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A program analysis story ...
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1980s: Bug in Therac-25 kills 6

2000s: Conficker worm costs $9.1 
billion in damages

Today: “Don’t buy this app, it 
crashes.”
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The Ugly, Hidden Truth

Program Analysis for Formal Verification

VerifierProgram

✔
proof of no bug

Alarm 
Report

✘

Systematically examine the program to 
“simulate” running it on “all inputs” 

Undecidability necessitates the possibility of 
false alarms. We hope not too many.

of “maybe” bugs
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“[M]ore than a 30% [false alarm rate] 
easily causes problems. True bugs get lost 
in the false. A vicious cycle starts where 
low trust causes complex [true] bugs to be 
labeled false [alarms], leading to yet 
lower trust.”

“A stupid false [alarm] implies the tool is 
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., 
McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to 
find bugs in the real world. Commun. ACM. 53, 2 (2010), 66–75.
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focuses on improving the verifier.

Verifier

✔
proof of no bug

Alarm 
Report

✘

Program

Redesign the verifier with more magic to 
hopefully reduce the number of false alarms

But it can never be perfect (undecidability)

Also not a sufficient “excuse”
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execution where at 
some time variable

of type T ?

x
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of type Activity

of type Activity
Android 

OS

a_static_field

program heap

Activity objects 
encapsulate the UI

I 
can’t collect 

this dead 
Activity!

Bug: Holding reference to “old” Activity

“an Activity leak”
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The expert recommendation ...

“Do not keep long-lived references to a context-activity”

I don’t know how I 
created a long-lived 
reference to an Activity!

Often: A 
misunderstanding of 
a library causes the 
library to keep the 
Activity reference.



The state of practice in debugging Activity leaks ...



The state of practice in debugging Activity leaks ...

1. Run the app



The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage



The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig 

around and hope to 
find the culprit



The state of practice in debugging Activity leaks ...

1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig 

around and hope to 
find the culprit

Suppose we’re lucky and find 
a possible culprit.  Now what?

‣ Where in the code is this object 
allocated?

‣ What about the object that references it?
‣ Where is the reference created?
‣ Is this reference needed?
‣ For what periods?
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1. Run the app
2. Watch the heap usage
3. Dump the heap. Dig 

around and hope to 
find the culprit

Suppose we’re lucky and find 
a possible culprit.  Now what?

‣ Where in the code is this object 
allocated?

‣ What about the object that references it?
‣ Where is the reference created?
‣ Is this reference needed?
‣ For what periods?

“One of the most dreaded bugs in Android is a memory leak. They are nasty 
because one piece of code causes an issue and in some other piece of code, 
your application crashes.” -- http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html

http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html
http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html
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Answering “Is there an Activity leak?” with program 
analysis ...

Can an object ever be reached from another object via 
pointer dereferences?

Is there a program 
execution where at 
some time

 ?

a_static_field

of type Activity

Example

Can be answered with a 
points-to analysis

with approximation

Some pointer relations 
may be false

Hidden Truth
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Thresher addresses alarm triage in a particularly 
challenging domain.

✔
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✘

Manual
Triaging

Program
Points-To 
Analyzer

Points-To 
Facts

Known: Precise points-to analysis challenging

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?”
‣ 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

(2001)
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Manual triage is particularly hard
for heap reachability reports.

MyClass1.java

allocated here

LibraryClass1.java

MyClass2.java

Library2Class1.class

java.util.HashMap.class

MyClass3.java
Get abstract heap path + maybe allocation sites

Guesstimate: >1 to 2 hours per alarm to triage “well”
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Examining manual triage ...

What does the user need to do with an alarm? 
He starts at, say, line 142 and traces back to 
see if a bug is possible given what’s happening.

If we filter most false alarms, the user can triage 
more quickly and get to true bugs earlier 
(without frustration).

We can do this with analysis!
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Is Thresher effective at filtering?

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code

+ 880,000 sources lines of Android 
framework code

Off-the-shelf, state-of-the-art points-to 
analysis from WALA
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StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88
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False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis
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False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

Is Thresher effective at filtering?

Program LOC Points-To 
Alarms

Thresher 
Refuted

True
Bugs

Thresher 
Time (s)

False 
Alarm %

Filtered
%

PulsePoint unknown 16 8 8 95 0 100

StandupTimer 2K 25 15 0 1068 100 60

DroidLife 3K 3 0 3 1 0 -

SMSPopUp 7K 5 1 4 46 0 100

aMetro 20K 54 18 36 18 0 100

K9Mail 40K 208 130 64 374 18 90

Total 72K 311 172 115 1602 17 88

Guesstimate
Triage “well” without versus with: ∼450 hours versus ∼30 hours

Triage “ok” without: ∼30 hours
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can corrupt EMPTY. Then, all HashMaps created 
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return 0

return “evil” content

What if you store
passwords in a HashMap?

We reported this, Google fixed it
https://android-review.googlesource.com/#/c/52183/

https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/


Contribution: Addressed the 
false alarm problem with 

a “smart and precise filter”

a refutation analysis
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Type system designers worry.

What gets called? What if 
object has no method named 
by string?

“Web 2.0” developers think 
it’s cool.

I can flexible and compact 
code, so I will take it over 
static safety.

“MethodNotFound” checked at run time







Programs are often
(1) safe, (2) not type safe, (3) but almost so



Programs are often
(1) safe, (2) not type safe, (3) but almost so

Program



Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program



Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship 
invariant between .o and .m 



Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship 
invariant between .o and .m 

inva
rian

t ho
lds



Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship 
invariant between .o and .m 

inva
rian

t ho
lds

invariant broken



Programs are often
(1) safe, (2) not type safe, (3) but almost so

callback.o[callback.m]()

Program

safe assuming a relationship 
invariant between .o and .m 

inva
rian

t ho
lds

invariant broken

but only temporarily



Programs are often
(1) safe, (2) not type safe, (3) but almost so

Tolerate “temporary” violation with

callback.o[callback.m]()

Program

safe assuming a relationship 
invariant between .o and .m 

inva
rian

t ho
lds

invariant broken

but only temporarily
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Is Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

9 benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code

461,000 lines in total

Type annotations

seeded with 76 respondsTo in system 
libraries

needed only 136 annotations in 
benchmarks (total)

Proved 86% of check sites (up from 76%) at 
interactive speeds (∼4 to 90 kloc/s)

Big Deal: makes IDE integration possible

places requiring a check of the invariant



Summary: The cooperative approach addresses the 
whole bug mitigation process.

Verifier

✔
proof of no bug

Alarm 
Report

✘

Program

Program-
ming

Manual
Triaging

RunnerTest
Input

Test 
Output

Spec-
ification

Thresher: Assisting Triage by 
Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Enforcement 
Windows: Measuring 

Bug Avoidance
[Coughlin+ ISSTA’12]

Fissile Types: 
Checking Almost 

Everywhere 
Invariants

[Coughlin+ POPL’14, in prep]

Jsana: Abstract Domain Combinators 
for Dynamic Languages

[Cox+ ECOOP’13, Cox+ SAS’14, under review]

Static Incrementalization of 
Data Structure Checks

[under review]
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