Cooperative
Program Analysis

Bor-Yuh Evan Chang
University of Colorado Boulder

October 3, 2013 PLV

ing more and more

is everywhere and vary

Software

Eradikional

ing more and more

is everywhere and vary

Software

Eradikional

{
Software is everywhere and varying more and more

S ———

{
Software is everywhere and varying more and more

P ——

Eradikional

cvber physical

{
Software is everywhere and varying more and more

P ——

mobile cvbe‘r physical

{

Software is everywhere and varying more and more]

——— —

{

Software is getting more and more complex]

Software is everywhere and varying more and more]

——— —

cvbe‘r physical

Software is getting more and more compl

——— —

{

{

o |

1980s: Bug in Therac-25 kills

2000s: Conficker worm costs $9.1
billion in damages

1980s: Bug in Therac-25 kills

2000s: Conficker worm costs $9.1

billion in damages

Today: “Don’t buy this app, it
crashes.”

How does program analysis save the day?

Program Analysis for Formal Verification

Program

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

Program —> Verifier

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

/ proof of no bug
Program —> Verifier

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

/\
of “mayhe” bugs

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

/\
of “mayhe” bugs

|
Undecidability necessitates the possibility of

false alarms. We hope not too many.
) \

Uncooperative Program Analysis?

Oh ,~
Verifier, help
me prove my

program has no 4

Uncooperative Program Analysis?

Oh \
Verifier, help

| " Online 142, \
| there may be a §
bug

me prove my
program has no 4

Un

Oh
Verifier, help
me prove my

program has no /
bugs /

On line 142,
there may be a
bug

Isn’t it obvious

this can’t
happen!2l2

Un

Oh

Verifier, help On line 142, \ _. " lsnt it obvious
me prove my there may be a | this can’t
program has no 4

bug , \ happenl2i2
bugs / / p

And noisily
repeated over
and over!

Un

Oh

Verifier, help On line 142, \ _. Isn’t it obvious
| me prove my there may be a | this can’t
\ Pprogram has no /

bug , \ happenl2i2
bugs / / p

And noisily
repeated over
and over!

The well-known false alarm problem
_—

e ————— -~

obe o
perative Program Anal
alysis?

Retold by D - Hennessy
Boris Kulikov

l”ll\ll't]h\l l‘,‘
3

V_,./
a ’__.

“IM]ore than a 30% |[false alarm rate]
easily causes problems. True bugs get lost
in the false. A vicious cycle starts where
low trust causes complex [true] bugs to be
labeled false [alarms], leading to yet
lower trust.”

“A stupid false [alarm] implies the tool is
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,

McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to (‘ (:()\7erltj ye

find bugs in the real world. Commun. ACM. 53, 2 (2010), 66-75.

proof of no bug

The traditional approach to the false alarm problem
focuses on improving the verifier.

v

proof of no bug
Program —> Ve riﬁer

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

v

proof of no bug
Program ——> Verifier

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability) |

v

proof of no bug
Program ——> Verifier

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability) |
2 |

Also not a sufficient “excuse” !

Agenda: The cooperative approach addresses the whole
bug mitigation process.

v

proof of no bug
Program —> Ve riﬁer

X

Alarm
Report

Agenda: The cooperative approach addresses the whole
bug mitigation process.

proof of no bug
Program —> Veriﬁer
x Alarm ‘
Report
4 N
Manual
° [(
Triaging

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Program —> Veriﬁer

Manual
Triaging

v

X

< proof of no bug

Alarm
Report

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Program —>

v

proof of no bug
Verifier

X

Alarm

o

L-rcn-rv'en V
Triaging

Report
Thresher: Assisting Triage by

Refutation Analysis
[Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

<

% PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

- ~
Program-
/\ proof of no bug

Program ——> Verifier
7 . “" x Alarm

fy Report

Thresher: Assisting Triage by
’ Refutation Analysis
" [Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]
[} [} (v
Triaging

J PhD Advisee

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Enforcement
Windows: Measuring
Bug Avoidance

[Coughlin+ ISSTA’12, NSF EAGER]

hvd
Program-
ming

Y ¥
Ll
o /,\

Program —>

v

proof of no bug
Verifier

X

Alarm
Report

Thresher: Assisting Triage by

" Refutation Analysis
[Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

L-rvn-rm \/

Triaging)

I \ / PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Enforcement

Windows: Measuring

Bug Avoidance

[Coughlin+ ISSTA’12, NSF EAGER]

N
P Spec-
rogram- " ification
~ ming
SN
) Program —>

v

proof of no bug
Verifier

X

Alarm
Report

Thresher: Assisting Triage by

" Refutation Analysis
[Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

’v-rvrrrv'm \/

Triaging)

I \ J PhD Advisee

Agenda:

Enforcement

Windows: Measuring

Bug Avoidance

[Coughlin+ ISSTA’12, NSF EAGER]
. -
P Spec-
rogram- 7 ification
ming v
;IE”LL% % proof of no bug
- Program —> Verifier
Fissile Types: AL
Checking Almost Thresher: Assisting Triage by
Everywhere Refutation Analysis
Invariants [
[Coughlin+ POPL' 14, NSF SHF] ﬁv‘rcn—rvtn

Report
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]
[] [] (
Triaging

A4

PhD Advisee

Agenda:

Enforcement
Windows: Measuring
) Test R Test
Bug Avoidance e e unner > Output
[Coughlin+ ISSTA’12, NSF EAGER]
, "
P Spec-
rogram- 7 ification
ming v
& proof of no bug
Program —> Verifier
Fissile T : x Alarm
issile Types S

Checking Almost Thresher: Assisting Triage by

Everywhere Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

Invariants [
[Coughlin+ POPL' 14, NSF SHF] ﬁv‘rcn—rvm ' \/

Triaging)

I “ PhD Advisee

Agenda:

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

Enforcement
Windows: Measuring

Test

. \V4 Test
Bug Avoidance S g Runner > Output
[Coughlin+ ISSTA’12, NSF EAGER]
. Ve

P Spec-
rogram- 7 ification

ming v

| proof of no bug

Program —> Verifier

X

Alarm

Fissile Types: Report

Checking Almost Thresher: Assisting Triage by

Everywhere Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

Invariants [
[Coughlin+ POPL' 14, NSF SHF] LTCTI’TU‘WI ~ \/

Triaging)

| ‘Q? PhD Advisee

Agenda:

Enforcement
Windows: Measuring .
Bug Avoidance Input
[Coughlin+ ISSTA’12, NSF EAGER]
. -

P Spec-
rogram- 7 ification

ming

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL’14, NSF SHF]

—> Runner

: V/
Program —> Verifier &
.:6'- \
e’

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

\4 Test
> Output

Jsana: Abstract Domain Combinators
for Dynamic Languages v

[Cox+ ECOOP’13, NSF SHF]

roof of no bug

X

Alarm
Report

Thresher: Assisting Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

[
LTcrrrvvn - \/

Triaging)

| ‘Q? PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

—_—

Fissile Types:

Checking Almost This Talk Thresher: Assisting Triage by
Everywhere Refutation Analysis
Invariants _ | | [Blackshear+ PLDI'13, Blackshear+ SAS'11, NSF CAREER]
[Coughlin+ POPL’ 14, NSF SHF] \/

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Fissile Types: |
Checking hAlmost This Talk Thresher: Assisting Triage by
Everywhere Refutation Analysis
Invariants g [Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]
[Coughlin+ POPL' 14, NSF SHF] \/

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Fissile Types: l
Checking hAlmost This Talk Thresher: Assisting Triage by
Everywhere Refutation Analysis
Invariants ' [Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]
[Coughlin+ POPL'14, NSF SHF] \/

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
4

Application: Find memory leaks and eliminate crashes in Android

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
)

Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis
» Interactive checking speeds: making IDE integration possible

» Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
4

Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis
» Interactive checking speeds: making

» Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

Thresher: Precise
Refutations for Heap
Reachability

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time variable

X

!

of type T 2

=
[N LLIDIC

How is this useful? We identify memory leaks
that cause your app to crash!

How is this useful2 We identify memory leaks
that cause your app to crash!

§\\

|=| stackoverflow

Android: Crash on rotation, horizontal to vertical
Crash is detected after rotating phone in Gmail Sync now view &

phonegap »
[important bug]cordova 1.8 crash on rotation android
5 posts by 2 authors (@) R+1)

A

00— \
|=| stackoverflow

App crashes when rotating Samsung phone

T

e

B androidterm

= Android Terminal Emulator

Project Home Downloads Wiki Issues Source

‘New issue Search | Open issues : | for

Issue 20: Crashes when rotating phone horizontally
1 person starred this issue and may be notified of changes.
—— —‘

How is this useful?2 We identify memory leaks
that cause your app to crash!

S\
=] stackoverflow T

Android: Crash on rotation, horizonta!

phonegap »
=

m

roid Terminal Emulator

Project Home Downloads Wiki Issues Source

New issue Search | Open issues s | for

Issue 20: Crashes when rotating phone horizontally
1 person starred this issue and may be notified of changes.

Android memory leaks underly rotation-based crashes.

Activity objects

encapsulate the Ul

Android memory leaks underly rotation-based crashes.

Android
oS

-

Activity objects
encapsulate the Ul

/# of type Activity

Android memory leaks underly rotation-based crashes.

Android
oS

-

Activity objects
encapsulate the Ul

/# of type Activity

Android memory leaks underly rotation-based crashes.

Activity objects
encapsulate the Ul

Android
OS of type Activity

w | N

of type Activity

Android memory leaks underly rotation-based crashes.

a_static _field

program heap

Activity objects
encapsulate the Ul

Android
of type Activity

-

N\

of type Activity

Android memory leaks underly rotation-based crashes.

-

a_static _field

can’t collect

program heap \
Android (ﬁ
of type Activity £

this dead
Activity! |

N\

of type Activity

Activity objects
encapsulate the Ul

Android memory leaks underly rotation-based crashes.

a_static _field

>~ | Activity objects

e /' can't coll
/ ful of { can't collect

(Vs i, | “Wseed)| encapsulate the Ul
/> program heap\ ety
Androi» ? / H'JL

oS Hype Act1v1ty . (i /f

N

of type Activity

Android memory leaks underly rotation-based crashes.

a_static _field

'

Android
(o)

f type Activityl

can’t collect

i\ . « V fun of |
.) TR Do Yarbage. f
\ /> program heap \ f‘

this dead

4 R
(' \)JJ’%‘ ‘v "

. ®
-’ 4

=[]

of type Activity

"é\‘-*{/ . 7, "
Bug: Holding reference to “old” Activity

Activity objects
encapsulate the Ul

Activityl

{

—e—

Android memory leaks underly rotation-based crashes.

TN a_static_field N o .
SN >~ | Activity objects
] : '\'\"; can’t collec
\) LI B ¢ /gﬁ:ba;;! t|1i.:dec1dt enCGPSUIGte the UI
/> program heap\ jccivicyl

Android ? RS e e
of type Activity Y-

=]

of type Activity

“an Activity leak”

{

7 3
A /

. { .
Bug: Holding reference to “old” Activity |
) ———

The expert recommendation ...

3
8 00 E\,Questions containing ‘andrc @Issues - android - Android © Android Developers Blog: A Android Developers Blog: M
€« C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

i Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
| Search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCTIE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
~ S On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(68) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)
December (7) @override
November (5) protected void onCreate(Bundle state) {
October (5) super.onCreate(state);

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");

July (1)

=
=
=
» September (8)
=
=

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

&«

e 00

C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

E\, Questions containing ‘andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: M

i Developers

SEARCH

ARCHIVE

» 2012(31)

» 2011 (68)

» 2010(73)

¥ 2009 (63)
» December (7)
» November (5)
» October (5)
» September (8)
» August(2)
> July (1)

Search |

Android Developers Blog

Avoiding memory leaks

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

@0verride
protected void onCreate(Bundle state) {
super.onCreate(state);

TextView label = new TextView(this);
label.setText("Leaks are bad");

The expert recommendation ... '

“Do not keep long-lived references to a context-activity”

800 .=, Questions containing ‘andrc 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: I

€« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html D

Android Developers Blog

iy Developers
Avoiding memory leaks

SEARCH

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

RCHIVE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

Search

» 2012(31)

N On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(65) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,

> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

¥ 2009 (63)

» December (7) @0verride

| don’t know how |
created a long-lived
reference to an Activity!

The expert recommendation ... u

“Do not keep long-lived references to a context-activity”

e 00

.=, Questions containing ‘andr 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: IV

€« C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's
very little for what some developers want to achieve. Even if you do not plan on usi

little as possible to let other applications run without getting them killed. The more
the faster it will be for the user to switch between his apps. As part of my job, Iran [J
ARCHIVE S ; : ;
applications and they are most of the time due to the same mistake: keeping a long °
2012 (31)

2011 o8 On Android, a Context is used for many operations but mostly to load and acces:
2011(C8) receive a Context parameter in their constructor. In a regular Android application
2010(73) Activity and Application. It's usually the first one that the developer passes to classé]

I misunderstanding of
a library causes the
library to keep the

Activity reference.

Search

| don’t know how |
created a long-lived
reference to an Activity!

The state of practice in debugging Activity leaks ... #ﬁl

]
e
8 00 l_:.‘\ Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog

i3 Developers
Memory Analysis for Android Applications

SEARCH
[This post is by Patrick Dubroy, an Android engineer who writes about programming,
| Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE

memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your

e application's memory usage.
» December (7)
November (7) Some memory usage problems are obvious. For example, if your app leaks memory

every time the user touches the screen, it will probably trigger an
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

[
» October (5)
» September (5)
» August (3)
> July (7)

» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

Tools of the trade

The state of practice in debugging Activity leaks ... %)

e
8 00 é Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog

i3 Developers
Memory Analysis for Android Applications

SEARCH
[This post is by Patrick Dubroy, an Android engineer who writes about programming,
| Search usability, and interaction on his personal blog. — Tim Bray]
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
» 2011 (68 atsome of the memory profiling tools in the Android SDK that can help you trim your
(68) application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an
» October (5) .
OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
Tools of the trade
> July (7)
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app

The state of practice in debuggin

8 00 E‘.\ Questions containing ‘andrc @Issues - android - Android

€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Android Developers Blog: A Android Developers Blog: I

i1 Developers
SEARCH

Search
ARCHIVE
» 2012(31)
¥ 2011 (68)

» December (7)
» November (7)
October (5)

September (5)

July (7)
June (3)

N VWIS

=
S
» August (3)
>
=

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app

2. Watch the heap usage

g Activity leaks ...

Dalvik Debug Monitor

Objects
59,281
Display: Stats
Type Count Total Size Smallest
free 1,772 107.312 KB 16 B
data object 40,528 1.229 MB 16 B
class object 2,187 637.234 KB 168 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B
2-byte array (short(], char(]) 10,373 677.352 KB 24 B
4-byte array (object(], int[], float[]) 3,663 276.812 KB 24 B
8-byte array (long(], double[]) 283 14.875 KB 24 B
non-Java object 92 14.219 KB 16 B

Largest
48.297 KB
1.047 KB
34.125 KB
1.500 MB
28.023 KB
16.023 KB
4.000 KB
8.023 KB

Median
24 B
328

168 B
48 8B
48 B
408B
328B
328

2.576 KB
66 B
77 8B
538B
158 B

The state of practice in debugging Activity leaks ..

. <%

>
)

1. Run the app

2. Watch the heap usage

3. Dump the heap. Dig
around and hope to
find the culprit

Type Name

M %ol R QB by |

i Overview | ljl Histogram | [list_objects [selection of 'byte[)') -inbound £3
Class Name

» (0] byte[8) @ 0x429b69¢c8 HPDS....

v 0] byte[2797568) @ Ox426fe780 '2°.&11.'25.3%.&.#.4+ . (.5..°..%..5...2., +..,7&.2>*.0

Statics | Attributes Class Hierarchy

Value

v | mBuffer android.graphics.Bitmap @ 0x40a50fa8
¥ value java.util. HashMapSHashMapEntry @ 0x40adceb8
V’,‘\ [13] java.util. HashMapSHashMapEntry{16] @ 0x40805440
table java.util.HashMap @ 0x40801a98
'):, sBitmapCache class com.example.android.hcgallery.ContentFragment (

T.he culpri;t) »7) <class> com.example.android.hcgallery.ContentFragment @ Ox408(

Y Y Y Y Y Y Y Y Y Y YVYVYYVYVYVYVYYVYYVYYYVYY

»"] value java.util. HashMapSHashMapEntry @ 0x408009¢0

2. Total: 2 entries
1| byte[2797568] @ Ox42453768 % ..)S .+& .61+.HA;.F79.92,.4-".C;8.MEB.@;8."..
1] byte[2797568) x421a8750 2.FRF.P\P.OXU.NWT.ZUY.ZUY.ywo.....It\.uje.2.\.syV.
1] byte[2797568) x41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heAk
x41be3108

1] byte[2797568) @ Ox4168d0d8 d.B.d.B.d.@.d.@
1] byte[2797568) @ Ox413e20¢0 cR>.eT@.eVA.dU@.aR=."Q<. Q>.bS@
1] byte[2797568] @ 0x411370a8
1] byte[2797568] @ Ox40e8c090
)] byte[1572864] @ 0x4040¢078
1] byte[2797568] @
1) byte[62100]) @ Ox40a51db8

)] byte[24] @ 0x40a4cd1]cccviiiiiiiiinnnns
1] byte[4096] @ Ox40ad42as0
1] byte[24] @ 0x40a4a7alcccvuvuniunnriurins
1] byte[4096] @ 0x40a48148
1| byte[24] @ 0x40a464f1 - —
) byte[84] @ 0x40240560 ... @...@..oorvrvrmmemeee@errrresrninicnnneisennsse fMEMEMoee.
1] byte[768] @ 0x40a40200 MM..MM..MM..MM..MM..MM..MM.. MM..MM
1| byte[1572864) @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E
1] byte[84] @ 0x408bal88
1] byte[960] @ Ox408b9d68 \~(J~) J=).J~). 0SU)~).}~).}~).).*. OSUL.~.]
|| byte[84] @ Ox408b%a48 ‘S

1] byte[960] @ Ox408b9628 \~(\~(\~(.]~)..0QS]
1] byte[56) @ 0x408b9318 o
1Lhvte(1921 @ Ox408h91f8__00S ORT OSULOSULITV ATV TV UMW LW 2VX 2WY 2X7 2X7

3emlof 81M [

£.2.9.@.h.B.n.B.i.B.i.B.n.B.i.C.g.CABFC
S@.bS@.bS@.¢'

Shallow Heap ' Retained Heap

24
2,797,584

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2,797,584
2,797,584
1,572,880
2,797,584
62,112
40

4,112

40

4,112

40

96

784
1,572,880
96

976

96

976

72

208

24
2,797,584
2,797,640
5,595,472

32,802,960
32,803,008
32,803,056
384
152

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2,797,584
2,797,584
1,572,880
2,797,584
62,112

40

4,112

40

4,112

40

96

784
1,572,880
96

976

96

976

72

208,

8 00 E\‘ Questions containing "andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I =
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html D 1/ Dalvik Deng Monitor
Heap updates will hannen after every GC for this client
ID Heap Allocated Free % Used # Objects
1 8.570 320 KB 98.62% 59,281
Android Developers Blog Display: Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318
j 4 4
Developers class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B
. . P 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
Memory Analysis for Android Applications yie array (byte(] 0
SEARCH 2-byte array (short(], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[This post is by Patrick Dubroy, an Android engineer who writes about programming, 4-byte array (object(], int[), float[)) 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long[], double[]) 283 14.875 KB 24 B 4.000 KB 328 53 B
The Dalvik runtime may be garbage{ol[ectedl, butthatdoesntmean you can |gnore. non-Java object 92 14.219 KB 16 B 8.023 KB 32 B 158 B
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
Sootiee atsome of the memory profiling tools in the Android SDK that can help you trim your
‘ (68) application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
» October (5 every time the user touches the screen, it will probably trigger an
.) OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
) Tools of the trade
» July(7)
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and eno Eclipse Memory Analyzer ~
VR heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a], Inspector 33 = O leak-converted.hprof 53 ¥ =5

»

Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

¢

A~ 4

3. Dump the heayp|. Dig
around and hope to
find the culprit

) Free % Used ¥ Objects
1 8.570% 320 KB 98.62% 59,281
Display: Stats
Type Count Tot e Smallest Larges Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short(], char(]) 10,373 677.352 KB 24 B 28.023 KB 48 B 66 B
4-byte array (object[], int[], float[]) 3,663 276.812 KB 24 B 16.023 KB 40B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538
non-Java object 92 14.219 KB 16 B 8.023 KB 328 158 B
eno Eclipse Memory Analyzer R
A Inspector 23 = 8 | leak-converted.hprof £3 . =8
il % BBy | QB ehe |0l
i Overview | ljl Histogram | |r] list_objects [selection of 'byte[)') -inbound £3
Class Name Shallow Heap Retained Heap
P

Statics | Attributes | Class Hierarchy

Type

Name

Value

v

byte[8) @ 0x429b69c8 HPDS....

byte[2797568) @ Ox4261e780 '2°.&11.'25.3%.&.#.4+ . (...5.. 5. %...5...2.. +...7&.2>*.0
mBuffer android.graphics.Bitmap @ 0x40250fa8

v value java.util. HashMapSHashMapEntry @ 0x40adceb8
v/l [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440

v") table java.util. HashMap @ 0x40801a98

v sBitmapCache class com.example.android.hcgallery.ContentFragment (
The culprit) »7) <class> com.example.android.hcgallery.ContentFragment @ Ox408(

1| byte[2797568] §
1| byte[3252224) @

1| byte[2797568) @
1) byte[2797568)

1| byte[960] @ Ox408b9628 ...

»"] value java.util.HashMapSHashMapEntry @ 0x408009¢0
. Total: 2 entries

byte[2797568) @ 0x42453768 % .)$.+& .61+.HA..F29.92,.4-".C;8.MEB.@;8."...-)* %<
byte[2797568) 287502.FRF.P\P.OXU.NWT.ZUY.ZUY.W0.....It\ .uje.2.\.syU.
1efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heAk
41be3108

938010

68d0d8 d.B.d.B.d.©.d.@
3e20¢0 cR>.eT@.eVA.dU@
70a8

byte[2797568] @ O:

7.9.@.h.B.h.B.i.B.i.B.h.B.i.C.q.C.f.B.f.C
aR=." Q<. Q>.bS@.bS@.bS@.bS@.e'

byte[279756:

1| byte[2797568) @ Ox40e8c090 - -
byte[1572864] @ 0x40d0c078 {.”.JdB.ON9.65 .!
1| byte[2797568] @ 0x40a61060 b esem ety

1] byte[62100] @ Ox40a51db8

byte[24] @ Ox40adcd11
byte[4096] @ Ox40a4aas0
byte[24] @ Ox40ada7al
byte[4096] @ 0x40248148

1| byte[24) @ 0x40a464f1

byte[84] @ 0x40a40560 @..@ 2 EMAMEM

byte[768] @ 0x40240200 MM MM MM MM MM MM MM MM MM,

byte[1572864) @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E
@ 0x408bal88

@ 0x408b9d68 \~(1~
@ 0x408b9%a48

P..@ X

byte[56] @ 0x408b9318

1Lhvtel1921 @ Ox408h91f8 _00S ORT OSULOSUITV ATV ATV LMW 1MW 2VX 2WY 2X7 2X7

36M of 81M

24
2,797,584
40

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584

2,797,584
1,572,880
2,797,584

62,112

1,572,880

976

208

24
2,797,584
2,797,640
5,595,472

32,802,960
32,803,008
32,803,056
384
152

797,584
797,584
797,584
252,240
797,584
797,584
797,584
797,584
797,584
1,572,880
,797,584
62,112

40

NNNNNWNNN

~

Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

¢

3‘ N A Innnux[n:ﬂv

Dalvik Debug Monitor
Heap updates will hapnen after every GC for this client
ID Heap yfe | Allocated | N\ Free| % Used Objects
)] =
1 8.570'™B 8.452 MB 12)°320 KB 98.62% 59,281
Display: Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168B 34.125KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short(], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
4-byte array (object[], int[], float[]) 3,663 276.812 KB 24 B 16.023 KB 40B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538
non-Java object 92 14.219 KB 16 B 8.023 KB 328 158 B
eno Eclipse Memory Analyzer R
R
A Inspector 83 = 8 | leak-converted.hprof £3 =8
il % el | perEoy Q| Byl
i Overview | ljl Histogram | |r] list_objects [selection of 'byte[)') -inbound £3
Class Name Shallow Heap' Retained Heap
. m
» (1] byte[8] @ 0x429b69c8 HPDS.... 24 24
v (1] byte[2797568] @ 0x4261e780 '2".811.25.(3%.& 4.4+ . (5. Ko 5.2 +..,78.254.0 2,797,584 2,797,584
v} mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640
v value java.util. HashMapSHashMapEntry @ 0x40adceb8 24 5,595,472
Statics | Attributes | Class Hierarchy v} [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440 80 32,802,960
Type |Name Value v’] table java.util. HashMap @ 0x40801a98 48 32,803,008
) v sBitmapCache class com.example.android.hcgallery.ContentFragment (8 32,803,056
The culprit »7) <class> com.example.android.hcgallery.ContentFragment @ Ox408(128 384
T »"] value java.util.HashMapSHashMapEntry @ 0x408009¢0 24 152
. Total: 2 entries
> [i]] byte[2797568) @ 0x42453768 % .)S .+& .61+.HA.F29.92,.4-".C;8.MEB.@;8."...-)*.2;< 2,797,584 2,797,584
> 1] byte[2797568) @ Ox421a8750 2.FRF.P\P.OXU.NWT.ZUY.ZUY.yvoO. It\.uje.z.\.syV. 2,797,584 2,797,584
> [1]] byte[2797568] @ Ox41efd120 njg.pli.kgd.bAl.da\.olg.tal.gni.roh.urk.wtm.spi.lib.herk 2,797,584 2,797,584
» (0] byte[3252224) @ Ox41be3108 3,252,240 3,252,240
» (1] byte[2797568) @ 0x419380f0 2,797,584 2,797,584
] byte[2797568) @ Ox4168d0d8 d.B.d.B.d.@.d.@.f.%.9.@.h.B.h.B.i.B.i.B.n.B.i.C.9.C.LBA.C 2,797,584 2,797,584
» (1) byte[2797568) @ Ox413e20¢0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e' 2,797,584 2,797,584
il hvtel27975681 @ Ox411370a8 2 797 584 2.797.584

“One of the most dreaded bugs in Android is a memory leak. They are nasty
because one piece of code causes an issue and in some other piece of code,

your CIpp|iCC|ﬁ0n CrCISheS.” — http://therockncoder.blogspot.com/2012/09 /fixing-android-memory-leak.html
— ‘*‘

e —

{

l
l‘
g

http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html
http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@oooo&

of type Activity | @

SRCLTILE

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

/

i

of type Activity | @

Can be answered with a
pointsto analysis

-
LG LITVLS

Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@
i

of type Activity | @

-
-

Can be answered with a

points-to analysis

Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static _field

@
i

of type Activity | @

Can be answered with a

points-to analysis

Some pointer relations
may be false

But with the cooperative approach ...

Test
Output

Test
Input

—> Runner

4 D

P Spec-
rogram- " ification

/\ < proof of no bug

Program —> Verifier
x Alarm
Report
4 ™\
Manual
[} [} (
Triaging

1.9 :

But with the cooperative approach ...

v

proof of no bug
Program —> Ve riﬁer’
i

X

Alarm
Report

Manuadl
Triaging

Thresher addresses alarm triage in a particularly

challenging domain.

Program —> Ve riﬁer

Manual
Triaging

v

X

< proof of no bug

Alarm
Report

Thresher addresses alarm triage in a particularly
challenging domain.

v

- proof of no bug
Program —> —| FOINIs-10
“n Analyzer Facts

Leak
Alarms
- ~ —_
Manual
)) (
Triaging

Thresher addresses alarm triage in a particularly
challenging domain.

- proof of no bug
R Points-To . PointsTo
o Analyzer Facts
: ‘ »:_ : '.; e x %I
| Leak
Alarms
4 ™
Manual
[) [) (
Triaging

1)) ’

Known: Precise pointsto analysis challenging
~ - |

Thresher addresses alarm triage in a particularly
challenging domain.

v

o f of no bug
Points-To . pros
Program ——> — Points-To
i Analyzer Facts
/ o m
Alarms

Manual
Triaging

1)) ’

Known: Precise pointsto analysis challenging
~ - |

Thresher addresses alarm triage in a particularly
challenging domain.

- proof of no bug
R Points-To . PointsTo
N Analyzer Facts
: | »:- : o ! ——”’ —
4 ™
Manuadl
[) [) (
Triaging

1.0 /

Known: Precise pointsto analysis challenging |
~ - |

Thresher addresses alarm triage in a particularly
challenging domain.

v

Points-To | proof of no bug
Program ——> — Points-To
& Analyzer Facts

|
|

Manual

(
§

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2”

Vv |

Known: Precise pointsto analysis challenging |

Thresher addresses alarm triage in a particularly
challenging domain.

v

o f of no bug
Points-To . pros
Program —> — Points-To
o Analyzer Facts

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2”
» 75 papers, 9 PhD theses

Vv |

Known: Precise pointsto analysis challenging |

Thresher addresses alarm triage in a particularly
challenging domain.

v

o f of no bug
Points-To . pros
Program —> — Points-To
o Analyzer Facts

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses

Vv |

Known: Precise pointsto analysis challenging |

triage

v

- f of no bug
Points-To . pros
Program —> — Points-To
} Analyzer Facts

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

V

Known: Precise pointsto analysis challenging

PR —— -~

——:‘-——-J

Thresher addresses alarm triage in a particularly
challenging domain.

v

o f of no bug
Points-To . pros
Program —> — Points-To
& Analyzer Facts

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

Known: Precise pointsto analysis-e
enouqgh

Manual triage is particularly hard I
for heap reachability reports.

Manual triage i
ge is particul

F p ICU er h

or heap reachability reporfys e

publi e
lic class TecpClientSample

public static void Main)
aveingoarai

pytel) data = new ©
yre(10241; sv 4
TcpClient servexri scring inyet.
rryl
yer = new TcpCu.em.\' DI o)) gort)t
(SocketExceptiom L L
5ole.vu:i\'.ebin ect O BETVST
arni
/ vyer .Get.sntz&n\\ i
trea\\\ ns = ser “yen Y
tworki a2 ns-?@a‘“d“a' , aata-® g
1ng-
= o0 3 recy) i

ar

e(“\}nab\‘: o conn

MYCIGSS] .iqvq

Manual triage i
age is parti
: particularl
or heap reachability rePor:; hard

publ =la
ic class TcpClientSample

public static void Main)
put, BLEingUatAl

ew bybe\\o'll\; string Ao

byceu data =
TCP!
rryl

client sexrveri
L », portht

W TcpCU.em.\‘ wiwie
o sexver™)

\?.xcep!.'xom \
a o connec

yer = ne'
e ("Unable

(Socket
sole .vu:iv.eb‘m

X, urn*
o maaml)

/
public class TcpClientSample

o > Network I
int re¢ public static void MainQ)
5 string Lnput. avringatai

srrind' §
ASCI pytel) data = new byte{1024)
rTcpClient server:
cryl
yer = nev 1cp£liem.(‘
ket.?.xcep!.ion\ 1
JWx jreline ™ ynable

o ©O

i

&St:eam ns = se:ve:.Gensnzm\\:‘m.

= .Read\data, ' ca.Lendtt’

0dingd- ;

c\ atar ' P

relin® (str 'mqoaw\ P

‘,‘mek\‘.

e .Re¥ 2

gol 2 x,ﬂ'ﬁ\ btan»- e S0
o oxciestiay

(eroe) |

ot = con
==

(%4 U—“?“t euch“d'“ov-P“ n s

n d-,nnq st o0

(Y ‘.ch*ld‘ a el

it ..z:“n "0

LibraryClass1.java

Manual triage i
age is parti
F particularl
or heap reachability report)'s hard

publ -]
ic class TcpClientSample

public static void Main)
pbyte -
Y {1 data new pytel10241: string Lnput. avringhavsi

client sexrvers:

TCP
cryl
yer = new TcpCU.em.\“ L, porthi
(Socket\?.xceptiom \
sole.w:iv.ebine (“Unable ro connect ©© gerver™)
—eemam)

X urn*

public class Tcp ntSample
- s TcpClientSamp

EE' }
; Network <
int e blic
st!iﬂg‘ i("-‘ 51ic static void Main)
sCl pytel) data = :
ol rcpclient o pyte(10281; Sring knpst SN
con ey
vlhile segver = nev pepclient "
i1 ketj‘.xcept.ion\ 1
i .w:&teL'u\e\"\)nab\c
} ,k S S mamlVd
Networ It ass TcpClientSample
int e public
strinQ‘ () 1ic static void Maal
1 pytel) data =
AEE TcpCl &en:_ : te(1028); string nwst: arTinguAtad
= server = eV cpcirient ™ o, pert)i
)cacch (Sockec cept&on\\
Console.w:ite\.‘xne (“uUnable o connect © gerver
returni
x .Get.s,uzm\\ 1
cred = serve s
N twc;l;\: 2 . y(gatar O aava.1end
N ins " Encodind
cringDa = e aates g cec) i
11- S‘e‘:_ v ingoat®
consoe” i R
1e(tr)i ie peadsi®®) ;
whi) consoe i) pred®t oy
in e
1: P (i“p\lt pr Pez“;’;:nr")-’u;
T (1090 e P
(A nidd, c10%®
neﬂc "C“tld‘.(‘;

MyClass2.java

II:v\cul:uql triage is particularly hard
or heap reachability reports.

public cl x
{ . TcpClientSample
public static void Main ()
(
byten data = new pyte(10241;: string Lnput. avcingharas
Tcpclient server:
cryl . o\ 3
W Tcp(‘,\&ent\" o porvYd
0]

yer = N€
(Socket
soLe.WriteL

Except&on\ \ -
ine (“unaple X

are*
e eaam) 3
public 1a TepCli
< pClientsSample
public stat s Mainl)
ASC1 byte[\ data = new byne\\uzn\; string Anput. avringhatai
Tcpclxent sexveri
rryl = R
segver = ne¥ qpcpclient” -« -t T . portht
y;er.v:.xce‘)ﬂ‘-““‘\ 3 oex o sexver

.Wtitehine (“unaple

—aam) 3
public la - i
1 é TcpClientSample

{
public static vei L MainQ)
5 string Anput. avringatai

pytel) data =

TcpClient 58
——
.o, perthi
)catch (Sockeb *\
Console.
ro
SRPT N\ §}

retu

.

ibrary2Class1.class

' TecpClientSample

{
puk ta 1 Mainl)

(
pytel) data = new byte(10241; strind oS
TcpClient sexrveri
cryl
yer = newvw TcpCl yent" - w, pott)i
cLExceptic:\\ \ -
jreLinel” nnect

ot
e eaam) 3
X
1 TcpClientSample

1 Mainl)

byte[\ data = new bytn\\.um\: string Anput.

sCl
L Tcpclienc serveri
ver = new Tcpc\‘n-nck" . w, porthi
Ketﬁxcepn’mm\ N
jne ("Unar ect \

Aw:ite&.‘.ne

caam)3
bl 9
1 TepClientSample

Main)

Hcpcrienc” - - 07
<:(-.p(,x0'.\\l i .

)catch 3 > o)
Console .writehu\&k AL
retur™?
—-—aaml)d

Lib »

e

Library

java.util.HashMap.class

I\;\all:ual triage is particularly hard
r heap reachability reports.

X(“x lic class TcpClientsample
public ratic void mainl)
(
pytel) data = new byte(10241: string Anpet.
TCpClient serveri
cryl
yer = newvw TcpC\\ch_\" ., pervhi
(SocketExcept&om \ =
i Linet""'

et
Cemaml)E
ubl ic 1
1a TcpClientsSample

ec yub e st
£ T publi 1t v 4 Main)
ASCI bytel\ dat
TcpClient serveri
. w, port)i

a = new byte(102481: string Anput, stringoata

ver = newvw TcpC\&enL\" e
KetExcept_&om\ s e
.“titehinel"”mﬂu-‘ !
/ caml)3
- public 'a - =
{) cpClientSample
ratic void Mainl)

ylic stati

byr_e[\ data = 5 string Anput. avringatai

Tcpclient 58
—

. », port)t

)catch
cons
rety

ole WX

pnt
—eeaaml)

jnt e
str ing!
asCT

Lib r_

TcpClientSample

{
public static v 14 Mainl)

{

pytel) data = nev pyte(1024); string inost:

Tcpclient server:

cryl X
server = new '\‘cpcxmm_(" N L=, porthi

)catch (socket on) L e raReetN

cOnsole JWrxid
returni

gream 02 =
ns.Re?

yClass3.java

' TecpClientSample

(1 MainQ)
pytel) data = new byte(102a1; strind oo, BLEANGUATA
TcpClient serveri
cryl
yer = nev Tcpc\mnu" . », porthi
(SOCKUtEXC&Vt'}O!\)\ 2 ’ =
sole.WrixeL‘xnek“' naple f
e
—e—maml)3

TcpClientSample

1 Mainl)

data = new pyte(10241: string Anput.

pytel)
erveri

TcpCl‘xent s
pcrient (™ - ol o
ion) \ X z

caami) i
) TepClientSample

L Mainl)

ve(1024); BT

—ewaaml)

TcpClientSample

IN ouTt

L Mainl)
pytel) data = FOv pyte(1024); strin axringuAa:
TcpClient serveri
cryl)

server = new TcpC\u:n\'.\" , ports
)catch (Sockeu‘.xc«.puoml s
Console .writehine (“Unaple
retutr\;
gam\) ¥
- > e\:.G(:V.SL!LaF\
= serV PRI X

rean NS
c“°r\:.,5t _peadtdater 7

}
n
_+ re v }x:mcoqu. 2
e {ngldater o
And T iagP

gecy) i
ax,a\ i

III I|
|

e

I——

Examining manual triage ... I

Examining manual triage ... I

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

|

A
1L

What does the user need to do with an alarm?@
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

Automate the tasks that developers hate doing
But not the things they love

—_— _ _ S

Design an
algorithm for

Vv

Automate the tasks that developers hate doing

But not the things they love

I

Automate the tasks that developers hate doing
But not the things they love

require human S

creativity and insight

Automate the tasks that developers hate doing
But not the things they love

—_— _ _ S

Automate the tasks that devete

Iy
L

mv SQ

But not the things they love

ers hate doing

S

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
— Points-To
Progm Analyzer — Facts
£ (offthe-shelf)
S ol

N— x S'j'
T

Manual
Triaging

Thresher filters out false alarms by

refuting them one-by-one.

Points-To
Program ——> AnCII)’Zer
ZEN (off-the-shelf)

Manual
Triaging

—

«—

Points-To
Facts

w

Filter with

v

proof of no bug

X !
:.:‘:;s

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
— Points-To
Progm Analyzer — Facts
T\ off-the-shelf ,

By vras) |) S X .|

Leak
Alarms
(™

Manual | Filter with
[} [} h .
Triaging

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
— Points-To
Progm Analyzer — Facts
T\ off-the-shelf ,

By vras) |) S X .|

Leak
Alarms
(™

Manual | Filter with
[} [} h .
Triaging

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Program —> Anquzer — Forcre
,)) .
=777)) (off-the-shelf) - x el
I y
p
Alarms
4 N\
Manual -~ Filter with
[} [} h .
Triaging

@

Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
4_~

-

Thresher filters out false alarms by
refuting them one-by-one.

Points-To proof of no bug
Points-To

Program > Analyzer ™ o

& @' (off-the-shelf) -/ x &'J’(I
4 AE‘ y

o
Alarms

/’ a

Manual | Filter with
[} [} h .
Triaging

@

Ideal | : Refute pointsto on-demand with second “uber-precise” filter analysis |

-

*_sensitive

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Program —> Anquzer — Forcre
,)) .
=777)) (off-the-shelf) - x el
I y
p
Alarms
4 N\
Manual -~ Filter with
[} [} h .
Triaging

@

Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
4_~

-

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Frogram > Analyzer ™ o
f \: !-\L (off-the-shelf) | x _/II
| [9, Leak
\—/ Alarms
‘\

Manual |~ Filter with
Triaging

-

O
{

Ideal || : Refute pointsto on-demand with second “uber-precise” filter analysis |
— M

{

Ideal ” : Leverage the facts from the first analysis in the filter analysis to scale |
— :ﬁ

Refutation analysis is “Proof by Contradiction” g
W“‘h the ”BUf Why?” game R

There may be an
execution where at
some time

O

v

/

O

of type T.

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at
some time

v

O

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some time
o,

/

O

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some time
0 A. Why does statement s cause o to point to o’ ¢
0/

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some fime

0 A. Why does statement s cause o to point to o’ ¢

‘l' B. Because before statement s, the program
/

0 state could satisty formula ¢

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

There may be an
execution where at
some time

v

o

|

of type T .

A. Why does object o possibly point to o’ @

B. Because statement s may execute to make
o point to o’

A. Why does statement s cause o to point to o’ ¢

B. Because before statement s, the program
state could satisfy formula ¢

A. Why can the state before statement s satisfy ¢?@

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

There may be an
execution where at
some fime

v

o

|

of type T .

A.

Why does object o possibly point to o’ 2

B. Because statement s may execute to make
o point to o’

Why does statement s cause o to point to o’ ¢

B. Because before statement s, the program
state could satisfy formula ¢

Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,
the state could satisfy formula o’

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
There may be an 4 PO POSIRY P ’

execuﬁgp&zheca_ai,, B. Because statement s may execute to make

- : o point to o’
some fim A iust asks P
but why? : :
0 > A. Why does statement s cause o to point to o’ ¢
1 B reasons
about program B. Because before statement s, the program
0 semantics state could satisty formula ¢

|

A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,
the state could satisfy formula o’

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
There may be an / PO POSIRY P ’

executiopauahere At B. Because statement s may execute to make

- : o point to o’
some fim A iust asks P
but why? : :
0 > A. Why does statement s cause o to point to o’ ¢
1 B reasons
about program B. Because before statement s, the program
0 semantics state could satisty formula ¢

|

A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,

of fype T. the state could satisfy formula

: - |
Theorem: If B can’t give an answer, contradiction. s

The alarm is false. It’'s been refuted. (A wins)

i S

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,

the state could satisfy formula ¢’

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- =3 L}

statement s,
a o’

if empty, then refuted (A wins) ‘

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

s —

statement s,

if empty, then retuted (A wms)

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s,
state could satisfy formula o

the program

A. Why can the state before statement s satisty ¢?¢

L8 L) .

- C ' statement s’,
if empty, then refuted (A wins) l

a o’

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- — L} ~ | | Py n

statement s’,
if empty, then refuted !A wins! !a 7

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- — L} ~ | | Py n

statement s’,
{ if empty, then refuted !A wins! !a 7

set of possible states

¢ I o' (

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing
specialized constraint forms

B.

Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B.

Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing
specialized constraint forms

B.

Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B.

Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing

specialized constraint forms Y%
B. Because before statement s, the program . ’
state could satisfy formula o Specmhzed
constraint forms

A. Why can the state before statement s satisty ¢?¢

makes finding

B. Because before the previous statement s’, refutations f
the state could satisfy formula ¢’

easible
RN

Technical Contribution:
Specialized constraint forms

=)

Summary: Thresher assists the user with alarm triaging by
effectively filtering out many false alarms.

v

- proof of no bug
R Points-To . PointsTo
Analyzer Facts
f \‘z" x %Il
Alarms
~N

Manual - Filter with
[) [] h N
Triaging

i€ @

Ideal || : Refute points-to on-demand with second “uber-precise” filter analysis }

Ideal ” : Leverage the facts from the first analysis in the filter analysis to scale |

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code
+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA

Points-To Thresher True Thresher False Filtered

Program Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

— Points-To Thresher True Tltresher Falsoe Filiereod

Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

A~
staticfield-

Activity pairs

Activity pairs

— Points-To Thresher True Tltresher Fulsoe Filiereod

Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro triage “well” 54 18 36 18 0 100
Komail - at ~1-2 hours 208 130 b4 374 18 90
Total PST larm 31 172 15| 1602 17 88

| -
staticfield-

Program Points-To Thresher
Alarms Refuted

PulsePoint unknown 16 g
StandupTimer 2K 95 15
DroidLife 3K 3 0
SMSPopUp 7K ; |
aMetro 20K 54 18
K9Mail 40K 208 130
Total 72K 311 172

A~ A~
staticfield- Fi"ered

Activity pairs

Points-To Thresher True

Program Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 1 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115
A~ A~ A~
<taticfiela. || Filtered | Manual
Activity pairs || gesiil || 2

Points-To Thresher True

Program Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5] 4
GMBTI'O 20K friqge ”We"" 36
K9Mail 40K at 10-15 b4
minutes per
Total 72K 115
. N e
staticfield- Fllfered M?'?UGI

Activity pairs

— Points-To Thresher True

Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 l 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

< ~coffee to
lunch break

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

— Points-To Thresher True Tltresher Falsoe

Alarms Refuted Bugs Time(s) Alarm %
PulsePoint unknown 16 8 8 95 0
StandupTimer 2K 25 15 0 1068 100
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0
aMetro 20K 34 18 36 18 0
K9Mail 40K 208 130 64 374 18
Total 72K 311 172 115 1602 JZ

% after

filtering

— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 E 88
% after

filtering

— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

I

l
|

—————

e

Guesstimate
Triage “well” without versus with: ~450 hours versus ~30 hours

Triage “ok” without: ~30 hours od
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only) :
Thresher filters 88% of false alarms from pointsto analysis |
T 1

§ g B
}' \

(]
 /Android
¢ v
an -~

... in the process of finding leaks in apps

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];

copy from old table
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];

copy from old table
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find the Android’s HashMap bug ...

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];

copy from old table
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}
+

Find the Android’s HashMap bug ...

class HashMap {

+

null object pattern: should not be written to

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) { allocate new
this.tbl = new Object[more capacityl]; backing array

copy from old table on first write
N Text

this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}

Find the Android’s HashMap bug ...

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Texf on first write
this.tbl[bucket using hash of key] = val;
ro

Aég%:hMap(Map m) {

7 {if (m.size() < 1) { this.tbl = EMPTY; }

" else { this.tbl = new Object[at least m.size()]; }
copy from m

}
+

Find the Android’s HashMap bug

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Texf on first write
this.tbl[bucket using hash of key] = val;
Yo

A\% hMap (Map m) {
/ ‘/1f (m.size() < 1) { this.tbl = EMPTY; }
) else { this.tbl = new Objectlat least m.size()]; }

copy fromm ——— o

~— An “evil” implementation of the Map interface

by
can corrupt EMPTY. Then, all HashMaps created

+

in the future will be corrupted.

Find the Android’s HashMap bug

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
} copy from old table Text on first write

this.tbl[bucket using hash of key] = val;

A\%shl\’[ap(l\’[ap m) {- returnO _
7 {if (m.size() "< 1) { this.tbl = EMPTY; }
" else { this.tbl = new Object[at least m.size(]; }

copy fromm

3 return “evil” content .~ can corrupt EMPTY. Then, all HashMaps created

III e

|mp|ementahon of the Map mterface

in the future will be corrupted.

cla; I

. What if you store
passwords in a HashMap? |
Text |

Zé}s%é/ﬁMap(Map m) { iU

7 /if (m.size()“< 1) { this.tbl = EMPTY; }

" else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

III o

An “evil” implementation of the Map interface
D L —— can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

cla I

What it you store

passwords in a HashMap?
Text |
We reported this, Google fixed |t§ a

} 7'—-__ https://android-review.googlesource.com/#/c/52183/

ﬁ. e
ﬁ%shMap(Map my {. reornc

7 ;1f (m.size()“< 1) { this.tbl = EMPTY; }
) else { this.tbl = new Object[at least m.size()]; }
copy from m

}
}

.III)

An “evil” implementation of the Map interface
D L —— can corrupt EMPTY. Then, all HashMaps created
in the future will be corrupted.

https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/

Contribution: Addressed the
false alarm problem with

a “smart and precise filter”

a refutation analysis
|

S —

Agenda:

Enforcement
Windows: Measuring .
Bug Avoidance Input
[Coughlin+ ISSTA’12, NSF EAGER]
. -

P Spec-
rogram- 7 ification

ming

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL’14, NSF SHF]

—> Runner

: V/
Program —> Verifier &
.:6'- \
e’

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

\4 Test
> Output

Jsana: Abstract Domain Combinators
for Dynamic Languages v

[Cox+ ECOOP’13, NSF SHF]

roof of no bug

X

Alarm
Report

Thresher: Assisting Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

[
LTcrrrvvn - \/

Triaging)

| ‘Q? PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

= ™
P Spec-
rogram- " ification \
Sioe), y / proof of no bug
Program —> Veriﬁer

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL' 14, NSF SHF]

Fissile Types:
Checking Reflection
with Almost
Everywhere
Invariants

Method Reflection and the Great Divide

object[string] ()

Method Reflection and the Great Divide

reflective method call: dispatch based on run-time value (in string)

object [string]v()

Method Reflection and the Great Divide

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

Type system designers worry.

What gets called?2 What if

object has no method named
by string?

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers

Type system designers worry.

What gets called?2 What if

object has no method named
by string?

“web 2.0” developers

“Web 2.0” developers think
it's cool.

| can flexible and compact
code, so | will take it over
static safety.

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

Type system designers worry. Web 2.0 developers think

it’'s cool.
Wh: ST]
obj, “MethodNotFound” checked at run time |
by < —

E ! ! static satefy.

Program

Program

safe assuming a relationship
invariant between .o and .m

V
callback.o[callback.m] ()

Program

O_&ﬁ safe assuming a relationship
R\ 4 w invariant between .o and .m
\105"’0&’\ \/
wh callback.o[callback.m] ()

Program

Q_éﬁ safe assuming a relationship
. 0\"& w invariant between .0 and .m
RV A \/
wh callback.o[callback.m] ()

invariant broken

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Q\—é& safe assuming a relationship
. 0\"& w invariant between .0 and .m
IRV V
wh callback.o[callback.m] ()

/

invariant broken
&

buk omlj Eemporavitv e

)z
3

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Q\,é& safe assuming a relationship
. O\V& w invariant between .0 and .m
. \105“ \/
wh callback.o[callback.m] ()

avariank broieen @

buk o-mi.:j Eemporamtv

Program

Tolerate “temporary” violation with

Programs are often
(1) safe, (2) not type safe, (3) but almost so

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

Type annotations

I
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s)

l

TR——

benchmarks (total)

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

places requiring a check of the invariant

\/ |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s)

l

TE—

benchmarks (total)

Fissile analyzes Objective-C source
? benchmarks (6 libraries + 3 apps)
1,000 to 176,000 lines of code

461,000 lines in totadl

places requiring a check of the invariant

\V |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s) |

,’
. -
Big Deal: makes IDE integration possible

Summary:

Enforcement
Windows: Measuring .
Bug Avoidance Input
[Coughlin+ ISSTA’12, NSF EAGER]
. -

P Spec-
rogram- 7 ification

ming

Fissile Types:
Checking Almost
Everywhere
Invariants

[Coughlint under review, Khoo+
PLDI’10, NSF SHF]

—> Runner

: V/
Program —> Verifier &
.:6'- \
e’

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

\4 Test
> Output

Jsana: Abstract Domain Combinators
for Dynamic Languages v

[Cox+ ECOOP’13, NSF SHF]

roof of no bug

X

Alarm
Report

Thresher: Automated Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

[
LTcrrrvvn - \/

Triaging)

| ‘Q? PhD Advisee

Future Directions

The Cooperative Approach

Unit Test Synthesis: test input + test code to unequivocally show bug
Evidence for Alarms: alarm explanations, probability of bug
Hardening: synthesize efficient dynamic checks

Patch Synthesis: synthesize bug fixes

Performance and Scalability Bugs: beyond correctness bugs

Input Debugging: bugs in input

Analysis Engines: in new software domains

The Cooperative Approach

Unit Test Synthesis: test input + test code to unequivocally show bug
Evidence for Alarms: alarm explanations, probability of bug
Hardening: synthesize efficient dynamic checks

Patch Synthesis: synthesize bug fixes

Performance and Scalability Bugs: beyond correctness bugs

Input Debugging: bugs in input

Analysis Engines: in new software domains
Software Domains

Dynamic: web, science+engineering
Concurrent: event-driven systems, user-interactive systems, servers

Distributed: “big data” software

Acknowledgments

o« “»Ma

Natlonal Renewable
Energy Laboratory

Acknowledgments

PhD Advisees

Sam Blackshear E
Devin Coughlin ﬁ
Arlen Cox ﬂ

Yi-Fan Tsai ﬂ

Student Colluborators

Aleks Chakarov (PhD)

Robert Frohardt (PhD)

Christoph Reichenbach (PhD 2009)
Khoo Yit Phang (PhD 2013, Maryland)
Antoine Toubhans (PhD, ENS Paris)
Sid Gracias (MS)

Daniel Stutzman (MS)

Vincent Laviron (MS, ENS Paris)
Nick Vanderweit (BS)

Alex Beal (BS)

Kira Quan (BS)
Chris Bubernak (BS)
James Holley (BS)

Faculty /Researcher Colluborators
Sriram Sankaranarayanan

Pavol Cerny

Tom Yeh

Rick Han

Eric Keller

Dirk Grunwald

John Black

Amer Diwan (Google)

Jeremy Siek (Indiana)

Manu Sridharan (IBM Research)
Xavier Rival (INRIA/ENS Paris)
Jeff Foster (Maryland)

Atif Memon (Maryland)

Cesar Sanchez (IMDEA)

@]‘ PLV

“Nothing so needs reforming as other
people’s habits.” - Mark Twain

“Nothing so needs reforming as other
people’s habits.” - Mark Twain

{
Criticize with care and empathy not condemnation |
————

“Nothing so needs reforming as other
people’s habits.” - Mark Twain

{
Criticize with care and empathy not condemnation |
A ———

“cooperative program analysis principle and challenge”

@]’ PLV

www.cs.colorado.edu/ " bec
pl.cs.colorado.edu

