
Cooperative
Program Analysis

Bor-Yuh Evan Chang
University of Colorado Boulder

National Taiwan University 國⽴立臺灣⼤大學
August 5, 2014

A program analysis story ...

Software is everywhere and varying more and more

traditional

Software is everywhere and varying more and more

traditional

mobile

Software is everywhere and varying more and more

traditional

mobile

cloud

Software is everywhere and varying more and more

traditional

mobile

cloud

cyberphysical

Software is everywhere and varying more and more

traditional

mobile

cloud

cyberphysical

Software is everywhere and varying more and more

Software is getting more and more complex

traditional

mobile

cloud

cyberphysical

Software is everywhere and varying more and more

Software is getting more and more complex

bug

1980s: Bug in Therac-25 kills 6

1980s: Bug in Therac-25 kills 6

2000s: Conficker worm costs $9.1
billion in damages

1980s: Bug in Therac-25 kills 6

2000s: Conficker worm costs $9.1
billion in damages

Today: “Don’t buy this app, it
crashes.”

How does program analysis save the day?

Program Analysis for Formal Verification

Program

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

VerifierProgram

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Alarm
Report

✘

Systematically examine the program to
“simulate” running it on “all inputs”

The End?

The Ugly, Hidden Truth

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Alarm
Report

✘

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Alarm
Report

✘

Systematically examine the program to
“simulate” running it on “all inputs”

of “maybe” bugs

The Ugly, Hidden Truth

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Alarm
Report

✘

Systematically examine the program to
“simulate” running it on “all inputs”

Undecidability necessitates the possibility of
false alarms. We hope not too many.

of “maybe” bugs

Uncooperative Program Analysis?

Uncooperative Program Analysis?

Oh
Verifier, help
me prove my

program has no
bugs

Uncooperative Program Analysis?

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Uncooperative Program Analysis?

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Uncooperative Program Analysis?

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

Uncooperative Program Analysis?

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem

Uncooperative Program Analysis?

And noisily
repeated over

and over!

Oh
Verifier, help
me prove my

program has no
bugs

On line 142,
there may be a

bug

Isn’t it obvious
this can’t

happen!?!?

The well-known false alarm problem

“[M]ore than a 30% [false alarm rate]
easily causes problems. True bugs get lost
in the false. A vicious cycle starts where
low trust causes complex [true] bugs to be
labeled false [alarms], leading to yet
lower trust.”

“A stupid false [alarm] implies the tool is
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,
McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to
find bugs in the real world. Commun. ACM. 53, 2 (2010), 66–75.

The traditional approach to the false alarm problem
focuses on improving the verifier.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

The traditional approach to the false alarm problem
focuses on improving the verifier.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

The traditional approach to the false alarm problem
focuses on improving the verifier.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability)

The traditional approach to the false alarm problem
focuses on improving the verifier.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability)

Also not a sufficient “excuse”

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Static Incrementalization of
Data Structure Checks

[under review]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

This Talk

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

This Talk

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Idea: Assume alarms false, prove them so automatically

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Going from ∼450 hours of manual work to ∼30 hours

‣ Application: Find memory leaks and eliminate crashes in Android

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Idea: Assume alarms false, prove them so automatically

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Going from ∼450 hours of manual work to ∼30 hours

‣ Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis

‣ Interactive checking speeds: making IDE integration possible

‣ Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

‣ Idea: Assume alarms false, prove them so automatically

‣ Filters out ∼90% of false alarms to expose true bugs

‣ Going from ∼450 hours of manual work to ∼30 hours

‣ Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis

‣ Interactive checking speeds: making IDE integration possible

‣ Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

Thresher: Precise
Refutations for Heap

Reachability

What are heap reachability queries?

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time variable

of type T ?

x

Example

How is this useful? We identify memory leaks
that cause your app to crash!

How is this useful? We identify memory leaks
that cause your app to crash!

How is this useful? We identify memory leaks
that cause your app to crash!

How can yo
u have

memory leak
s with

a garba
ge collected run-tim

e?

Android memory leaks underly rotation-based crashes.

Activity objects
encapsulate the UI

Android memory leaks underly rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

Android memory leaks underly rotation-based crashes.

of type Activity
Android

OS

Activity objects
encapsulate the UI

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

Activity objects
encapsulate the UI

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

Android memory leaks underly rotation-based crashes.

of type Activity

of type Activity
Android

OS

a_static_field

program heap

Activity objects
encapsulate the UI

I
can’t collect

this dead
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”

The expert recommendation ...

The expert recommendation ...

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I
created a long-lived
reference to an Activity!

Often: A
misunderstanding of
a library causes the
library to keep the
Activity reference.

The state of practice in debugging Activity leaks ...

The state of practice in debugging Activity leaks ...

1. Run the app

The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage

The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig

around and hope to
find the culprit

The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig

around and hope to
find the culprit

Suppose we’re lucky and find
a possible culprit. Now what?

‣ Where in the code is this object
allocated?

‣ What about the object that references it?
‣ Where is the reference created?
‣ Is this reference needed?
‣ For what periods?

The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig

around and hope to
find the culprit

Suppose we’re lucky and find
a possible culprit. Now what?

‣ Where in the code is this object
allocated?

‣ What about the object that references it?
‣ Where is the reference created?
‣ Is this reference needed?
‣ For what periods?

“One of the most dreaded bugs in Android is a memory leak. They are nasty
because one piece of code causes an issue and in some other piece of code,
your application crashes.” -- http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html

http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html
http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Example

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Example

Can be answered with a
points-to analysis

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Example

Can be answered with a
points-to analysis

with approximation

Hidden Truth

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time

 ?

a_static_field

of type Activity

Example

Can be answered with a
points-to analysis

with approximation

Some pointer relations
may be false

Hidden Truth

But with the cooperative approach ...

Verifier

✔
proof of no bug

Alarm
Report

✘

Runner

Manual
Triaging

Program

Spec-
ification

Test
Input

Test
Output

Program-
ming

But with the cooperative approach ...

Verifier

✔
proof of no bug

Alarm
Report

✘

Manual
Triaging

Program

Alarm
Report

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program Verifier

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

(2001)

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

(2001)

Leak
Alarms

Verifier

Thresher addresses alarm triage in a particularly
challenging domain.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

(2001)

impossible?enough^

Manual triage is particularly hard
for heap reachability reports.

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java

Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java
Get abstract heap path + maybe allocation sites

Guesstimate: >1 to 2 hours per alarm to triage “well”

Examining manual triage ...

Examining manual triage ...

Examining manual triage ...

What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

Examining manual triage ...

What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

We can do this with analysis!

Examining manual triage ...

What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

We can do this with analysis!

Examining manual triage ...

What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

We can do this with analysis!

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second “uber-precise” filter analysis

1

1

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second “uber-precise” filter analysis

1

*-sensitive

1

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second “uber-precise” filter analysis

1

1

Leak
Alarms

Verifier

Thresher filters out false alarms by
refuting them one-by-one.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

(off-the-shelf)

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second “uber-precise” filter analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

B. Because before statement s, the program
state could satisfy formula φ

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

B. Because before statement s, the program
state could satisfy formula φ

A. Why can the state before statement s satisfy φ?

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

There may be an
execution where at
some time

of type T .

o

o′

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

There may be an
execution where at
some time

of type T .

o

o′

A just asks
“but why?”

B reasons
about program
semantics

Refutation analysis is “Proof by Contradiction”
with the “But Why?” game

1

A. Why does object o possibly point to o′ ?

B. Because statement s may execute to make
o point to o′

A. Why does statement s cause o to point to o′ ?

B. Because before statement s, the program
state could satisfy formula φ

Theorem: If B can’t give an answer, contradiction.
The alarm is false. It’s been refuted. (A wins)

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

There may be an
execution where at
some time

of type T .

o

o′

A just asks
“but why?”

B reasons
about program
semantics

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ

set of possible states

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ

set of possible states

if empty, then refuted (A wins)

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′

set of possible states

if empty, then refuted (A wins)

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′

set of possible states

if empty, then refuted (A wins)

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′ψ

set of possible states

if empty, then refuted (A wins)

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′ψ

set of possible states

if empty, then refuted (A wins)

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′ψ

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′ψ

∩

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′ φ′ψ

∩ Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′

pres′

φ′ψ

∩ Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′

pres′

φ′ψ ψ′

∩ Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′

pres′

φ′ψ ψ′

⊆∩ Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

Points-To
Facts

2

B. Because before statement s, the program
state could satisfy formula φ

B. Because before the previous statement s′,
the state could satisfy formula φ′

A. Why can the state before statement s satisfy φ?

φ pres′

pres′

φ′ψ ψ′

⊆∩ Technical Contribution:
Specialized constraint forms

Specialized
constraint forms
makes finding

refutations feasible

Leak
Alarms

Verifier

Summary: Thresher assists the user with alarm triaging by
effectively filtering out many false alarms.

✔
proof of no bug

✘

Manual
Triaging

Program
Points-To
Analyzer

Points-To
Facts

Filter with
Thresher

Idea 1 : Refute points-to on-demand with second “uber-precise” filter analysis

Idea 2 : Leverage the facts from the first analysis in the filter analysis to scale

1

2

1

2

Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android
framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

staticfield-
Activity pairs

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

staticfield-
Activity pairs

triage “well”
at ∼1--2 hours

per alarm

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

Manual

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Filteredstaticfield-
Activity pairs

triage “well”
at 10--15

minutes per

Manual

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

< ∼coffee to
lunch break

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

% after
filtering

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

% after
filtering

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program LOC Points-To
Alarms

Thresher
Refuted

True
Bugs

Thresher
Time (s)

False
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Guesstimate
Triage “well” without versus with: ∼450 hours versus ∼30 hours

Triage “ok” without: ∼30 hours

Android
OS

Android
OS

... in the process of finding leaks in apps

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

What if you store
passwords in a HashMap?

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; . . .
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table

}
this.tbl[bucket using hash of key] = val;

}

HashMap(Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

null object pattern: should not be written to

allocate new
backing array
on first write

An “evil” implementation of the Map interface
can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

return 0

return “evil” content

What if you store
passwords in a HashMap?

We reported this, Google fixed it
https://android-review.googlesource.com/#/c/52183/

https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/

Contribution: Addressed the
false alarm problem with

a “smart and precise filter”

a refutation analysis

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12, NSF EAGER]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, NSF SHF]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, NSF SHF]

Static Incrementalization of
Data Structure Checks

[NSF CAREER]

PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12, NSF EAGER]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, NSF SHF]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, NSF SHF]

Static Incrementalization of
Data Structure Checks

[NSF CAREER]

PhD Advisee

Fissile Types:
Checking Reflection

with Almost
Everywhere
Invariants

Method Reflection and the Great Divide

Method Reflection and the Great Divide

object[string]()

Method Reflection and the Great Divide

object[string]()

reflective method call: dispatch based on run-time value (in string)

Method Reflection and the Great Divide

object[string]()

reflective method call: dispatch based on run-time value (in string)

type system designers “web 2.0” developers

Method Reflection and the Great Divide

object[string]()

reflective method call: dispatch based on run-time value (in string)

type system designers “web 2.0” developers

Type system designers worry.

What gets called? What if
object has no method named
by string?

Method Reflection and the Great Divide

object[string]()

reflective method call: dispatch based on run-time value (in string)

type system designers “web 2.0” developers

Type system designers worry.

What gets called? What if
object has no method named
by string?

“Web 2.0” developers think
it’s cool.

I can flexible and compact
code, so I will take it over
static safety.

Method Reflection and the Great Divide

object[string]()

reflective method call: dispatch based on run-time value (in string)

type system designers “web 2.0” developers

Type system designers worry.

What gets called? What if
object has no method named
by string?

“Web 2.0” developers think
it’s cool.

I can flexible and compact
code, so I will take it over
static safety.

“MethodNotFound” checked at run time

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship
invariant between .o and .m

Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship
invariant between .o and .m

inva
rian

t ho
lds

Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship
invariant between .o and .m

inva
rian

t ho
lds

invariant broken

Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship
invariant between .o and .m

inva
rian

t ho
lds

invariant broken

but only temporarily

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Tolerate “temporary” violation with

callback.o[callback.m]()

Program

safe assuming a relationship
invariant between .o and .m

inva
rian

t ho
lds

invariant broken

but only temporarily

Is Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

9 benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code

461,000 lines in total

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

Is Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

9 benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code

461,000 lines in total

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

Proved 86% of check sites (up from 76%) at
interactive speeds (∼4 to 90 kloc/s)

Is Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

9 benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code

461,000 lines in total

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

Proved 86% of check sites (up from 76%) at
interactive speeds (∼4 to 90 kloc/s)

places requiring a check of the invariant

Is Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

9 benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code

461,000 lines in total

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

Proved 86% of check sites (up from 76%) at
interactive speeds (∼4 to 90 kloc/s)

Big Deal: makes IDE integration possible

places requiring a check of the invariant

Summary: The cooperative approach addresses the
whole bug mitigation process.

Verifier

✔
proof of no bug

Alarm
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test
Output

Spec-
ification

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types:
Checking Almost

Everywhere
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of
Data Structure Checks

[under review]

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

Sankaranaryananan SomenziChangCerny

www.cs.colorado.edu/~bec
pl.cs.colorado.edu

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

