Cooperative
Program Analysis

Bor-Yuh Evan Chang

University of Colorado Boulder

Colorado State University
September 22, 2014 PLV

L pls o 8 W3 S8 w4

e ps Y I e

M S A B,

b.
R
b

Software is everywhere and varying more and more

Eradikional

oftware is everywhere and varying

LI TR ™M

more

and more

S
-
s
N

Eradikional

Software is everywhere and varying more and more

S
-
s
N

Eradikional

Software is everywhere and varying more

and more

(BB Ws" RS s S o7
(B0 b0e KR Sm W% Sla 8

JoAe

W L =

Eradikional

cvber physical

{
Software is everywhere and varying more and more

Eradikional

mobile cvbe‘r physical

{
Software is everywhere and varying more and more

——— —

Software is getting more and more complex

——— —

Eradikional

mobile cvbe‘r physical

{
Software is everywhere and varying more and more

——— —

Software is getting more and more complex

——— —

1980s: Bug in Therac-25 kills 6

2000s: Conficker worm costs $9.1
billion in damages

1980s: Bug in Therac-25 kills 6

2000s: Conficker worm costs $9.1

billion in damages

Today: “Don’t buy this app, it
crashes.”

How does program analysis save the day?

Program Analysis for Formal Verification

Program

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

Program —> Verifier

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

v

/ proof of no bug
Program —> Verifier

Systematically examine the program to
“simulate” running it on “all inputs”

How does program analysis save the day?

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

/\
of “mayhe” bugs

Systematically examine the program to
“simulate” running it on “all inputs”

The Ugly, Hidden Truth

Program Analysis for Formal Verification

v

proof of no bug
Program ——> Verifier

X

Alarm
Report

/\
of “mayhe” bugs

|
Undecidability necessitates the possibility of

false alarms. We hope not too many.
) \

Uncooperative Program Analysis?

Oh ,~
Verifier, help
me prove my

program has no 4

Uncooperative Program Analysis?

Oh \
Verifier, help

| " Online 142, \
| there may be a §
bug

me prove my
program has no 4

Un

Oh
Verifier, help
me prove my

program has no /
bugs /

On line 142,
there may be a
bug

Isn’t it obvious

this can’t
happen!2l2

Un

Oh

Verifier, help On line 142, \ _. " lsnt it obvious
me prove my there may be a | this can’t
program has no 4

bug , \ happenl2i2
bugs / / p

And noisily
repeated over
and over!

Un

Oh

Verifier, help On line 142, \ _. Isn’t it obvious
| me prove my there may be a | this can’t
\ Pprogram has no /

bug , \ happenl2i2
bugs / / p

And noisily
repeated over
and over!

The well-known false alarm problem
_—

e ————— -~

Uncoo
perati
rative Program Anal
ysis¢

RCIOH by

”lu.\'tmml by

,_‘.'/

' "c

“IM]ore than a 30% |[false alarm rate]
easily causes problems. True bugs get lost
in the false. A vicious cycle starts where
low trust causes complex [true] bugs to be
labeled false [alarms], leading to yet
lower trust.”

“A stupid false [alarm] implies the tool is
stupid.”

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,

McPeak, S. and Engler, D. 2010. A few billion lines of code later: using static analysis to (‘ (:()\7erltj ye

find bugs in the real world. Commun. ACM. 53, 2 (2010), 66-75.

proof of no bug

The traditional approach to the false alarm problem
focuses on improving the verifier.

v

proof of no bug
Program —> Ve riﬁer

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

v

proof of no bug
Program ——> Verifier

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability) |

v

proof of no bug
Program ——> Verifier

X

Alarm
A Report

Redesign the verifier with more magic to
hopefully reduce the number of false alarms

But it can never be perfect (undecidability) |
2 |

Also not a sufficient “excuse” !

Agenda: The cooperative approach addresses the whole
bug mitigation process.

proof of no bug

Agenda: The cooperative approach addresses the whole
bug mitigation process.

| proof of no bug
Program —> Ve riﬁer
Report
- N\
Manual
° o (
Triaging

Agenda: The cooperative approach addresses the whole
bug mitigation process.

v

proof of no bug
Program —> Verifier

‘ﬁ; x

Alarm
Report

Manual
Triaging

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Program =—>

Verifier <

v

proof of no bug

X

Alarm

P

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’'13, Blackshear+ SAS’11, under review]
Triaging

<

Report

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Program-
ming

Program

v

proof of no bug
Verifier

X

Alarm

P

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’'13, Blackshear+ SAS’11, under review]
. \/ ‘
Triaging

<

Report

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Enforcement g
Windows: Measuring
Bug Avoidance

[Coughlin+ ISSTA"12]

v
Program-
~ ming

M\

.'!: S l

Program =—>

v

proof of no bug
Verifier

X

P

Thresher: Assisting Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

<

ﬁv-r[wrrrcrcn
Triaging

Alarm
Report

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Enforcement
Windows: Measurin
Bug Avoidance

[Coughlin+ ISSTA"12]

A\
\
\ e

Program-
ming

=\

Spec-

B L
4 J

7 ification \

Program =—>

Verifier <

v

proof of no bug

X

Alarm

P

Thresher: Assisting Triage by
Refutation Analysis

[Blackshear+ PLDI’'13, Blackshear+ SAS’11, under review]
hrorrroren \/ =
Triaging

<

Report

Agenda: The cooperative approach addresses the whole

bug mitigation process.

Enforcement g
Windows: Measuring

Bug Avoidance
[Coughlin+ ISSTA"12]

P Spec-
rogram- 7 ification
~_ming
{:—%«1’? l(/

- Program =—>

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL'14, in prep]

v

proof of no bug
Verifier

P

Thresher: Assisting Triage by
Refutation Analysis

Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]

Tl'iCIging =

<

Alarm
Report

Agenda: The cooperative approach addresses the whole

bug mitigation process.
Enforcement g ™
Windows: Measuring
) Test Test
Bug Avoidance e e Runner Output
[Coughlin+ ISSTA"12]
Va
P | Spec-
rogram- 7 ification
~ ming v
{“’_g_”"% l‘(proof of no bug
= Verifier
&) X
Fissile Types: e :Jarmt
. epor
Checking Almost 1) Thresher: Assisting Triage by
Everywhere : Refutation Analysis
InVG riCI nts [Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
[Coughlin+ POPL'14, in prep] Av-rcrrrvvn '(\/ w
=\ Triagin

Agenda:

Static Incrementalization of |

Enforcement gl Data S[trl:cture]Checks
. e« 11 under review
Windows: Measuring |
) Test R \V4 q Test
Bug Avoidance nput > unner Output
[Coughlin+ ISSTA"12]
"
P Spec-
rogram- 7 ification

| | ming V
{I,E_»LL% ‘1/\ proof of no bug
-

Program —> Veriﬁer
Fissile Types: Alarm
hecking Almost sting Tri L
Checking Almos Thresher: Assisting Triage by
Everywhere Refutation Analysis
InVQ ria nts [Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
[Coughlin+ POPL'14, in prep] LTuTrv'm '(\/

Triaging -

Agenda:

Enforcement Data S[trl:cture]Checks

. . under review

Windows: Measuring . /

Bug Avoidance Input g Runner -
[Coughlin+ ISSTA’12] e S
Program Spec- il

ogra 7 ffication Jsana: Abstract Domain Combinators
. ming for Dynamic Languages
- [Cox+ ECOOP’13, Cox+ SAS’'14, under review]
{I—E—KL% y roof of no bug
)

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL'14, in prep]

: hv4
Program —> Venﬁer Q

X

Alarm

Report
Thresher: Assisting Triage by

Refutation Analysis

[Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
llvTuTrv'm. . < \/ s
Triaging

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Fissile Types: | -‘
Checking Almost This Talk Thresher: Assisting Triage by
Everywhere s Refutation Analysis
Invariants A\ @,2' [Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
[Coughlin+ POPL'14, in prep] - \/ Ay

Agenda: The cooperative approach addresses the whole
bug mitigation process.

Fissile Types: | -‘
Checking Almost This Talk Thresher: Assisting Triage by
Everywhere | Refutation Analysis
Invariants \& [Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
[Coughlin+ POPL'14, in prep] \/ ”“

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
4

Application: Find memory leaks and eliminate crashes in Android

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
)

Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis
» Interactive checking speeds: making IDE integration possible

» Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

This Talk: Highlights

Thresher: Precise Refutations for Heap Reachability

Assist in triage of queries about heap relations

» Idea: Assume alarms false, prove them so automatically
» Filters out ~90% of false alarms to expose true bugs

» Going from ~450 hours of manual work to ~30 hours
4

Application: Find memory leaks and eliminate crashes in Android

Fissile Types: Checking Reflection with Almost Everywhere Invariants

Strengthen type checking with symbolic analysis
» Interactive checking speeds: making

» Application: Prevent “MethodNotFound” errors in Objective-C
(MacOS/iOS)

Thresher: Precise
Refutations for Heap
Reachability

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

What are heap reachability queries?

Can an object ever be reached from another object via
pointer dereferences?

Is there a program
execution where at
some time variable

X

!

of type T 2

=
[N LLIDIC

How is this useful?2 We identify memory leaks
that cause your app to crash!

~
(9

How is this useful2 We identify memory leaks
that cause your app to crash!

A
=
|=] stackoverflow

Android: Crash on rotation, horizontal to vertical
| Crash is detected after rotating phone in Gmail Sync now view &

phonegap »
[important bug]cordova 1.8 crash on rotation android

5 posts by 2 authors (@) 1,
\

30— \
|=| stackoverflow

App crashes when rotating Samsung phone

T

R

B androidterm

= Android Terminal Emulator

Project Home Downloads Wiki Issues Source

‘New issue Search | Open issues : | for

Issue 20: Crashes when rotating phone horizontally
1 person starred this issue and may be notified of changes.
R —— e

How is this useful?2 We identify memory leaks
that cause your app to crash!

»
‘l.'::" \

Sy _ _
|=l stackoverflow =it REEN
Android: Crash on rotation, horizonta! * {

phonegap »
B

m

roid Terminal Emulator

Project Home Downloads Wiki Issues Source

New issue Search | Open issues s | for

Issue 20: Crashes when rotating phone horizontally
1 person starred this issue and may be notified of changes.

Android memory leaks underly rotation-based crashes.

Activity objects

encapsulate the Ul

Android memory leaks underly rotation-based crashes.

Activity objects
encapsulate the Ul

Android
o /‘ of type Activity

-l

g

Android memory leaks underly rotation-based crashes.

Activity objects

encapsulate the Ul

Android
os? /# of type Activity
k";' '|

Android memory leaks underly rotation-based crashes.

Activity objects
encapsulate the Ul

Andr0|d
of type Activity

= N

of type Activity

Android memory leaks underly rotation-based crashes.

a_static _field

program heap

Activity objects
encapsulate the Ul

Android
of type Activity

oS
.|

N\

of type Activity

Android memory leaks underly rotation-based crashes.

oS
.|

a_static _field

can’t collect

program heap \
Android —— ¢ J] o5
of type Activity § N

this dead

Activity! |

/N =y I
\'_/

N\

of type Activity

Activity objects
encapsulate the Ul

Android memory leaks underly rotation-based crashes.

TN a_static_field N o .
e O\ >~ | Activity objects
d : |\'\n; can’t collec
Rl /aﬂtba;;z | “Weded)| encapsulate the Ul
/> program heap \ 7‘ Actlmyu

Andr0|d =
ok of type Act1v1tY @

‘%‘m

of type Activity

Android memory leaks underly rotation-based crashes.

v

- vV fun of
6owba5ef

'

Andr0|d
oS

7 { .
Bug: Holding reference to “old” Activity |

a_static_field o

program heap \

can’t collect

this dead

\ Act1v1ty|

? A
ffype Activity ’Q

of type Activity

Activity objects
encapsulate the Ul

—

Android memory leaks underly rotation-based crashes.

a_static _field

e >~ | Activity objects

can’t collect

S) | “Weaod)| encapsulate the Ul
/> program heap\ ,ctivicyt /

REEETAN
ty O™

Android

o of type Activi
,II \\ o
& of type Activity

“an Activity leak”

7 *’/ .
Bug: Holding reference to “old” Activity |

7

The expert recommendation ...

3
8 00 E\,Questions containing ‘andrc @Issues - android - Android © Android Developers Blog: A Android Developers Blog: M
€« C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

i Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
| Search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCTIE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012 (31)
~ S On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(68) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)
December (7) @override
November (5) protected void onCreate(Bundle state) {
October (5) super.onCreate(state);

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");

July (1)

=
=
=
» September (8)
=
=

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

A
3
8 00 E\, Questions containing ‘andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: M

€« C' [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

i Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet
Search | very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as
little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,
RCTIE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.
» 2012(31)
N On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,
(€8) i in thei I lar Android applicati lly h kinds of
> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:
¥ 2009 (63)
» December (7) @0verride
November (5) protected void onCreate(Bundle state) {
October (5) super.onCreate(state);

TextView label = new TextView(this);
August (2) label.setText("Leaks are bad");

=

=

» September (8)
=

> July (1)

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

800 .=, Questions containing ‘andrc 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: I

€« C' [1 android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html D

Android Developers Blog

iy Developers
Avoiding memory leaks

SEARCH

Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's both a lot of memory for a phone and yet

very little for what some developers want to achieve. Even if you do not plan on using all of this memory, you should use as

little as possible to let other applications run without getting them killed. The more applications Android can keep in memory,

RCHIVE the faster it will be for the user to switch between his apps. As part of my job, Iran into memory leaks issues in Android
applications and they are most of the time due to the same mistake: keeping a long-lived reference to a Context.

Search

» 2012(31)

N On Android, a Context is used for many operations but mostly to load and access resources. This is why all the widgets
(65) receive a Context parameter in their constructor. In a regular Android application, you usually have two kinds of Context,

> 2010(73) Activity and Application. It's usually the first one that the developer passes to classes and methods that need a Context:

¥ 2009 (63)

» December (7) @0verride

| don’t know how |
created a long-lived
reference to an Activity!

The expert recommendation ...

“Do not keep long-lived references to a context-activity”

e 00

.=, Questions containing ‘andr 8} 1ssues - android - Android Android Developers Blog: A Android Developers Blog: IV

€« C [android-developers.blogspot.dk/2009/01/avoiding-memory-leaks.html

Android Developers Blog

Developers
Avoiding memory leaks

SEARCH
Android applications are, at least on the T-Mobile G1, limited to 16 MB of heap. It's
very little for what some developers want to achieve. Even if you do not plan on usi

little as possible to let other applications run without getting them killed. The more
the faster it will be for the user to switch between his apps. As part of my job, Iran [J
ARCHIVE S ; : ;
applications and they are most of the time due to the same mistake: keeping a long °
2012 (31)

2011 o8 On Android, a Context is used for many operations but mostly to load and acces:
2011(C8) receive a Context parameter in their constructor. In a regular Android application
2010(73) Activity and Application. It's usually the first one that the developer passes to classé]

I misunderstanding of
a library causes the
library to keep the

Activity reference.

Search

| don’t know how |
created a long-lived
reference to an Activity!

8 00 l_:.‘\ Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

i3 Developers

SEARCH

| Search

ARCHIVE

» 2012(31)

¥ 2011 (68)
» December (7)
» November (7)
» October (5)
» September (5)
» August (3)

> July (7)

> June(3)

N VWIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

8 00 é Questions containing 'andrc @Issues - android - Android Android Developers Blog: A Android Developers Blog: I
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html

Py
I];JI

-

=
-
=
-
=
-

-

Developers

SEARCH

| Search

ARCHIVE
» 2012(31)
¥ 2011(68)

December (7)
November (7)
October (5)
September (5)
August (3)
July (7)

June (3)

(VRIS

Android Developers Blog

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming,
usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore
memory management. You should be especially mindful of memory usage on mobile
devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory
every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app

The state of practice in debugging Activity leaks ...

8 00 . E,.\Questions containing ‘andro @Issues - android - Android Android Developers Blog: A Android Developers Blog: I =
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html Dalvik Debug Monitor
I Info Threads VM Heap Allocation Tracker Sysinfo Emulator Control Event Log |
fter every GC for this client
Free % Used # Objects Cause GC
320 KB | 98.62% 59,281
Android Developers Blog Display: | Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
i Developers class object 2,187 637.234 KB 168 B 34.125KB 168 B 298 B
) Memory Analysis for Android Applications 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
SEARCH 2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[Th/seasrisb%/Parrick’Dubioy,’anAndroideng/nee}rwhu writes about programming, 4-byte array (object(], int(], float(]) | 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328 538
The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore) :
ARCHIVE memory management. You should be especially mindful of memory usage on mobile non-Java object 92 14.219 k8 168 8.023 KB 328 1588
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
atsome of the memory profiling tools in the Android SDK that can help you trim your
v 20;)1 (Galb o application's memory usage.
» December
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
October (5) every time the user touches the screen, it will probably trigger an

OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the

September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

1=

1=

» August (3)
< Tools of the trade
1=

July (7)
June (3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and
V) heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a

1. Run the app
2. Watch the heap usage

mEew D& (@ edr | bl
i Overview | Jil Histogram | [r] list_objects [selection of 'byte[)'] -inbound 83

Class Name
»,

> (0] byte[8] @ 0x429b69¢8 HPDS....
v 0] byte[2797568) @ 0x426fe780 '2".&11.'25.3%.&.#.4+ . (...
. v’u mBuffer android.graphics.Bitmap @ 0x40a50fa8

v'u value java.util.HashMapSHashMapEntry @ Ox40adceb8

Statics | Attributes | Class Hierarchy ¥'Tui) [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440
Type Name Value 7 table Jjava.util.HashMap @ 0x40801a98
;4:_1 i ache class com. le.android.hcgallery.ContentFragment (

The C‘u]pri’!) >'_, <class> com.example.android.hcgallery.ContentFragment @ 0x408(

>L value java.util. HashMapSHashMapEntry @ 0x408009¢c0
2 Total: 2 entries
> 0] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA;.F?9.92,.4-".C;8.MEB.@.8."...-)*.7;<.
. > 0] byte[2797568] @ 0x421a8750z.FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.u}e.z.\.syU.

» 0] byte[2797568] @ 0x41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heA.k
> 1] byte[3252224] @ Ox41be3108
> |0] byte[2797568] @ 0x419380f0
> 0] byte[2797568] @ 0x4168d0d8 d.B.d.B.d.@.d.@.f.2.9.@.h.B.h.B.i.B.i.B.h.B.i.C.g.C.f.B.f.C

byte[2797568) @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e'

([J
> (o]
» [i) byte[2797568] @ 0x41137028
» [i] byte[2797568) @ 0x40e8c090
[J [J » [i] byte[1572864] @ 0x4040c078 .

> (0] byte[2797568] @ 0x40a61060 .
> 1] byte[62100] @ 0x40a51db8
> (0] byte[24] @ Ox40adcd1lcoccceueinenns
> (0] byte[4096] @ O0x40a4aa50
> (0] byte[24] @ Ox40a4a7alccoceeucuee

> (0] byte[4096] @ 0x40a48148
> 0] byte[24] @ 0x40a464f1cccuvucucnnene
> (0] byte[84] @ 0x40a40560 @..@ @ f.M.EMEM

> 0] byte[768] @ 0x40a40200 .. MM..MM..MM..MM..MM..MM..MM..MM_..MM.
> 1] byte[1572864] @ 0x408beab8 2@3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E«
> (0] byte[84] @ 0x408bal88
» 0] byte[960] @ 8 L\~

® » [i] byte[84] @ 0x408b9a4a8 ;
I n r I » [6) byte(960] @ OX408DIE2E ..o \Hlorrrrrrrre
> (0] byte[56] @ 0x408b9318 ... H..@P..@......cocucuue e e S
[— — — —] <> | 1_p [l hvtel1921 @ 0x408h91f8_00S.0RT OSLLOSLLITY. 1TV 1TV, UMW 1UIW 2VX 2WY 2X7 2X;

36Mlof 81M |

Shallow Heap Retained Heap

24
2,797,584

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2,797,584
2,797,584
1,572,880
2,797,584
62,112
40

4,112

40

4,112

40

96

784
1,572,880
96

976

96

976

72

208

24
2,797,584
2,797,640
5,595,472

32,802,960
32,803,008
32,803,056
384
152

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2,797,584
2,797,584
1,572,880
2,797,584
62,112
40

4,112

40

4,112

40

96

784
1,572,880
96

976

96

976

72

208

800 E\‘ Questions containing ‘andr« @Issues - android - Android Android Developers Blog: A Android Developers Blog: I .
€« C' [android-developers.blogspot.dk/2011/03/memory-analysis-for-android.html Dalvik Debug Monitor
I Info Sysinfo Emulator Contro Event Log
Heap updates will
ID % Used # Objects Cause GC
1 98.62% 59,281
Android Developers Blog Display: | Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B, 48.297 KB 248 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318
Developers class object 2,187 637.234 KB 168B 34.125KB 168 B 298 B
. . P 1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
Memory Analysis for Android Applications " y (bytell 0
SEARCH 2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
[This post is by Patrick Dubroy, an Android engineer who writes about programming, 4-byte array (object(], int[], float()) | 3,663 276.812 KB 24 B 16.023 KB 40 B 77 B
Search usability, and interaction on his personal blog. — Tim Bray]
8-byte array (long[], double[]) 283 14.875 KB 24B 4.000 KB 328 53 B
The Dalvik runtime may be garbage{ol[ec(edl, butthatdoesntmean you can |gnore‘ non-Java object 92 14.219 KB 16 B 8.023 KB 32 B 158 B
ARCHIVE memory management. You should be especially mindful of memory usage on mobile
» 2012 (31) devices, where memory is more constrained. In this article, we're going to take a look
S ST atsome of the memory profiling tools in the Android SDK that can help you trim your
20100 application's memory usage.
» December (7)
» November (7) Some memory usage problems are obvious. For example, if your app leaks memory
» October (5 every time the user touches the screen, it will probably trigger an
) OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the
» September (5) performance of both your app (as garbage collections are more frequent and take longer) and the entire system.
» August (3)
. Tools of the trade
> July (7)
» June(3) The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Trackertab in DDMS, and 000 Eclipse Memory Analyzer ~
V) heap dumps. The Allocation Tracker is useful when vou want to get a sense of what kinds of allocation are happening over a = = & =
[Z nspector 52 = O | & leak-converted.hprof 53 8

—_-—

<«i»

Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

Heap updates will

Dalvik Debug Monitor

annen after every GC for this client

A~ 4

3. Dump the heayp|. Dig
around and hope to
find the culprit

1D Heap § Allocated Free % Used # Objects
1 8.570 320 KB 98.62% 59,281
Display: Stats
Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168 B 34.125 KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short[], char(]) 10,373 677.352 KB 24 B 28.023 KB 48 B 66 B
4-byte array (object(], int[], float[]) 3,663 276.812 KB 24 B 16.023 KB 408B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328B 538B
non-Java object 92 14.219 KB 16 B 8.023 KB 328B 158 B
e00 Eclipse Memory Analyzer N
| Inspector 53 = O | £ leak-converted.hprof &3 - =8
il R | ME& | Q| B by |l
i Overview | il Histogram | [r] list_objects [selection of 'byte[]'] ~inbound $3
Class Name Shallow Heap Retained Heap
v byte[8) @ 0x429b69¢8 HPDS.... 24 24 M
v [1]) byte[2797568) @ 0x426fe780 '2°.&11.'25.(3%.&.#.4+ . (782540 2,797,584 2,797,584
v"T] mBuffer android.graphics.Bitmap @ 0x40a50fa8 40 2,797,640
| value java.util. HashMapSHashMapEntry @ 0x40adceb8 24 5,595,472

Statics | Attributes | Class Hierarchy

Type

Name

Value

¥7i) [13) java.util. HashMapSHashMapEntry[16) @ 0x40805440
v table java.util.HashMap @ 0x40801a98

) "x: sBitmapCache class com.example.android.hcgallery.ContentFragment (
The Culprit T <class> com.example.android.hcgallery.ContentFragment @ 0x408(

") value java.util.HashMapSHashMapEntry @ 0x408009¢0
> Total: 2 entries
byte[2797568) @ 0x42453768 % ..)S .+& .61+.HA,.F?9.92,.4-".C;8.MEB.@,8."...-)*.7; <.
byte[2797568 x421a8750z.FRF.P\P.OXU.NWT.ZUY.ZUY.yvo.....It\.u}e.z.\.syU.
| byte[2797568] @ Ox41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heA.k
| byte[3252224) @ Ox41be3108 essessssentsasssasesasssnestssstsesssnsssasssasessntsstsssess
byte[2797568) @ 0x419380f0
byte[2797568) @ 0x4168d0d8 d.B.d.B.d.@.d.@.f.2.9.@.h.B.h.B.i.B.i.B.h.B.i.C.9.C.f.B.f.C
| byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=." Q<. Q>.bS@.bS@.bS@.bS@.e’
| byte[2797568) @ 0x411370a8
byte[2797568) @ 0x40e8c090 .

JAB.ONO.65 .| .cucncnricnanacnnsunsssnsasnsnsnsnssnsnsnsans

o
=
2,
=
e
<
N
®
a
N

| byte[2797568) @
| byte[62100] @ 0x40a51db8
byte[24] @ 0x40a4cd1lccocoiicnennnnen
byte[4096] @ Ox40a4aas0
byte[24] @ Ox40ada7alcccccvrvvecinnn
| byte[4096] @ 0x40a48148
| byte[24] @ Ox40a464f1 .
byte[84] @ 0x40a40560

MM..MM..MM..MM..MM..MM.. M..MM.

1] byte[768] @ 0x40a40200 L.
|0 byte[1572864] @ 0x408beab8 3.2@3.4@4.5A5.6A3.471.3>0.3>0.6A1.8C3.8E4.8E«
|0] byte[84] @ 0x408bal88 S [IE
1] byte[960] @ 0x408b9d68 .]~).).*. OSUL*.]
0] byte[84] @ 0x408b%a48 S=

| byte[960] @ 0x408b9628 \~(\~(..0Q A~(A\~(]~)..0QS])

| byte[S6] @ 0x408b9318H..@P..@. L@ e S
hvtel1921 @ 0x408h91f8_00S.0RT.0SULOSLLITY 1TV 1TV 1UW 1UW 2VX 2WY 2X7 2X7

36M of 81M I}

80 32,802,960
48 32,803,008
8 32,803,056

128 384

24 152
2,797,584 2,797,584
2,797,584 2,797,584
2,797,584 2,797,584
3,252,240 3,252,240
2,797,584 2,797,584
2,797,584 2,797,584
2,797,584 2,797,584
2,797,584 2,797,584
2,797,584 2,797,584
1,572,880 1,572,880
2,797,584 2,797,584
62,112 62,112
40 40

4,112 4,112

40 40

4,112 4,112

40 40

96 96

784 784
1,572,880 1,572,880
96 96

976 976

96 96

976 976

72 72

208 208

Suppose we're lucky and find
a possible culprit. Now what?

» Where in the code is this object
allocated?

What about the object that references it2
Where is the reference created?

s this reference needed?

For what periods?

vV VvV Vv Vv

3‘ N A Innnux[n:ﬂv

Class Name

> 0] byte(8] @ 0x429b69c8 HPDS....

v 0] byte[2797568) @ 0x426fe780 '2".&11.'25.3%.&.#.4+ . (..5..".%...

r

v'|_| mBuffer android.graphics.Bitmap @ 0x40a50fa8

. o

| value java.util. HashMapSHashMapEntry @ 0x40adceb8
Statics | Attributes | Class Hierarchy “'U, [13] java.util. HashMapSHashMapEntry[16] @ 0x40805440

Type Name Value v table java.util.HashMap @ 0x40801a98

) "x: sBitmapCache class com.example.android.hcgallery.ContentFragment (
The Culprit T <class> com.example.android.hcgallery.ContentFragment @ 0x408(

| value java.util.HashMapSHashMapEntry @ 0x408009¢c0

r

> Total: 2 entries

YYVYVYVVVY

1] byte[2797568] @ 0x421a8750

1] byte[2797568] @ 0x419380f0
1] byte[2797568] @ 0x4168d0d8 d.B.d.B.d.@.d.@.f.%.9.@.h.B.h.B.i.B.i.B.n.B.i.C.9.C.L.B.A.C
[1] byte[2797568] @ 0x413e20c0 cR>.eT@.eVA.dU@.aR=. Q<. Q>.bS@.bS@.bS@.bS@.e'
nl hvtel27975681 @ Ox411370a8

S..#. +.,7&2>*.0

1] byte[2797568] @ 0x42453768 % ..)S .+& .61+.HA,.F?9.92,.4-".C;8.MEB.@;8."...-)*.7;<.
+eeennZ.FRF.P\P.OXU.NWT.ZUY.ZUY.yvo0.....It\.u}e.z.\.syU.
(0] byte[2797568] @ Ox41efd120 njg.pli.kgd.bA[.da\.olg.tql.gni.roh.urk.wtm.spi.lib.heA.k
1 byte[3252224] @ Ox41be3108 .

)
Dalvik Debug Monitor

Heap updates will hannen after every GC for this client

ID Heap $Ze % Used # Objects
1 8.570'WB 98.62% 59,281

Display: Stats

Type Count Total Size Smallest Largest Median Average
free 1,772 107.312 KB 16 B 48.297 KB 24 B 62 B
data object 40,528 1.229 MB 16 B 1.047 KB 328 318B
class object 2,187 637.234 KB 168 B 34.125KB 168 B 298 B
1-byte array (byte[], boolean(]) 2,247 5.654 MB 24 B 1.500 MB 48 B 2.576 KB
2-byte array (short[], char(]) 10,373 677.352 KB 24B 28.023 KB 48 B 66 B
4-byte array (object(], int[], float[]) 3,663 276.812 KB 24B 16.023 KB 408B 77 B
8-byte array (long(], double[]) 283 14.875 KB 24 B 4.000 KB 328 53 B
non-Java object 92 14.219 KB 16 B 8.023 KB 328B 158 B

e00 Eclipse Memory Analyzer N
L%
| Inspector 83 % = B | &2 leak-converted.hprof 53 =8
ioml e | PElE O | Evehr |l
i Overview | il Histogram | [r] list_objects [selection of 'byte[)] -inbound 53

Shallow Heap Retained Heap

24
2,797,584
40

24

80

48

8

128

24

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2 797584

“One of the most dreaded bugs in Android is a memory leak. They are nasty
because one piece of code causes an issue and in some other piece of code,

your CIpp|iCC|ﬁ0n CrCISheS.” — http://therockncoder.blogspot.com/2012/09 /fixing-android-memory-leak.html
— ‘*

e —

24
2,797,584
2,797,640
5,595,472

32,802,960
32,803,008
32,803,056
384
152

2,797,584
2,797,584
2,797,584
3,252,240
2,797,584
2,797,584
2,797,584
2.797,584

{

http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html
http://therockncoder.blogspot.com/2012/09/fixing-android-memory-leak.html

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@oooo&

of type Activity | @

SRCLTILE

Answering “Is there an Activity leak?” with program
analysis ...

Can an object ever be reached from another object via
pointer dereferences?

ls there a program
execution where at
some time

a_static_field

/

i

of type Activity | @

Can be answered with a
pointsto analysis

-
LG LITVLS

Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static_field

@
i

of type Activity | @

-
-

Can be answered with a

points-to analysis

Can an object ever be reached from another object via

pointer dereferences?

ls there a program
execution where at
some time

a_static _field

@
i

of type Activity | @

Can be answered with a

points-to analysis

Some pointer relations
may be false

But with the cooperative approach ...

Test
Output

Test
Input

—> Runner

4 D

P Spec-
rogram- 7 ification

/\ < proof of no bug

Program —> Verifier
x Alarm
Report
/ N
Manual
[} [} (
Triaging

1.9 /’

But with the cooperative approach ...

v

proof of no bug
Program —> Ve”ﬁer

X

Alarm
Report

Manuadl
Triaging

Thresher addresses alarm triage in a particularly

challenging domain.

Program —> Ve riﬁer

Manual
Triaging

v

X

< proof of no bug

Alarm
Report

Thresher addresses alarm triage in a particularly
challenging domain.

v

. roof of no bu
Program —> — GRS
Analyzer Facts

Leak
Alarms

Manual
Triaging

Thresher addresses alarm triage in a particularly
challenging domain.

. fofnob
Points-To o Samhaimbe
Program —> — GRS
*n Analyzer Facts |
. ;;.!-ﬁ S— x vII
| Leak
Alarms
4 N
Manual
[) [] (
Triaging

1.0 /

Known: Precise pointsto analysis challenging

_ SE——

Thresher addresses alarm triage in a particularly
challenging domain.

v

- proof of no bug
Points-To —
Program —> — GRS
P Analyzer Facts ,
- ‘. — x vII
| Leak
Alarms

Manual
Triaging

1.0 /

Known: Precise pointsto analysis challenging
~ - |

Thresher addresses alarm triage in a particularly
challenging domain.

- proof of no bug
Program ——> POIni'S TO — Pci:ints-TO _<
| t
- Analyzer acts |
/o .
r “\
Manual
[] [] (
Triaging

1.0 ’

Known: Precise pointsto analysis challenging |
: SR

Thresher addresses alarm triage in a particularly
challenging domain.

PQinfs-To ‘ proof of no bug
Program —> — Pc:nts-To
' t
 ~‘ AnCII)’ZGI' acrs -
T VA \ — 5
/6 - ’ .

Manual

——
| |

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2”

Vv |

Known: Precise pointsto analysis challenging |

Thresher addresses alarm triage in a particularly
challenging domain.

I f of no bug
Points-T | proo
Progrdm — O 5-10 — Pc:nts-To
t
< Analyzer acts .
A7) ~_ :
/c - ’ .

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2”
» 75 papers, 9 PhD theses

Vv |

Known: Precise pointsto analysis challenging |

Thresher addresses alarm triage in a particularly
challenging domain.

I f of no bug
Points-T | proo
Progrdm — O 5-10 — Pc:nts-To
t
< Analyzer acts .
A7) ~_ :
/c - ’ .

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses

Vv |

Known: Precise pointsto analysis challenging |

triage

v

- f of no bug
Points-To . proe
Program —> — Pc::mts-To
t
Fn Analyzer acts -
) ‘/ |

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses -

Dagstuhl 13162: Pointer Analysis (2013)

V

Known: Precise pointsto analysis challenging

——:‘-——-J

Thresher addresses alarm triage in a particularly
challenging domain.

I f of no bug
Points-T | proo
Progrdm — O 5-10 — Pc:nts-To
t
2 Analyzer acts .
A7) ~__ \
/c - ’ .

Manual

Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet2” (2001)
» 75 papers, 9 PhD theses

Dagstuhl 13162: Pointer Analysis (2013)

Known: Precise pointsto analysis-e
enouqgh

Manual triage is particularly hard I
for heap reachability reports.

Manual tri

triage | '

F ge is particul

or heap reachability re;r:tys e

public
c
lass TcpClientSample

{

ubli
P 1ic static void Main)

pytell data =
% = new byt .)
pcpClient serveri yte(10241; string snput, striagpetal
tryfl
<7 = new pcpClient ™ e, porvie
ocke\:Excepv_i_om I
sole.‘ﬂr'x\:emine (“unable ro connect o sexver™)
arni
orkStreaﬁ\ ns = setve:.Ge‘cS\:tea\\\\\? .
cv ns.Re aldatar . daca.hex\qm\.
= B codind
2 3 rar \} rec) ¥
iL- sex’ - 3 xa)i
el L ringd? P
1e-
crue) 1 B
(- asol .Yse‘ad“\ e)
np == nerlT -es\"ou“l e
& xd.?:OPef‘:ment"),)
5 peP?” ha“ges()'

MyClass1.java

Manual tri
lage is '
f particul
or heap reachability rep(:)r,!:; e

public
class TcpClientSample

{
public stati i
atic void Main()
pytell data =
— new bytell s 4 .
Tcpc]_ie“t servers: yre (102817 string input. stringdatai
eryl
ver = new Tcpcliem. & ., porvyi
(Socketﬁxcept'xom {
sole.‘ﬂr'x\:emine (“unable ro connect o sexver™)
arm?
—enamE
public cl -
ass R
{ TcpClientsSample

public static void Main ()

nq‘ {
pytell data = ne
= Bew byt 4 o
TcpClient sexverd yre(1028); Sring AwST stringdatei
= new T::pCl‘:.e“t ™ v, por)
ketﬁxceptiom 8
.Wr‘xteLine k“&k\ab&e o connect ©°© sexver™)
m ns = setvet.GetS\xea\\\\\:
ata .La\q‘.\\\ 5
.Readkda\:a, '
= codind-
ata o
Dl getserird (garer vz;ﬂ'
e eLine \sumq% '
(tf\le) { 0“5019 'geadﬁ'l“e O ’;“'
i
nput ¢ == “e‘ﬂ'l‘“\ bﬂ;es a1 29
. s ut ~ a.®? 3 T
£ (np new’ l\—,ir\q De?a”;“; a“qesu,
RS childflo el
acP o §

LibraryClass1.java

Manual triage i
age is particularly h
or heap reachability repor:; e

publi
- class TcpClientSample

{
public static void Main ()
; string input. stringdatai

pytell data = nevw pyte(10241
TcpClient servers;
) port)

tryfl

new pcpClient ™

e\:Excepti.om L
jreline (“unable ro conne

o xo sexver™

~aml) ¥

publi
& class TcpClientSample

public static void Main ()
= new byte\lu'z‘n; string Lnput: stringdatal

pytell data
TcpClient server:
new T::pcl'xent & . v, port)i
ketﬁxceptiom {

.Wx:i.\:eL'u\e ("Unable ro connect o

ver =
erver™)

cemam O

public static void Main Q)

pytell data = .
TcpClient S2 e11024); SEEinG LT stringpatat
—
=
“server = neY cpcrient U W, g
)catch (Socket ception)
console .WriteLine (“Unable o connect o sexver™)
returni
) ver Ge\:st:e wl) &
kst:eam ns = ser B o
Ne:‘“;recv ~ e aataeter O ca . bend
in X
s = ncoqu- R
trlngData \—_s\:rif\q(Stas B nectl\-
sCc1T .Ge Live (strit\qData\ d
Consol W A "
ile (c fue) ve A0
wh cons® : W pred®! 58
i npu® w) B ou P
inpy -, == eﬂﬂ_es\ o
o 4 roeparw\e“‘ Lsi
£CP nd

MyClass2.java

Manual triage i
ge is particularly h
for heap reachability repor:;, e

public clas 3
< s TcpClientSample

public static void Main)

= new byte\lDZA\; string inmput, stringdatai

pytell data =
TcpClient servers;
tryl
ver = new Tcpclie“tk“ G =T port)
0 i i (SocketExceptiom\ .
‘ 'sole .Wri\:em‘n\e (“unable o connect o sexver™)
CCace
e— Y —omman)
publi
Network i c class TcpClientSample
> int re¢ public static void Main
str:.I\G‘ {
p,scl pytel] data = new bytel10241F tring input, steingdated
1 Tcpclient server:
cons® eryl
jle segver = ne¥ pepciient(" - ot w, port\i
ketﬁxceptiom L .
Wr':.\:eL'n\e ("Unable ro connect o sexver™)

emam) ¥

public static void Main ()
stringbakah

e (102417 string input,

pytell data

TcpcClient.
,/
v port) i

Sl

s —
server = newy;
catch (Socket ceptum\\
’ console .Write&'xne (“Unable o connect ro sexVe
retur™ :
BNV AR

Library2Class1.class

public c s 5
i ic class TcpClientSample
public static void Main ()
byte[] data = nevw byte\XDZA\', string inmput, stringdatai
Tcpclient sexrveri
tryfl
— new qgepclient " ARl

ver =
(socke Exceptxom L x .
'sole W\:i\:eL'u\e (“Unable wo connect ©© sexver™)
arn?

o enaw N

3 i
publi z
Network { c class TepClientsample

allocated here

4 ec . ;
]_nt. f‘g‘ };Ubllc static void Mainl)
strl

ASC31 pytel) data = nev pyte(1024); stxing input, SLringdatai

1 Tcpclient server:
COOSO tryl
i1e segpver = Pe¥ pepclient” % poreld
ketﬁxceptlo“\ b o comnect server™)

Wx ijreline ("Unable T

) ¥

TcpClientSample

public static void Main ()

?Iyt?:g-]. dara te(10281; string ioeut: suringata:
cp! ient =
——
= " 3 w ™
er cpcllen\: " . n, poruli
tch et rion) { . .
)Cac nsole Write&'u\e k“““a\;ﬁe o connect ©© sexver™)
o

BNV AR

Librar: _

Library

java.util.HashMap.class

Manual tri ’
age is particularly h
or heap reachability I‘epor:; e

public cl
ic ass TcpCli
{ P entSample

public static void Main ()
= new byte\XDZA\; string inmput, stringdatai

pytell data =
pcpClient server:
tryl
ver = new Tcpcl'le“tk“] port)
] (SocketExcept‘xom L
e sole .Wri\:em‘n\e (“Unable ro comnect © sexver™
ere
Y publi IS X\
ic cla .
Networe‘: { ss TcpClientSample
int T public stati
. tic void Mai
str:.I\G‘ an i)
sCT pytel) data = nev Byt . e
. s0) TcpClient servers yrel102a1; strins P suringoetad
con ryl
1e =3 ver = new Tcpclient\“ . v, porvyi
ketﬁxceptiom L
.Wri.\:eL'n\e ("Unable ro connect o sexver™)

public static

pytell data
TcpClient B2
—

cmam)

void Main()

e (102417 string input, stringdatai

v port) i

Sl

=
server = newy:
)catch (Socket cept'xon\\
console .Write&'xne (“Unable o connect ro sexVe
retur™ :
BNV AR

publi
& class TcpClientSample

{
public static void Main ()
{10241 string epet suringdata:

pytel]l data = new byte
TcpClient server;
tryl
server = new Tcpcl‘xen\: (4] . n, portli
Y catch (Socket‘axcept‘mn\ { .
console .Write&."xne (“Unable o connect o server™)
returm
\R
_ server- etsttea“\\
oo ¢
alaacar O ava 37
, O recv) i
.c'“\q‘)a'ca\ i
1e aeadbs?® o
" ,1'1’(.“\ pred™, u"\.bdd
&% proret se? nc?'w
18- oepa"““e !‘geSU;
tir\qd co tCY\Z‘U
chil 316‘01096
epir o

MyClass3.java

IN ouT

ublic
public class TcpClientsample

{
public static void Main ()
byteu data = nevw byte\XDZA\; string inmput, stringdatai

pcpClient servers;
tryl
ver = new Tcp(ll'xe“\:k“ Lo, porvhi
(Socket‘ﬂxceptiom L x "
'sole Wri eL'lx\e(“\kxabXe wo connect ©© server™)

Aam)

urT -

}
Network {
c static void Mainl)

allocated here

int rec¢ publi
Strimﬂ {
asCT pytel) data = nev bytell02a1; SLTinG RSt exingpatar

1 Tcpclient server:

COnSo tryl X

while segver =kmi:dB ':cpc&li:“r;t\\“ L Lv, ot
j xCe! N

H }catc weri_\;en'lpr\e k“\k\a‘n&e o connect O server™)

o s

cmam)

! .
re public static void Main ()

str ing! ¢
1 pytell data re{1024); string input, stringbatar
TcpClient.
i
. n, poruli

\

—
server = newy:
atch (Socket ceptxon\\ . .
© console Wr‘xte&'xne (“Unable o connect o Server
are:
N

ret

publi
ic class TcpClientSample

{
public static void Main()
{
byte[] data = nevw pytel10241F string input, stringdatai
TcpClient server;
ARV | port) i

cryl
server = new Tcpcl‘lem’_\“
Y catch (Socketﬁxcept‘mn\ {
console .Wr‘xte&'u\e (“Unable Yo conn
returni
m) §
= er«ler.GetSttea .
ream™ ns dfdata: Jata _x_‘ex\qt‘s\\-
al

ect O sexver™)

}
etworkSt
" recV

Get abstr
act heap path + maybe allocation sites

Guesstimat
e:>1 to 2 hour
s per alarm to triage “
age “wel
g9

III

e ————

Examining manual triage ... I

Examining manual triage ... I

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s happening.

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

[

< What does the user need to do with an alarm?
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

|

A
1L

What does the user need to do with an alarm?@
He starts at, say, line 142 and traces back to
see if a bug is possible given what’s h¢ ppening.

We can do this with analysis!

If we filter most false alarms, the user can triage
more quickly and get to true bugs earlier
(without frustration).

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
—_— Points-To
iy Analyzer ™ g
(FA) (off-the-shelf)
- :'{ ’i‘f. i ‘

e

Manual
Triaging

Thresher filters out false alarms by

refuting them one-by-one.

Points-To

Program —> AnCII)'Zer
S~ (off-the-shelf)

Manual
Triaging

—

«—

Points-To
Facts

Filter with

v

proof of no bug

X
Alarms

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
frogram > Analyzer T faus
8C - ff-the-shelf d

¢ ,\‘;f (0 =one) — x &%ﬂ

Leak
Alarms
4)

Manual Filter with
[} [} h .
Triaging

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
frogram > Analyzer T faus
8C - ff-the-shelf d

¢ ,\‘;f (0 =one) — x &%ﬂ

Leak
Alarms
4)

Manual Filter with
[} [} h .
Triaging

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Frogram > Analyzer ™ o
ff-the-shelf »
&) (off-the-shelf) - x kgfl
YW P =5
o
Alarms
4 N\
Manual Filter with
[) [] h L
Triaging

@

Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
4_~

-

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Frogram > Analyzer ™ o
g - ff-the-shelf »
0 IS (off-the-shelf) ~— x \jﬂ
P P & 0
o
Alarms
, \
Manual Filter with
[) [) h E
Triaging

1 /’ @

Ideal || : Refute pointsto on-demand with second “uber-precise” filter analysis |
VN 4—_____*

Ay
m

*_sensitive

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To proof of no bug
Points-To
Frogram > Analyzer ™ o
ff-the-shelf »
&) (off-the-shelf) - x kgfl
YW P =5
o
Alarms
4 N\
Manual Filter with
[) [] h L
Triaging

@

Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
4_~

-

Thresher filters out false alarms by
refuting them one-by-one.

v

Points-To et
Points-To
Progm — Anquzer — Facts
_ @'; ff-the-shelf «
/g ‘w (off-the-shelf) | x SJ;\
;(’} Leak
U Alarms

Manual - Filter with

. ° <_ -
Triaging
+

Ideal || : Refute pointsto on-demand with second “uber-precise” filter analysis |
- |

¥ oy
A
B 3

{

Ideal ” : Leverage the facts from the first analysis in the filter analysis to scale |

Refutation analysis is “Proof by Contradiction” g
W“‘h the ”BUf Why?” game R

There may be an
execution where at
some time

O

v

/

O

of type T.

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at
some time

v

O

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some time
o,

/

O

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some time
0 A. Why does statement s cause o to point to o’ ¢
0/

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly pointto o’ ¢
There may be an 4 PO POSIRY P ’

execution where at B. Because statement s may execute to make
- o point to o’
some fime

0 A. Why does statement s cause o to point to o’ ¢

‘l' B. Because before statement s, the program
/

0 state could satisty formula ¢

|

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

There may be an
execution where at
some time

v

o

|

of type T .

A. Why does object o possibly point to o’ @

B. Because statement s may execute to make
o point to o’

A. Why does statement s cause o to point to o’ ¢

B. Because before statement s, the program
state could satisfy formula ¢

A. Why can the state before statement s satisfy ¢?@

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

There may be an
execution where at
some fime

v

o

|

of type T .

A.

Why does object o possibly point to o’ 2

B. Because statement s may execute to make
o point to o’

Why does statement s cause o to point to o’ ¢

B. Because before statement s, the program
state could satisfy formula ¢

Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,
the state could satisfy formula o’

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
There may be an 4 PO POSIRY P ’

execuﬁgp&zheca_ai,, B. Because statement s may execute to make

- : o point to o’
some fim A iust asks P
but why? : :
0 > A. Why does statement s cause o to point to o’ ¢
1 B reasons
about program B. Because before statement s, the program
0 semantics state could satisty formula ¢

|

A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,
the state could satisfy formula o’

of type T .

Refutation analysis is “Proof by Contradiction”
with the “But Why2” game

A. Why does object o possibly point to o’ 2
There may be an / PO POSIRY P ’

executiopauahere At B. Because statement s may execute to make

- : o point to o’
some fim A iust asks P
but why? : :
0 > A. Why does statement s cause o to point to o’ ¢
1 B reasons
about program B. Because before statement s, the program
0 semantics state could satisty formula ¢

|

A. Why can the state before statement s satisfy ¢?@

B. Because before the previous statement s’,

of fype T. the state could satisfy formula

: - |
Theorem: If B can’t give an answer, contradiction. s

The alarm is false. It’'s been refuted. (A wins)

i S

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,

the state could satisfy formula ¢’

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- =3 L}

statement s,
a o’

if empty, then refuted (A wins) ‘

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

s —

statement s,

if empty, then retuted (A wms)

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s,
state could satisfy formula o

the program

A. Why can the state before statement s satisty ¢?¢

L8 L) .

- C ' statement s’,
if empty, then refuted (A wins) l

a o’

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- — L} ~ | | Py n

statement s’,
if empty, then refuted !A wins! !a 7

set of possible states

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

- — L} ~ | | Py n

statement s’,
{ if empty, then refuted !A wins! !a 7

set of possible states

¢ I o' (

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

Leverage first analysis by designing
specialized constraint forms

B. Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B. Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing
specialized constraint forms

B.

Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B.

Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing
specialized constraint forms

B.

Because before statement s, the program
state could satisfy formula o

A. Why can the state before statement s satisty ¢?¢

B.

Because before the previous statement s’,
the state could satisty formula ¢’

Technical Contribution:
Specialized constraint forms

=

Leverage first analysis by designing

specialized constraint forms Y%
B. Because before statement s, the program . ’
state could satisfy formula o Specmhzed
constraint forms

A. Why can the state before statement s satisty ¢?¢

makes finding

B. Because before the previous statement s’, refutations f
the state could satisfy formula ¢’

easible
RN

Technical Contribution:
Specialized constraint forms

=)

Summary: Thresher assists the user with alarm triaging by
effectively filtering out many false alarms.

v

- proof of no bug
R Points-To . PointsTo
Analyzer Facts
Alarms
~

Manual Filter with
° ° h .
Triaging

i€ @

Ideal | : Refute points-to on-demand with second “uber-precise” filter analysis |
4_~

Ideal ” : Leverage the facts from the first analysis in the filter analysis to scale |

Thresher analyzes Java VM bytecode

7 Android app benchmarks

2,000 to 40,000 source lines of code
+ 880,000 sources lines of Android

framework code

Off-the-shelf, state-of-the-art points-to
analysis from WALA

Points-To Thresher True Thresher False Filtered

Program Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0

SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

— Points-To Thresher True Tltresher Falsoe Filiereod

Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

A~
staticfield-

Activity pairs

Activity pairs

— Points-To Thresher True Tltresher Fulsoe Filiereod

Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro triage “well” 54 18 36 18 0 100
Komail - at ~1-2 hours 208 130 b4 374 18 90
Total PST larm 31 172 15| 1602 17 88

| -
staticfield-

Program Points-To Thresher
Alarms Refuted

PulsePoint unknown 16 g
StandupTimer 2K 95 15
DroidLife 3K 3 0
SMSPopUp 7K ; |
aMetro 20K 54 18
K9Mail 40K 208 130
Total 72K 311 172

A~ A~
staticfield- Fi"ered

Activity pairs

Points-To Thresher

Program Alarms Refuted
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 l 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115
A~ A~
staticfield- Filfered

Activity pairs

Points-To Thresher True

Program Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 l 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115
A~ A~ A~
<taticfiela. || Filtered | Manual
Activity pairs||ge= b, ‘

Points-To Thresher True

Program Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5] 4
GMBTI'O 20K friqge ”We"" 36
K9Mail 40K at 10-15 b4
minutes per
Total 72K 115
. N FaN
ctaticfield- Flltered Manual

Activity pairs

— Points-To Thresher True

Alarms Refuted Bugs
PulsePoint unknown 16 8 8
StandupTimer 2K 25 15 0
DroidLife 3K 3 0 3
SMSPopUp 7K 5 l 4
aMetro 20K 4 18 36
K9Mail 40K 208 130 64
Total 72K 311 172 115

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

< ~coffee to
lunch break

— Points-To Thresher True Tltresher

Alarms Refuted Bugs Time (s)
PulsePoint unknown 16 8 8 95
StandupTimer 2K 25 15 0 1068
DroidLife 3K 3 0 3 l
SMSPopUp 7K 5 l 4 46
aMetro 20K 34 18 36 18
K9Mail 40K 208 130 64 374
Total 72K 311 172 115 1602

— Points-To Thresher True Tltresher Falsoe

Alarms Refuted Bugs Time(s) Alarm %
PulsePoint unknown 16 8 8 95 0
StandupTimer 2K 25 15 0 1068 100
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0
aMetro 20K 34 18 36 18 0
K9Mail 40K 208 130 64 374 18
Total 72K 311 172 115 1602 JZ

% after

filtering

— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 E 88
% after

filtering

— Points-To Thresher True Tltresher Falsoe Filiereod
Alarms Refuted Bugs Time(s) Alarm % %
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 l 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only)

Thresher filters 88% of false alarms from points-to analysis

I

l
|

—————

e

Guesstimate
Triage “well” without versus with: ~450 hours versus ~30 hours

Triage “ok” without: ~30 hours od
PulsePoint unknown 16 8 8 95 0 100
StandupTimer 2K 25 15 0 1068 100 60
DroidLife 3K 3 0 3 l 0
SMSPopUp 7K 5 1 4 46 0 100
aMetro 20K 54 18 36 18 0 100
K9Mail 40K 208 130 64 374 18 90
Total 72K 311 172 115 1602 17 88

False alarms down to 17% from 63% (points-to analysis only) :
Thresher filters 88% of false alarms from pointsto analysis |
T 1

> \
_ /Android
o

..... - OS

... in the process of finding leaks in apps

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find the Android’s HashMap bug ...

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find the Android’s HashMap bug ...

null object pattern: should not be written to

class HashMap {
static Object[] EMPTY = new Object[2]; ...
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) {
this.tbl = new Object[more capacity];
copy from old table
¥
this.tbl[bucket using hash of key] = val;
+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

+
+

Find the Android’s HashMap bug ...

class HashMap {

+

null object pattern: should not be written to

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {
if (need capacity) { allocate new
this.tbl = new Object[more capacityl]; backing array

copy from old table on first write

by
this.tbl[bucket using hash of key] = val;

+

HashMap (Map m) {
if (m.size() < 1) { this.tbl = EMPTY; }
else { this.tbl = new Objectlat least m.size()]; }
copy from m

}

Find the Android’s HashMap bug ...

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacityl]; backing array
copy from old table on first write
by
this.tbl[bucket using hash of key] = val;
¥ [

2& ishMap(Map m) |
7 {if (m.size() < 1) { this.tbl = EMPTY; }
" else { this.tbl = new Object[at least m.size()]; }

copy from m

}
+

Find the Android’s HashMap bug

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
+

this.tbl[bucket using hash of key] = val;

/ /1f (m.size() < 1) { this.tbl = EMPTY; }
" else { this.tbl = new Object[at least m.size()]; }

—
CO rom m e olyr o . .
Py J ~— An “evil” implementation of the Map interface

by
can corrupt EMPTY. Then, all HashMaps created

+

in the future will be corrupted.

Find the Android’s HashMap bug

null object pattern: should not be written to
class HashMap { 1€t P

static Object[] EMPTY = new Object[2];
HashMap() { this.tbl = EMPTY; capacity initially empty }

void put(Object key, Object val) {

if (need capacity) { allocate new
this.tbl = new Object[more capacity]; backing array
copy from old table on first write
+

this.tbl[bucket using hash of key] = val;

/ /1f (n.size()< 1) { this.tbl = EMPTY; }
) else { this.tbl = new Objectlat least m.size()]; }

co TOM M e .
- p y f N ::; An ‘evil” implementation of the Map interface

] return eV||" content - can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

cla; I

What it you store
passwords in a HashMap?

i
I

return O

;/’ /if (m.size()*< 1) { this.tbl = EMPTY; }
" else { this.tbl = new Object[at least m.size()]; }
copy from m

.III)

An “evil” implementation of the Map interface
D L —— can corrupt EMPTY. Then, all HashMaps created
in the future will be corrupted.

cla:

What it you store
passwords in a HashMap?

i
I |
We reported this, Google fixed it i i

} 7'—-__ https://android-review.googlesource.com/#/c/52183/

ﬁ. e
/j*%shMap(Map my {. reornc

;/’ 1f (m.size() "< 1) { this.tbl = EMPTY; }

~else { this.tbl = new Object[at least m.size()]; }

co rom m e : :
y Py J An “evil” implementation of the Map interface

} return “evil” content can corrupt EMPTY. Then, all HashMaps created

in the future will be corrupted.

https://android-review.googlesource.com/#/c/52183/
https://android-review.googlesource.com/#/c/52183/

Contribution: Addressed the
false alarm problem with

a “smart and precise filter”

a refutation analysis
|

S —

Agenda:

Enforcement
Windows: Measuring .
Bug Avoidance Input
[Coughlin+ ISSTA’12, NSF EAGER]
. -

P Spec-
rogram- 7 ification

ming

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL’14, NSF SHF]

—> Runner

: \V/
Program —> Verifier &

Static Incrementalization of

Data Structure Checks
[NSF CAREER]

\4 Test
> Output

Jsana: Abstract Domain Combinators
for Dynamic Languages v

[Cox+ ECOOP’13, NSF SHF]

roof of no bug

X

Alarm
Report

Thresher: Assisting Triage by

Refutation Analysis
Blackshear+ PLDI’13, Blackshear+ SAS’11, NSF CAREER]

[
LTcrrrvvn - \/

Triaging)

| ‘Q? PhD Advisee

Agenda: The cooperative approach addresses the whole
bug mitigation process.

= ™
P Spec-
rogram- " ification \
Sioe), y / proof of no bug
Program —> Veriﬁer

Fissile Types:
Checking Almost
Everywhere

Invariants
[Coughlin+ POPL' 14, NSF SHF]

Fissile Types:
Checking Reflection
with Almost
Everywhere
Invariants

Method Reflection and the Great Divide

object[string] ()

Method Reflection and the Great Divide

reflective method call: dispatch based on run-time value (in string)

object [string]v()

Method Reflection and the Great Divide

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

Type system designers worry.

What gets called?2 What if

object has no method named
by string?

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers

Type system designers worry.

What gets called?2 What if

object has no method named
by string?

“web 2.0” developers

“Web 2.0” developers think
it's cool.

| can flexible and compact
code, so | will take it over
static safety.

reflective method call: dispatch based on run-time value (in string)

object [string]v()

type system designers “web 2.0” developers

Type system designers worry. Web 2.0 developers think

it’'s cool.
Wh: ST]
obj, “MethodNotFound” checked at run time |
by < —

E ! ! static satefy.

Program

Program

safe assuming a relationship
invariant between .o and .m

V
callback.o[callback.m] ()

Program

O_&ﬁ safe assuming a relationship
R\ 4 w invariant between .o and .m
\105"’0&’\ \/
wh callback.o[callback.m] ()

Program

Q_éﬁ safe assuming a relationship
. 0\"& w invariant between .0 and .m
RV A \/
wh callback.o[callback.m] ()

invariant broken

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Q\—é& safe assuming a relationship
. 0\"& w invariant between .0 and .m
IRV V
wh callback.o[callback.m] ()

/

invariant broken
&

buk omlj Eemporavitv e

)z
3

Program

Programs are often
(1) safe, (2) not type safe, (3) but almost so

Q\,é& safe assuming a relationship
. O\V& w invariant between .0 and .m
. \105“ \/
wh callback.o[callback.m] ()

avariank broieen @

buk o-mi.:j Eemporamtv

Program

Tolerate “temporary” violation with

Safe but not type safe ...

class Callback:
var sel: Str
var obj: 0bj]

def call():
this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel = s
this.obj = o

Safe but not type safe ...

class Callback:
var sel: Str

var obj: 0Obj | respondsTo sel

def call():

this.objl[this.sell] ()

def update(s:

this.sel =
this.obj =

S
O

Str, o:

0bj | respondsTo s):

Safe but not type safe ...

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: 0bj | respondsTo sel

def call():
this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel = s
this.obj = o

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: Obj | respondsTo sel

Call is safe because
def call(): of the invariant

this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel = s
this.obj = o

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: Obj | respondsTo sel

Call is safe because
def call(): of the invariant

this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel = s
this.obj = o

Safe but not type safe ...

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: 0bj | respondsTo sel

Call is safe because
def call(): of the invariant

this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel = s

this.obj = o

Safe but not type safe ...

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: 0bj | respondsTo sel

Call is safe because
def call(): of the invariant

this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel
this.ob]

relationship invariant violated

i
O W

relationship invariant restored

Safe but not type safe ...

class Callback: Type specifies a global
relationship invariant

var sel: Str
var obj: 0bj | respondsTo sel

Call is safe because
def call(): of the invariant

this.objl[this.sell] ()

def update(s: Str, o: Obj | respondsTo s):

this.sel
this.ob]

relationship invariant violated

i
O W

relationship invariant restored

{

Tolerate “temporary” violation with w |
.

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

Type annotations

seeded with 76 respondsTo in system
libraries

needed only 136 annotations in
benchmarks (total)

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

Type annotations

I
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s)

l

TR——

benchmarks (total)

s Fissile effective at proving reflective call safety?

Fissile analyzes Objective-C source

? benchmarks (6 libraries + 3 apps)

1,000 to 176,000 lines of code
461,000 lines in totadl

places requiring a check of the invariant

\/ |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s)

l

TE—

benchmarks (total)

Fissile analyzes Objective-C source
? benchmarks (6 libraries + 3 apps)
1,000 to 176,000 lines of code

461,000 lines in totadl

places requiring a check of the invariant

\V |
Proved 86% of check sites (up from 76%) at

interactive speeds (~4 to 90 kloc/s) |

,’
. -
Big Deal: makes IDE integration possible

Summary:

Enforcement

\
W

Data Structure Checks

. ., " [under review]
Windows: Measuring . /
Bug Avoidance nput > Runner
[Coughlin+ ISSTA"12]
P Spec- N
rogram- 7 itcation Jsana: Abstract Domain Combinators
| min for Dynamic Languages
Y guag
L [Cox+ ECOOP’13, Cox+ SAS’14, under review] roof of no bug
{I’EEKL% X) \/
Program —> Venﬁer
Fissile T : =) x Alarm
issile Types: , Report
Checking Almost Thresher: Assisting Triage by
Everywhere Refutation Analysis
Invariants

[Coughlin+ POPL'14, in prep]

< V

" [Blackshear+ PLDI’13, Blackshear+ SAS’11, under review]
° ° W
Triaging ©3

@]’ PLV

www.cs.colorado.edu/ " bec
pl.cs.colorado.edu

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

AV

. -“-.-‘_. A

'» llﬁ, r
P o : Lt A e

. > .
WA B4 "’(:A
" 5o
o B e {
G Ty Ve
C AR T g Sl LA e
- ﬁ > o \
L
TN ,jiz-.‘
).' ,."‘- s J
w : “' o N)
N WY : *\,
ot
S

}:rr ¢ .‘“%('32:)' 4«;}%&

R e 'laﬁ"n.-' E

',,)e""’\)
0 A
L

W AT e
£ e

WWW.CS. colorado edu/~bec
pl Cs. colorado edu

http://www.cs.colorado.edu/~bec
http://www.cs.colorado.edu/~bec

