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Today: “Don’t buy this app, it
crashes.”
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Undecidability necessitates the possibility of

false alarms. We hope not too many.
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“IM]ore than a 30% |[false alarm rate]
easily causes problems. True bugs get lost
in the false. A vicious cycle starts where
low trust causes complex [true] bugs to be
labeled false [alarms], leading to yet
lower trust.”

“A stupid false [alarm] implies the tool is
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,

McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to (‘ (:()\7erltj ye

find bugs in the real world. Commun. ACM. 53, 2 (2010), 66-75.
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The expert recommendation ...
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Android Developers Blog

i Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
| Search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCTIE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
~ S On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(68) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)
December (7) @override
November (5) protected void onCreate(Bundle state) {
October (5) super.onCreate(state);

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");

July (1)

=
=
=
» September (8)
=
=
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Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a




8 00 é Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Py
I];JI

-

=
-
=
-
=
-

-

Developers

SEARCH

| Search

ARCHIVE
» 2012(31)
¥ 2011(68)

December (7)
November (7)
October (5)
September (5)
August (3)
July (7)

June (3)

(VRIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app




The state of practice in debugging Activity leaks ...

8 00 . E,.\Questions containing ‘andro @Issues - android - Android Android Developers Blog: A Android Developers Blog: I =
€« C' [ android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html Dalvik Debug Monitor
I Info Threads VM Heap Allocation Tracker Sysinfo Emulator Control Event Log |
fter every GC for this client
Free % Used # Objects Cause GC
320 KB | 98.62% 59,281
Android Developers Blog Display: | Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
i Developers class object 2,187 637.234 KB 168 B 34.125KB 168 B 298 B
) Memory Analysis for Android Applications 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
SEARCH 2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[Th/seasrisb%/Parrick’Dubioy,’anAndroideng/nee}rwhu writes about programming, 4-byte array (object(], int(], float(]) | 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328 538
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore ) :
ARCHIVE memory management. You should be especially mindful of memory usage on mobile non-Java object 92 14.219 k8 168 8.023 KB 328 1588
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
v 20;)1 (Galb o application's memory usage.
» December
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
October (5) every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the

September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

1=

1=

» August (3)
< Tools of the trade
1=

July (7)
June (3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
V) heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app
2. Watch the heap usage
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Heap updates will
ID % Used # Objects Cause GC
1 98.62% 59,281
Android Developers Blog Display: | Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B, 48.297 KB 248 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318
Developers class object 2,187 637.234 KB 168B 34.125KB 168 B 298 B
. . P 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
Memory Analysis for Android Applications " y (bytell 0
SEARCH 2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[This post is by Patrick Dubroy, an Android engineer who writes about programming, 4-byte array (object(], int[], float()) | 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long[], double[]) 283 14.875 KB 24B  4.000 KB 328 53 B
The Dalvik runtime may be garbage{ol[ec(edl, butthatdoesntmean you can |gnore‘ non-Java object 92 14.219 KB 16 B 8.023 KB 32 B 158 B
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
S ST atsome of the memory profiling tools in the Android SDK that can help you trim your
20100 application's memory usage.
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» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
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. Tools of the trade
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Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?
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3. Dump the heayp|. Dig
around and hope to
find the culprit

1D Heap § Allocated Free % Used # Objects
1 8.570 320 KB 98.62% 59,281
Display:  Stats
Type Count Total Size Smallest Largest Median Average
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8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538B
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Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?
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> 0] byte(8] @ 0x429b69c8 HPDS....

v 0] byte[2797568) @ 0x426fe780 '2".&11.'25.3%.&.#.4+ . (..5..".%...
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v'|_| mBuffer android.graphics.Bitmap @ 0x40a50fa8

. o

| value java.util. HashMapSHashMapEntry @ 0x40adceb8
Statics | Attributes | Class Hierarchy “'U, [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440

Type Name Value v table java.util.HashMap @ 0x40801a98

) "x: sBitmapCache class com.example.android.hcgallery.ContentFragment (
The Culprit T <class> com.example.android.hcgallery.ContentFragment @ 0x408(

| value java.util.HashMapSHashMapEntry @ 0x408009¢c0
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1] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA,.F?9.92,.4-".C;8.MEB.@;8."...-)*.7;<.
+eeennZ.FRF.P\P.OXU.NWT.ZUY.ZUY.yvo0.....It\.u}e.z.\.syU.
(0] byte[2797568] @ Ox41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heA.k
1 byte[3252224] @ Ox41be3108 .
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Dalvik Debug Monitor

Heap updates will hannen after every GC for this client

ID Heap $Ze % Used # Objects
1 8.570'WB 98.62% 59,281

Display:  Stats

Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168 B 34.125KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
4-byte array (object(], int[], float[]) 3,663 276.812 KB 24B 16.023 KB 408B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328 53 B
non-Java object 92 14.219 KB 16 B 8.023 KB 328B 158 B

e00 Eclipse Memory Analyzer N
L%
| Inspector 83 % = B | &2 leak-converted.hprof 53 =8
ioml e | PElE O | Evehr |l
i Overview | il Histogram | [r] list_objects [selection of 'byte[)] -inbound 53
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“One of the most dreaded bugs in Android is a memory leak. They are nasty
because one piece of code causes an issue and in some other piece of code,

your CIpp|iCC|ﬁ0n CrCISheS.” — http://therockncoder.blogspot.com/2012/09 /fixing-android-memory-leak.html
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Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@oooo&

of type Activity | @
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pointer dereferences?
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execution where at
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Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static _field

@
i

of type Activity | @

Can be answered with a

points-to analysis

Some pointer relations
may be false
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Thresher addresses alarm triage in a particularly
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Manual triage is particularly hard I
for heap reachability reports.
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What does the user need to do with an alarm?@
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).
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Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
There may be an / PO POSIRY P ’
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but why? : :
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A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,

of fype T. the state could satisfy formula

: - |
Theorem: If B can’t give an answer, contradiction. s

The alarm is false. It’'s been refuted. (A wins)
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Summary: Thresher assists the user with alarm triaging by
effectively filtering out many false alarms.
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Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
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Ideal ” : Leverage the facts from the first analysis in the filter analysis to scale |




Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code
+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA



Points-To Thresher True Thresher False Filtered

Program Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88
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PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88
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— Points-To Thresher True Tltresher Fulsoe Filiereod

Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro triage “well” 54 18 36 18 0 100
Komail - at ~1-2 hours 208 130 b4 374 18 90
Total  PST larm 31 172 15| 1602 17 88
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PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 E 88
% after

filtering




— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms  Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis
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Guesstimate
Triage “well” without versus with: ~450 hours versus ~30 hours

Triage “ok” without: ~30 hours od
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only) :
Thresher filters 88% of false alarms from pointsto analysis |
T 1
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Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
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copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+
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Agenda: The cooperative approach addresses the whole
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object [string]v()

type system designers “web 2.0” developers

Type system designers worry. Web 2.0 developers think

it’'s cool.
Wh: ST ]
obj, “MethodNotFound” checked at run time |
by < —

E ! ! static satefy.
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Fissile analyzes Objective-C source
? benchmarks (6 libraries + 3 apps)
1,000 to 176,000 lines of code

461,000 lines in totadl

places requiring a check of the invariant

\V |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s) |

,’
. -
Big Deal: makes IDE integration possible
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