — e



Patchr

Candidate

. sTags == null A mTag != null 0.9
Invariant — e

Problem: How do we validate repair specifications?



Patchr

Candidate

. sTags == null A mTag != null 0.9
Invariant — e

Problem: How do we validate repair specifications?

Approach: Synthesize patches for human validation

(easier to understand and immediately useful)
e —

|
i
|
|




Patchr

Candidate

. sTags == null A mTag != null 0.9
Invariant — e

Problem: How do we validate repair specifications?

Approach: Synthesize patches for human validation

{
|
(easier to understand and immediately useful) |

a¥Wa LA\ AL -

S ——— e T e mEE = SmAer  m—
== _— - — = < - e . : "

A Patch A “3 A a2 L um g e g < | g
otherView.setTag(o)



Patchr

Candidate

. sTags == null A mTag != null 0.9
Invariant — e

Problem: How do we validate repair specifications?

Approach: Synthesize patches for human validation‘,
|

(easier to understand and immediately useful)
_

P

otherVi

N\ AL -
£ £

— - = —— e

ew.setTag(o)

= — = -
B —— e e —_——— -

A Patch

need to find apps satisfying “bug pre”
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E.g., bugfix
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Harvestr: Social Validation
and Mining of Fixes

MUSE

Prepair: Deriving
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Repair Specifications
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delta

patch
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Fixr: Proposed System

‘ Deltar: Inferring Semantic ‘ ‘ Prepair: Deriving
nhsoukai / graspngo @watchv 1 & Star 0 YFork 1
Fix setTag to avoid memory leak Edit
! fixrbot wants to merge 1 commit int0 nhsoukai:master frOM fixrbot:master
¥® Conversation 0 -O- Commits 1 @ Files changed 1 +4 -4 HEENE i
Showing 1 changed file with 4 additions and 4 deletions. Unified  Split
L e— *
i l E.g., bugfix

confirmation

interaction

Patchr: Detecting Potential
Bugs and Synthesizing
Patches

Harvestr: Social Validation
and Mining of Fixes
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Harvestr

Closes GH-97 - Remove View.setTag/getTag Pattern Browse code
Signed-off-by: Ian Lake <ian.hannibal.lake@gmail.c( v
public View onCreateView(final LayoutInflater inflater,

s master © r2.0-beta-2 -.- r1.8.9 final ViewGroup container, final Bundle savedInstanceState)

' ” {

ianhannlba"ake authored on Sep 16, 2012 21: - final View view = inflater.inflate(R.layout.fragment_view, container,
- false);

- view.setTag(R.id.start_time, view.findViewById(R.id.start_time));
- view.setTag(R.id.start_date, view.findViewById(R.id.start_date));
- view.setTag(R.id.end_time, view.findViewById(R.id.end_time));

- view.setTag(R.id.end_date, view.findViewById(R.id.end_date));

- view.setTag(R.id.duration, view.findViewById(R.id.duration));

- view.setTag(R.id.note, view.findViewById(R.id.note));

- return view;

+ return inflater.inflate(R.layout.fragment_view, container, false);



Harvestr

Closes GH-97 - Remove View.setTag/getTag Pattern
Signed-off-by: Ian Lake <ian.hannibal.lake@gmail. c -

Browse code

public View onCreateView(final LayoutInflater inflater,
final ViewGroup container, final Bundle savedInstanceState)

I’ master % r2.0-beta-2 ... r1.8.9

ianhannlballake authored on Sep 16, 2012 = final View view

- view.
- view.
- view.
- view.
- view.

- view.

setTag(R.
setTag(R.
setTag(R.
setTag(R.
setTag(R.
setTag(R.

- return view;

inflater.inflate(R.layout.fragment_view, container,

false);
id.
id.
id.
id.
id.
id.

start_time, view.findViewById(R.id.start_time));
start_date, view.findViewById(R.id.start_date));
end_time, view.findViewById(R.id.end_time));
end_date, view.findViewById(R.id.end_date));
duration, view.findViewById(R.id.duration));
note, view.findViewById(R.id.note));

+ return inflater.inflate(R.layout.fragment_view, container, false);

Problem: How do we find relevant bugfixes?



Harvestr

Closes GH-97 - Remove View.setTag/getTag Pattern Browse code
Signed-off-by: Ian Lake <ian.hannibal.lake@gmail.c( v
public View onCreateView(final LayoutInflater inflater,

1’ master © r2.0-beta-2 .- r1.8.9 final ViewGroup container, final Bundle savedInstanceState)

' : {

ianhannlballake authored on Sep 16, 2012 21; = final View view = inflater.inflate(R.layout.fragment_view, container,
- false);

- view.setTag(R.id.start_time, view.findViewById(R.id.start_time));
- view.setTag(R.id.start_date, view.findViewById(R.id.start_date));
- view.setTag(R.id.end_time, view.findViewById(R.id.end_time));

- view.setTag(R.id.end_date, view.findViewById(R.id.end_date));

- view.setTag(R.id.duration, view.findViewById(R.id.duration));

- view.setTag(R.id.note, view.findViewById(R.id.note));

- return view;

+ return inflater.inflate(R.layout.fragment_view, container, false);

Problem: How do we find relevant bugfixes?

ianhanniballake commented on Sep 16, 2012 Owner

Remove View.setTag/getTag pattern to prevent crashes due to out of memory error as per Lint error:

"Prior to Android 4.0, the implementation of View.setTag(int, Object) would store the objects in a static
map, where the values were strongly referenced. This means that if the object contains any references
pointing back to the context, the context (which points to pretty much everything else) will leak. If you
pass a view, the view provides a reference to the context that created it. Similarly, view holders typically
contain a view, and cursors are sometimes also associated with views."



Harvestr

Closes GH-97 - Remove View.setTag/getTag Pattern Browse code

Signed-off-by: Ian Lake <ian.hannibal.lake@gmail. c«
public View onCreateView(final LayoutInflater inflater,

17 master © r2.0-beta-2 .- r1.8.9 final ViewGroup container, final Bundle savedInstanceState)
: {
ianhannlballake authored on Sep 16. 2012 - final View view = inflater.inflate(R.layout.fragment_view, container,
- false);

- view.setTag(R.id.start_time, view.findViewById(R.id.start_time));
- view.setTag(R.id.start_date, view.findViewById(R.id.start_date));
- view.setTag(R.id.end_time, view.findViewById(R.id.end_time));

- view.setTag(R.id.end_date, view.findViewById(R.id.end_date));

- view.setTag(R.id.duration, view.findViewById(R.id.duration));

- view.setTag(R.id.note, view.findViewById(R.id.note));

- return view;

+ return inflater.inflate(R.layout.fragment_view, container, false);

Problem: How do we find relevant bugfixes?

ianhanniballake commented on Sep 16, 2012 Owner

Remove View.setTag/getTag pattern to prevent crashes due to out of memory error as per Lint error:

"Prior to Android 4.0, the implementation of View.setTag(int, Object) would store the objects in a static
map, where the values were strongly referenced. This means that if the object contains any references
pointing back to the context, the context (which points to pretty much everything else) will leak. If you
pass a view, the view provides a reference to the context that created it. Similarly, view holders typically
contain a view, and cursors are sometimes also associated with views."

Approach: Mine meta-data artifacts
. —
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