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Undecidability necessitates the possibility of

false alarms. We hope not too many.
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“IM]ore than a 30% |[false alarm rate]
easily causes problems. True bugs get lost
in the false. A vicious cycle starts where
low trust causes complex [true] bugs to be
labeled false [alarms], leading to yet
lower trust.”

“A stupid false [alarm] implies the tool is
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,

McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to (‘ (:()\7erltj ye

find bugs in the real world. Commun. ACM. 53, 2 (2010), 66-75.
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Also not a sufficient “excuse” !
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SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
| Search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCTIE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
~ S On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(68) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)
December (7) @override
November (5) protected void onCreate(Bundle state) {
October (5) super.onCreate(state);

TextView label = new TextView(this);
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[This post is by Patrick Dubroy, an Android engineer who writes about programming,
| Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE

memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your

e application's memory usage.
» December (7)
November (7) Some memory usage problems are obvious. For example, if your app leaks memory

every time the user touches the screen, it will probably trigger an
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
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VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

Tools of the trade




The state of practice in debugging Activity leaks ... %)

e
8 00 é Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog

i3 Developers
Memory Analysis for Android Applications

SEARCH
[This post is by Patrick Dubroy, an Android engineer who writes about programming,
| Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
» 2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim your
(68) application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an
» October (5) .
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
Tools of the trade
> July (7)
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app



The state of practice in debuggin

8 00 E‘.\ Questions containing ‘andrc @Issues - android - Android

€« C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog: A Android Developers Blog: I

i1 Developers
SEARCH

Search
ARCHIVE
» 2012(31)
¥ 2011 (68)

» December (7)
» November (7)
October (5)

September (5)

July (7)
June (3)

N VWIS

=
S
» August (3)
>
=

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app

2. Watch the heap usage

g Activity leaks ...

Dalvik Debug Monitor

# Objects
59,281
Display:  Stats
Type Count Total Size Smallest
free 1,772 107.312 KB 16 B
data object 40,528 1.229 MB 16 B
class object 2,187 637.234 KB 168 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B
2-byte array (short(], char(]) 10,373 677.352 KB 24 B
4-byte array (object(], int[], float[]) 3,663 276.812 KB 24 B
8-byte array (long(], double[]) 283 14.875 KB 24 B
non-Java object 92 14.219 KB 16 B

Largest
48.297 KB
1.047 KB
34.125 KB
1.500 MB
28.023 KB
16.023 KB
4.000 KB
8.023 KB

Median
24 B
328

168 B
48 8B
48 B
408B
328B
328

2.576 KB
66 B
77 8B
538B
158 B
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1. Run the app

2. Watch the heap usage

3. Dump the heap. Dig
around and hope to
find the culprit

Type Name

M %ol R QB by |

i Overview | ljl Histogram | [ list_objects [selection of 'byte[)') -inbound £3
Class Name

» (0] byte[8) @ 0x429b69¢c8 HPDS....

v 0] byte[2797568) @ Ox426fe780 '2°.&11.'25.3%.&.#.4+ . (.5..°..%..5...2., +..,7&.2>*.0

Statics | Attributes  Class Hierarchy

Value

v | mBuffer android.graphics.Bitmap @ 0x40a50fa8
¥ value java.util. HashMapSHashMapEntry @ 0x40adceb8
V’,‘\ [13] java.util. HashMapSHashMapEntry{16] @ 0x40805440
table java.util.HashMap @ 0x40801a98
'):, sBitmapCache class com.example.android.hcgallery.ContentFragment (

T.he culpri;t ) »7 ) <class> com.example.android.hcgallery.ContentFragment @ Ox408(

Y Y Y Y Y Y Y Y Y Y YVYVYYVYVYVYVYYVYYVYYYVYY

»" ] value java.util. HashMapSHashMapEntry @ 0x408009¢0

2. Total: 2 entries
1| byte[2797568] @ Ox42453768 % ..)S .+& .61+.HA;.F79.92,.4-".C;8.MEB.@;8."..
1] byte[2797568) x421a8750 2.FRF.P\P.OXU.NWT.ZUY.ZUY.ywo.....It\.uje.2.\.syV.
1] byte[2797568) x41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heAk
x41be3108

1] byte[2797568) @ Ox4168d0d8 d.B.d.B.d.@.d.@
1] byte[2797568) @ Ox413e20¢0 cR>.eT@.eVA.dU@.aR=."Q<. Q>.bS@
1] byte[2797568] @ 0x411370a8
1] byte[2797568] @ Ox40e8c090
)] byte[1572864] @ 0x4040¢078
1] byte[2797568] @
1) byte[62100]) @ Ox40a51db8

)] byte[24] @ 0x40a4cd1] ....cccviiiiiiiiinnnns
1] byte[4096] @ Ox40ad42as0
1] byte[24] @ 0x40a4a7al .....cccvuvuniunnriurins
1] byte[4096] @ 0x40a48148
1| byte[24] @ 0x40a464f1 - —
) byte[84] @ 0x40240560 ... @...@..oorvrvrmmemeee@errrresrninicnnneisennsse fMEMEMoee.
1] byte[768] @ 0x40a40200 MM..MM..MM..MM..MM..MM..MM.. MM..MM
1| byte[1572864) @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E
1] byte[84] @ 0x408bal88
1] byte[960] @ Ox408b9d68 \~( J~) J=).J~). 0SU)~).}~).}~).).*. OSUL.~.]
|| byte[84] @ Ox408b%a48 ‘S

1] byte[960] @ Ox408b9628 \~(\~(\~(.]~)..0QS]
1] byte[56) @ 0x408b9318 o
1Lhvte(1921 @ Ox408h91f8__00S ORT OSULOSULITV ATV TV UMW LW 2VX 2WY 2X7 2X7
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8 00 E\‘ Questions containing "andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I =
€« C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html D 1/ Dalvik Deng Monitor
Heap updates will hannen after every GC for this client
ID Heap Allocated Free % Used # Objects
1 8.570 320 KB 98.62% 59,281
Android Developers Blog Display:  Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318
j 4 4
Developers class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B
. . P 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
Memory Analysis for Android Applications yie array (byte(] 0
SEARCH 2-byte array (short(], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[This post is by Patrick Dubroy, an Android engineer who writes about programming, 4-byte array (object(], int[), float[)) 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long[], double[]) 283 14.875 KB 24 B 4.000 KB 328 53 B
The Dalvik runtime may be garbage{ol[ectedl, butthatdoesntmean you can |gnore. non-Java object 92 14.219 KB 16 B 8.023 KB 32 B 158 B
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
Sootiee atsome of the memory profiling tools in the Android SDK that can help you trim your
‘ (68) application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
» October (5 every time the user touches the screen, it will probably trigger an
. ) OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
) Tools of the trade
» July(7)
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and eno Eclipse Memory Analyzer ~
VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a ], Inspector 33 = O leak-converted.hprof 53 ¥ =5

»



Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

¢

A~ 4

3. Dump the heayp|. Dig
around and hope to
find the culprit

) Free % Used ¥ Objects
1 8.570% 320 KB 98.62% 59,281
Display: Stats
Type Count Tot e Smallest Larges Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short(], char(]) 10,373 677.352 KB 24 B 28.023 KB 48 B 66 B
4-byte array (object[], int[], float[]) 3,663 276.812 KB 24 B 16.023 KB 40B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538
non-Java object 92 14.219 KB 16 B 8.023 KB 328 158 B
eno Eclipse Memory Analyzer R
A Inspector 23 = 8 | leak-converted.hprof £3 . =8
il % BBy | QB ehe |0l
i Overview | ljl Histogram | |r] list_objects [selection of 'byte[)') -inbound £3
Class Name Shallow Heap Retained Heap
P

Statics | Attributes | Class Hierarchy

Type

Name

Value

v

byte[8) @ 0x429b69c8 HPDS....

byte[2797568) @ Ox4261e780 '2°.&11.'25.3%.&.#.4+ . (...5.. 5. %...5...2.. +...7&.2>*.0
mBuffer android.graphics.Bitmap @ 0x40250fa8

v value java.util. HashMapSHashMapEntry @ 0x40adceb8
v/l [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440

v" ) table java.util. HashMap @ 0x40801a98

v sBitmapCache class com.example.android.hcgallery.ContentFragment (
The culprit ) »7 ) <class> com.example.android.hcgallery.ContentFragment @ Ox408(

1| byte[2797568] §
1| byte[3252224) @
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1| byte[960] @ Ox408b9628 ...

»" ] value java.util.HashMapSHashMapEntry @ 0x408009¢0
. Total: 2 entries
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Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

¢

3‘ N A Innnux[ n:ﬂv

Dalvik Debug Monitor
Heap updates will hapnen after every GC for this client
ID Heap yfe | Allocated | N\  Free| % Used Objects
)] =
1 8.570'™B 8.452 MB 12)°320 KB 98.62% 59,281
Display:  Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168B 34.125KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short(], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
4-byte array (object[], int[], float[]) 3,663 276.812 KB 24 B 16.023 KB 40B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538
non-Java object 92 14.219 KB 16 B 8.023 KB 328 158 B
eno Eclipse Memory Analyzer R
R
A Inspector 83 = 8 | leak-converted.hprof £3 =8
il % el | perEoy Q| Byl
i Overview | ljl Histogram | |r] list_objects [selection of 'byte[)') -inbound £3
Class Name Shallow Heap' Retained Heap
. m
» (1] byte[8] @ 0x429b69c8 HPDS.... 24 24
v (1] byte[2797568] @ 0x4261e780 '2".811.25.(3%.& 4.4+ . (5. Ko 5.2 +..,78.254.0 2,797,584 2,797,584
v} mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640
v value java.util. HashMapSHashMapEntry @ 0x40adceb8 24 5,595,472
Statics | Attributes | Class Hierarchy v} [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960
Type  |Name Value v’ ] table java.util. HashMap @ 0x40801a98 48 32,803,008
) v sBitmapCache class com.example.android.hcgallery.ContentFragment ( 8 32,803,056
The culprit »7) <class> com.example.android.hcgallery.ContentFragment @ Ox408( 128 384
T »" ] value java.util.HashMapSHashMapEntry @ 0x408009¢0 24 152
. Total: 2 entries
> [i]] byte[2797568) @ 0x42453768 % .)S .+& .61+.HA.F29.92,.4-".C;8.MEB.@;8."...-)*.2;< 2,797,584 2,797,584
> 1] byte[2797568) @ Ox421a8750 2.FRF.P\P.OXU.NWT.ZUY.ZUY.yvoO. It\.uje.z.\.syV. 2,797,584 2,797,584
> [1]] byte[2797568] @ Ox41efd120 njg.pli.kgd.bAl.da\.olg.tal.gni.roh.urk.wtm.spi.lib.herk 2,797,584 2,797,584
» (0] byte[3252224) @ Ox41be3108 3,252,240 3,252,240
» (1] byte[2797568) @ 0x419380f0 2,797,584 2,797,584
] byte[2797568) @ Ox4168d0d8 d.B.d.B.d.@.d.@.f.%.9.@.h.B.h.B.i.B.i.B.n.B.i.C.9.C.LBA.C 2,797,584 2,797,584
» (1) byte[2797568) @ Ox413e20¢0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584
il hvtel27975681 @ Ox411370a8 2 797 584 2.797.584

“One of the most dreaded bugs in Android is a memory leak. They are nasty
because one piece of code causes an issue and in some other piece of code,

your CIpp|iCC|ﬁ0n CrCISheS.” — http://therockncoder.blogspot.com/2012/09 /fixing-android-memory-leak.html
— ‘*‘
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Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@oooo&

of type Activity | @

SRCLTILE



Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

/

i

of type Activity | @

Can be answered with a
pointsto analysis
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Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@
i

of type Activity | @

-
-

Can be answered with a

points-to analysis




Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static _field

@
i

of type Activity | @

Can be answered with a

points-to analysis

Some pointer relations
may be false
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Thresher addresses alarm triage in a particularly

challenging domain.
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challenging domain.
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Thresher addresses alarm triage in a particularly
challenging domain.
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Thresher addresses alarm triage in a particularly
challenging domain.
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Thresher addresses alarm triage in a particularly
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Thresher addresses alarm triage in a particularly
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Thresher addresses alarm triage in a particularly
challenging domain.
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Manual triage is particularly hard I
for heap reachability reports.
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What does the user need to do with an alarm?@
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).
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Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
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A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,
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Theorem: If B can’t give an answer, contradiction. s

The alarm is false. It’'s been refuted. (A wins)
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Summary: Thresher assists the user with alarm triaging by
effectively filtering out many false alarms.
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Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code
+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA



Points-To Thresher True Thresher False Filtered

Program Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88
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Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
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— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis
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Guesstimate
Triage “well” without versus with: ~450 hours versus ~30 hours

Triage “ok” without: ~30 hours od
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only) :
Thresher filters 88% of false alarms from pointsto analysis |
T 1
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else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+



Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];

copy from old table
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+



Find the Android’s HashMap bug ...

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];

copy from old table
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}
+



Find the Android’s HashMap bug ...

class HashMap {

+

null object pattern: should not be written to

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) { allocate new
this.tbl = new Object[more capacityl]; backing array

copy from old table on first write
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}




Find the Android’s HashMap bug ...

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Texf on first write
this.tbl[bucket using hash of key] = val;
ro

Aég%:hMap(Map m) {

7 {if (m.size() < 1) { this.tbl = EMPTY; }

" else { this.tbl = new Object[at least m.size()]; }
copy from m

}
+



Find the Android’s HashMap bug

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Texf on first write
this.tbl[bucket using hash of key] = val;
Yo

A\% hMap (Map m) {
/ ‘/1f (m.size() < 1) { this.tbl = EMPTY; }
) else { this.tbl = new Objectlat least m.size()]; }

copy fromm ——— o

~— An “evil” implementation of the Map interface

by
can corrupt EMPTY. Then, all HashMaps created

+

in the future will be corrupted.
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null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Text on first write

this.tbl[bucket using hash of key] = val;
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cla I

What it you store

passwords in a HashMap?
Text |
We reported this, Google fixed |t§ a

} 7'—-__ https://android-review.googlesource.com/#/c/52183/

ﬁ. e
ﬁ%shMap(Map my {. reornc

7 ;1f (m.size()“< 1) { this.tbl = EMPTY; }
) else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

.III )

An “evil” implementation of the Map interface
D L —— can corrupt EMPTY. Then, all HashMaps created
in the future will be corrupted.


https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/

Contribution: Addressed the
false alarm problem with

a “smart and precise filter”

a refutation analysis
|

S —
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Agenda: The cooperative approach addresses the whole
bug mitigation process.

= ™
P Spec-
rogram- " ification \
Sioe), y / proof of no bug
Program —> Veriﬁer

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL' 14, NSF SHF]
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Type system designers worry.

What gets called?2 What if

object has no method named
by string?

“web 2.0” developers

“Web 2.0” developers think
it's cool.

| can flexible and compact
code, so | will take it over
static safety.




reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

Type system designers worry. Web 2.0 developers think

it’'s cool.
Wh: ST ]
obj, “MethodNotFound” checked at run time |
by < —

E ! ! static satefy.
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safe assuming a relationship
invariant between .o and .m

V
callback.o[callback.m] ()

Program



O\_&ﬁ safe assuming a relationship
R\ 4 w invariant between .o and .m
\105"’0&’\ \/
wh callback.o[callback.m] ()

Program
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RV A \/
wh callback.o[callback.m] ()

invariant broken

Program



Programs are often
(1) safe, (2) not type safe, (3) but almost so
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Programs are often
(1) safe, (2) not type safe, (3) but almost so

Q\,é& safe assuming a relationship
. O\V& w invariant between .0 and .m
. \105“ \/
wh callback.o[callback.m] ()

avariank broieen @

buk o-mi.:j Eemporamtv

Program

Tolerate “temporary” violation with
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? benchmarks (6 libraries + 3 apps)
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Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)
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s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

places requiring a check of the invariant

\/ |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s)

l

TE—

benchmarks (total)




Fissile analyzes Objective-C source
? benchmarks (6 libraries + 3 apps)
1,000 to 176,000 lines of code

461,000 lines in totadl

places requiring a check of the invariant

\V |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s) |

,’
. -
Big Deal: makes IDE integration possible




Summary:

Enforcement
Windows: Measuring .
Bug Avoidance Input
[Coughlin+ ISSTA’12, NSF EAGER]
. -
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rogram- 7 ification

ming

Fissile Types:
Checking Almost
Everywhere
Invariants

[Coughlint under review, Khoo+
PLDI’10, NSF SHF]

—>  Runner

: V/
Program —> Verifier &
.:6'- \
e’

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

\4 Test
> Output

Jsana: Abstract Domain Combinators
for Dynamic Languages v

[Cox+ ECOOP’13, NSF SHF]

roof of no bug

X

Alarm
Report

Thresher: Automated Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

[
LTcrrrvvn - \/

Triaging )

| ‘Q? PhD Advisee







Future Directions

The Cooperative Approach

Unit Test Synthesis: test input + test code to unequivocally show bug
Evidence for Alarms: alarm explanations, probability of bug
Hardening: synthesize efficient dynamic checks

Patch Synthesis: synthesize bug fixes

Performance and Scalability Bugs: beyond correctness bugs

Input Debugging: bugs in input

Analysis Engines: in new software domains



The Cooperative Approach

Unit Test Synthesis: test input + test code to unequivocally show bug
Evidence for Alarms: alarm explanations, probability of bug
Hardening: synthesize efficient dynamic checks

Patch Synthesis: synthesize bug fixes

Performance and Scalability Bugs: beyond correctness bugs

Input Debugging: bugs in input

Analysis Engines: in new software domains
Software Domains

Dynamic: web, science+engineering
Concurrent: event-driven systems, user-interactive systems, servers

Distributed: “big data” software
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