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Abstract. Analysis or verification of low-level code is useful for min-
imizing the disconnect between what is verified and what is actually
executed and is necessary when source code is unavailable or is, say,
intermingled with inline assembly. We present a modular framework for
building pipelines of cooperating decompilers that gradually lift the level
of the language to something appropriate for source-level tools. Each de-
compilation stage contains an abstract interpreter that encapsulates its
findings about the program by translating the program into a higher-
level intermediate language. We provide evidence for the modularity of
this framework through the implementation of multiple decompilation
pipelines for both x86 and MIPS assembly produced by gcc, gcj, and
coolc (a compiler for a pedagogical Java-like language) that share sev-
eral low-level components. Finally, we discuss our experimental results
that apply the BLAST model checker for C and the Cqual analyzer to
decompiled assembly.

1 Introduction

There is a growing interest in applying software-quality tools to low-level rep-
resentations of programs, such as intermediate or virtual-machine languages, or
even on native machine code. We want to be able to analyze code whose source is
either not available (e.g., libraries) or not easily analyzable (e.g., programs writ-
ten in languages with complex semantics such as C++-, or programs that contain
inline assembly). This allows us to analyze the code that is actually executed and
to ignore possible compilation errors or arbitrary interpretations of underspec-
ified source-language semantics. Many source-level analyses have been ported
to low-level code, including type checkers [23, 22, 8], program analyzers [26, 4],
model checkers [5], and program verifiers [12, 6]. In our experience, these tools
mix the reasoning about high-level notions with the logic for understanding low-
level implementation details that are introduced during compilation, such as
stack frames, calling conventions, exception implementation, and data layout.
We would like to segregate the low-level logic into separate modules to allow for
easier sharing between tools and for a cleaner interface with client analyses. To
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better understand this issue, consider developing a type checker similar to the
Java bytecode verifier but for assembly language. Such a tool has to reason not
only about the Java type system, but also the layout of objects, calling conven-
tions, stack frames, with all the low-level invariants that the compiler intends
to preserve. We reported earlier [8] on such a tool where all of this reasoning is
done simultaneously by one module. But such situations arise not just for type
checking but essentially for all analyses on assembly language.

In this paper we propose an architecture that modularizes the reasoning
about low-level details into separate components. Such a separation of low-level
logic has previously been done to a certain degree in tools such as CodeSurf-
er/x86 [4] and Soot [28], which expose to client analyses an API for obtaining
information about the low-level aspects of the program. In this paper, we adopt
a more radical approach in which the low-level logic is packaged as a decompiler
whose output is an intermediate language that abstracts the low-level imple-
mentation details introduced by the compiler. In essence, we propose that an
easy way to reuse source-level analysis tools for low-level code is to decompile
the low-level code to a level appropriate for the tool. We make the following
contributions:

— We propose a decompilation architecture as a way to apply source-level tools
to assembly language programs (Sect. 2). The novel aspect of our proposal
is that we use decompilation not only to separate the low-level logic from
the source-level client analysis, but also as a way to modularize the low-level
logic itself. Decompilation is performed by a series of decompilers connected
by intermediate languages. We provide a cooperation mechanism in order to
deal with certain complexities of decompilation.

— We provide evidence for the modularity of this framework through the im-
plementation of multiple decompilation pipelines for both x86 and MIPS
assembly produced by gcc (for C), gcj (for Java), and coolc (for Cool [1],
a Java-like language used for teaching) that share several low-level compo-
nents (Sect. 3). We then compare with a monolithic assembly-level analysis.

— We demonstrate that it is possible to apply source-level tools to assembly
code using decompilation by applying the BLAST model checker [18] and
the Cqual analyzer [17] with our gcc decompilation pipeline (Sect. 4).

Note that while ideally we would like to apply analysis tools to machine code
binaries, we leave the difficult issue of lifting binaries to assembly to other work
(perhaps by using existing tools like IDAPro [19] as in CodeSurfer/x86 [4]).

Challenges. Just like in a
compiler, a pipeline archi-
tecture improves modular-
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for easy reuse of modules
for different client-analyses. Fig. 1. Cooperating decompilers.
Fig. 1 shows an example of using decompilation modules to process code that
has been compiled from C, Java, and Cool. Each stage recovers an abstrac-
tion that a corresponding compilation stage has concretized. For example, we
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have a decompiler that decompiles the notion of the run-time stack of activa-
tion records into the abstraction of functions with local variables (Locals). The
analogy with compilers is very useful but not sufficient. Compilation is in many
respects a many-to-one mapping and thus not easily invertible. Many source-
level variables are mapped to the same register, many source-level concepts are
mapped to the run-time stack, many source-level operations are mapped to a
particular low-level instruction kind. We address this issue by providing each
decompiler with additional information about the instruction being decompiled.
Some information is computed by the decompiler itself using data-flow analysis.
For example, the Locals decompiler can keep track of the value of the stack and
frame pointer registers relative to function entry.

The real difficulty is that some information must be provided by higher-level
modules. For example, the Locals module must identify all calls and determine
the number of arguments, but only the object-oriented module (OO) should
understand virtual method invocation. There is a serious circularity here. A
decompiler needs information from higher-level decompilers to produce the input
for the higher-level decompiler. We introduce a couple of mechanisms to address
this problem. First, the entire pipeline of decompilers is executed one instruction
at a time. That is, we produce decompiled programs simultaneously at all levels.
This setup gives each decompiler the opportunity to accumulate data-flow facts
that are necessary for decompiling the subsequent instructions and allows the
control-flow graph to be refined as the analysis proceeds. When faced with an
instruction that can be decompiled in a variety of ways, a decompiler can consult
its own data-flow facts and can also query higher-level decompilers for hints based
on their accumulated data-flow facts. Thus it is better to think of decompilers
not as stages in a pipeline but as cooperating decompilers. The net result is
essentially a reduced product analysis [15] on assembly; we explain the benefits of
this framework compared to prior approaches based on our previous experiences
in Sect. 3 and 5.

2 Cooperating Decompilation Framework

For concreteness, we describe the method-  gtatic int length(List x) {

ology through an example series of decom- int n = 0;

piler modules that together are able to per- while (x.hasNext()) {
form Java type checking on assembly lan- x = x.next();

guage. We focus here on the Java pipeline n++;

(rather than C), as the desired decompila- }

tion is higher-level and thus more challeng-
ing to obtain. Comnsider the example Java }
program in Fig. 2 and the corresponding as-
sembly code shown in the leftmost column
of Fig. 3. In this figure, we use the stack and calling conventions from the x86
architecture where the stack pointer r,, points to the last used word, parameters
are passed on the stack, return values are passed in ry, and r, is a callee-save
register. Typically, a virtual method dispatch is translated to several lines of

return n;

Fig. 2. A Java method.
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1 length: length(ty): length(ayg): length(ay : obj): length(ay : List):
2 ...
3 mirg]:=0 tn =0 an, =0 an, =0 an, =0
4 Lloop5 Lloop5 Lloop: Lloop: Lloop:
O‘% = d)(anv a;z) a;{ = d)(an’ Oz;,,) alfi = ¢(an’ a;':)
ot = flamal) ot = dlam,al) okt = dlas, o)
5 ri:=mlrg+12] =t
6 jzerori, Lexc jzerori, Lexc if (af=0) Lexc if (a}/=0) Lexc if (a%/=0) Lexc
7 ro:=mri] ro ;= mjrq]
8 r1:=mra+32] r;:=mlr+32]
9 rspi=rs —4
10 mrgy] = t1 =t
mrg,+16]
11 icall [rq] ry = oy = Qry = Qry =
icall [r1](t1) icall invokevirtual o/ .hasNext()

[m[m(a7]+32]]  [af, 32]()

(o)
12 rgpi=rs +4
13 jzerori, Leng jzerori, Leng if (@ry=0) Lena if (ary=0) Leng if (v =0) Lena
14 rspi=rTg —4

15 mirgp] = t1 =t
mrg,+16]
16 r1:=mra+28] ri:=mlr+28]
17 icall [rq] r| = o, = o, = o, =
icall [r1](t1) icall invokevirtual o .next()

[m[m(a7]+28]]  [af, 28]()
(o)
18 rgp :=rsp +4

19 mlrg+12):=r1 tz:=r; ol =al, o = ap, ol =al,

20 incr mirgp) incr ty, o, =all +1 o, =all +1 o, =a +1

21 ju-mP Lloop jump Lloop jump Lloop jump Lloop jump Lloop

22 Lend: Lend: Lend: Lend: Lend:

23 ri:=mrg] ri =ty

24

25 return return rq return o) return o, return o)
Assembly Locals IL SymEval IL OO IL Java IL

Fig. 3. Assembly code for the program in Fig. 2 and the output of successive
decompilers. The function’s prologue and epilogue have been elided. Jumping to
Lexe will trigger a Java NullPointerException.

assembly (e.g., lines 6-11): a null-check on the receiver object, looking up the
dispatch table, and then the method in the dispatch table, passing the receiver
object and any other arguments, and finally an indirect jump-and-link (icall).
To ensure that the icall is a correct compilation of a virtual method dispatch,
dependencies between assembly instructions must be carefully tracked, such as
the requirement that the argument passed as the self pointer is the same as
the object from which the dispatch table is obtained (cf., [8]). These difficul-
ties are only exacerbated with instruction reordering and other optimizations.
For example, consider the assembly code for the method dispatch to x.next()
(lines 14-17). Variable x is kept in a stack slot (m[r,,+16] at line 15). A small
bit of optimization has eliminated the null-check and the re-fetching of the dis-
patch table of x, as a null-check was done on line 6 and the dispatch table
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was kept in a callee-save register ro, so clearly some analysis is necessary to
decompile it into a method call.

The rest of Fig. 3 shows how this assembly code is decompiled by our system.
Observe how high-level constructs are recovered incrementally to obtain essen-
tially Java with unstructured control-flow (shown in the rightmost column). Note
that our goal is not to necessarily recover the same source code but simply code
that is semantically equivalent and amenable to further analysis. To summarize
the decompilation steps, the Locals module decompiles stack and calling conven-
tions to provide the abstraction of functions with local variables. The SymEval
decompiler performs symbolic evaluation to accumulate and normalize larger
expressions to present the program in a source-like SSA form. Object-oriented
features, like virtual method dispatch, are identified by the OO module, which
must understand implementation details like object layout and dispatch tables.
Finally, JavaTypes can do a straightforward type analysis (because its input is
already fairly high-level) to recover the Java-like representation.

As can be seen in Fig. 3, one key element of analyzing assembly code is
decoding the run-time stack. An assembly analyzer must be able to identify
function calls and returns, recognize memory operations as either stack accesses
or heap accesses, and must ensure that stack-overflow and calling conventions are
handled appropriately. This handling ought to be done in a separate module both
because it is not specific to the desired analysis and also to avoid such low-level
concerns when thinking about the analysis algorithm (e.g., Java type-checking).
In our example decompiler pipeline (Fig. 1), the Locals decompiler handles all of
these low-level aspects. On line 17, the Locals decompiler determines that this
instruction is a function call with one argument (for now, we elide the details
how this is done, see the Bidirectional Communication subsection and Fig. 4). Tt
interprets the calling convention to decompile the assembly-level jump-and-link
instruction to a function call instruction with one argument that places its return
value in r,,. Also, observe that Locals decompiles reads of and writes to stack
slots that are used as local variables into uses of temporaries (e.g., t,) (lines 3,
5, 10, 15, 19, 20, 23). To do these decompilations, the Locals decompiler needs
to perform analysis to track, for example, pointers into the stack. For instance,
Locals needs this information to identify the reads on both lines 5 and 10 as
reading the same stack slot t,. Section 3 gives more details about how these
decompilers are implemented.

Decompiler Interface.
Program analyses are al-
most always necessary to
establish the prerequi-
sites for sound decompi-
lations. We build on the traditional notions of data-flow analysis and abstract
interpretation [14]. Standard ways to combine abstract interpreters typically rely
on all interpreters working on the same language. Instead, we propose here an
approach in which the communication mechanism consists of successive decom-
pilations. Concretely, a decompiler must define a type of abstract states abs

type abs
val step : curr X instr;, — instr,u X (succ list)
val C : abs X abs — bool
val V : abs X abs — abs
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and implement a flow function (i.e., abstract transition relation) step with the
type signature given above for some input language instr;, and some output
language instr,,;. The input type curr represents the abstract state at the
given instruction, and succ is an abstract successor state at a particular pro-
gram location. For simplicity in presentation, we say a decompiler translates one
input instruction to one output instruction. Our implementation extends this to
allow one-to-many or many-to-one translations. As part of the framework, we
provide a standard top-level fixed-point engine that ensures the exploration of
all reachable instructions. To implement this fixed-point engine, we require the
signature include the standard partial ordering C and widening V operators [14]
for abstract states.

For simple examples where the necessary communication is unidirectional
(that is, from lower-level decompilers to higher-level decompilers via the decom-
piled instructions), an exceedingly simple composition strategy suffices where we
run each decompiler completely to fixed point gathering the entire decompiled
program before running the next one (i.e., a strict pipeline architecture). This
architecture does not require a product abstract domain and would be more
efficient than one. Unfortunately, as we have alluded to earlier, unidirectional
communication is insufficient: lower-level decompilers depend on the analyses of
higher-level decompilers to perform their decompilations. We give examples of
such situations and describe how to resolve this issue in the following subsection.

Bidirectional Communication. In this subsection, we motivate two compli-
mentary mechanisms for communicating information from higher-level decom-
pilers to lower-level ones. In theory, either mechanism is sufficient for all high-
to-low communication but at the cost of efficiency or naturalness. As soon as
we consider high-to-low communication, clearly the strict pipeline architecture
described above is insufficient: higher-level decompilers must start before lower-
level decompilers complete. To address this issue, we run the entire pipeline of
decompilers one instruction at a time, which allows higher-level decompilers to
analyze the preceding instructions before lower-level decompilers produce sub-
sequent instructions. For this purpose, we provide a product decompiler whose
abstract state is the product of the abstract states of the decompilers, but in
order to generate its successors, it must string together calls to step on the de-
compilers in the appropriate order and then collect together the abstract states
of the decompilers.

Queries. Consider again the dynamic dispatch on line 17 of Fig. 3. In order
for the Locals module to (soundly) abstract stack and calling conventions into
functions with local variables, it must enforce basic invariants, such as a function
can only modify stack slots (used as temporaries) in its own activation record
(i.e., stack frame). To determine the extent of the callee’s activation record, the
Locals module needs to know, among other things, the number of arguments of
the called function, but only the higher-level decompiler that knows about the
class hierarchy (JavaTypes) can determine the calling convention of the methods
that r; can possibly point to. We resolve this issue by allowing lower-level de-
compilers to query higher-level decompilers for hints. In this case, Locals asks:
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Locals SymEval 00 JavaTypes

rop:5p(-12)]  [r1 = mimla7] + 28]
isFunc(ry)? isFunc(m[m[a//] + 28])? isMethod(a/,28)7

Yes, 1 argument ~ Yes, largument  Yes, 0 arguments
oSS o eI o D DT

17 icall [rq] icall [r1](t1) icall [m[m[a//] + 28]](e)) invokevirtual [o),28]() ol .next()

Assembly Locals IL SymEval IL OO IL Java IL

Fig. 4. Queries to resolve the dynamic dispatch from line 17 of Fig. 3.

“Should icall [r;] be treated as a standard function call; if so, how many ar-
guments does it take?”. If some higher-level decompiler knows the answer, then
it can translate the assembly-level jump-and-link (icall [r1]) to a higher-level
call with arguments and a return register and appropriately take into account
its possible interprocedural effects.

In Fig. 4, we show this query process in further detail, eliding the return
values. Precisely how these decompilers work is not particularly relevant here
(see details in Sect. 3). Focus on the original query isFunc(r;) from Locals.
To obtain an answer, the query gets decompiled into appropriate variants on
the way up to JavaTypes. The answer is then translated on the way down.
For the OO module the method has no arguments, but at the lower-level the
implicit this argument becomes explicit. For JavaTypes to answer the query,
it must know the type of the receiver object, which it gets from its abstract
state. The abstract states of the intermediate decompilers are necessary in order
to translate queries so that JavaTypes can answer them. We show portions of
each decompiler’s abstract state in the boxes above the queries; for example,
Locals must track the current value of the stack pointer register r,, (we write
sp(n) for a stack pointer that is equal to r, on function entry plus n). By
also tracking return addresses, this same query also allows Locals to decompile
calls that are implemented in assembly as (indirect) jumps (e.g., tail calls). This
canonicalization then enables higher-level decompilers to treat all calls uniformly.

Adjacent decompilers agree upon the queries
that can be made by defining a type hints in
their shared intermediate language. An object of type hints,,; provides infor-
mation about the current abstract states of higher-level decompilers, usually in
the form of one or more callback functions like isFunc. Such an object is pro-
vided as an input to the step function of each decompiler (as part of curr);
This architecture with decompilations and callbacks works quite nicely, as long as
the decompilers agree on the number of successors and their program locations.

{type curr = hints,u X abs}

Decompiling Control-Flow. Obtaining a reasonable control-flow graph on which
to perform analysis is a well-known problem when dealing with assembly code
and is often a source of unsoundness, particularly when handling indirect control-
flow. For example, switch tables, function calls, function returns, exception raises
may all be implemented as indirect jumps (ijump) in assembly. We approach
this problem by integrating the control-flow determination with the decompila-
tion; that is, we make no a priori guesses on where an indirect jump goes and
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rely on the decompiler modules to resolve them to a set of concrete program
points. In general, there are two cases where the decompilers may not be able
to agree on the same successors: lower-level decompilers don’t know the suc-
cessors or higher-level ones have additional successors. Sometimes a low-level
decompiler does not know the possible concrete successors. For example, if the
Locals decompiler cannot resolve an indirect jump, it will produce an indirect
successor indicating it does not know where the indirect jump will go. However,
a higher-level decompiler may be able to refine the indirect successor to a set
of concrete successors (that, for soundness, must cover where the indirect jump
may actually go). It is then an error if any indirect successors remain unresolved
after the entire pipeline. A decompiler may also need to introduce additional
successors not known to lower-level modules. In both examples, a high-level de-
compiler augments the set of successors with respect to those of the low-level
decompilers. The problem is that we do not have abstract states for the low-level
decompilers at the newly introduced successors. This, in turn, means that it will
be impossible to continue the decompilation at one of these successors.

To illustrate the latter situation, consider a static method

call C.m() inside the try of a try-catch block and its compi- ; call Cm
lation to assembly (shown to the right). We would like to make 5

use of the run-time stack analysis and expression normalization  ;  jump Ley;
performed by Locals and SymEval in decompiling exceptions, S0 5 Leaten:

the decompiler that handles exceptions should be placed some- 6

where after them in the pipeline. However, the Locals decom- 7 Lexit:
piler, and several decompilers after it, produce one successor 8

abstract state after the call to C.m() (line 2). In order to soundly analyze a pos-
sible throw in C.m(), the decompiler that handles exceptions must add one more
successor at the method call for the catch block at Lcaten - The challenge is to
generate appropriate low-level abstract states for the successor at Lcaicn . For
example, the exceptions decompiler might want to direct all other decompilers
to transform their abstract states before the static method call and produce an
abstract state for Leaten from it by clobbering certain registers and portions of
memory.

The mechanism we pro-
pose is based on the obser-
vation that we already have a pipeline of decompilers that is able to transform
the abstract states at all levels when given a sequence of machine instructions.
To take advantage of this we require a decompiler to provide, for each newly in-
troduced successor, a list of machine instructions that will be “run” through the
decompilation pipeline (using step) to produce the missing lower-level abstract
states. To achieve this, the succ type (used in the return of step) carries an
optional list of machine instructions (of type instr.). As a side-condition, the
concrete machine instructions returned by step should not include control-flow
instructions (e.g., jump). We also extend the concrete machine instruction set
with instructions for abstracting effects; for example, there is a way to express
that register r, gets modified arbitrarily (havoc r ).

[type succ = loc X (abs X ((instr, list) option))J




326 B.-Y.E. Chang, M. Harren, and G.C. Necula

Both queries and these reinterpre-
tations introduce a channel of commu- gy
nication from higher-level decompilers !
to lower-level ones, but they serve com-
plimer}tary purposes. For one, reinter- nstructions o> queries
pretations are initiated by high-level PR reinterpretations < — - — responses
decompilers, while queries are initiated
by low-level decompilers. We want to use queries when we want the question to
be decompiled, while we prefer to communicate through reinterpretations when
we want the answers to be decompiled. The diagram above summarizes these
points. In the extended version [9], we give the product decompiler that ties
together the pipeline (with queries and reinterpretations), which further clarifies
how the decompiler modules interact to advance simultaneously.

Soundness of Decompiler Pipelines. One of the main advantages of the
modular architecture we describe in this paper is that we can modularize the
soundness argument itself. This modularization increases the trustworthiness of
the program analysis and is a first step towards generating machine-checkable
proofs of soundness, in the style of Foundational Proof-Carrying Code [3].

Since we build on the framework of abstract interpretation, the proof oblig-
ations for demonstrating the soundness of a decompiler are fairly standard lo-
cal criteria, which we sketch here. Soundness of a decompiler module is shown
with respect to the semantics of its input and output languages given by con-
crete transition relations. In particular, leaving the program implicit, we write
I, 31 ~, I'@Q¢ for the one-step transition relation of the input (lower-level)
machine, which says that on instruction I, and pre-state [, the post-state is I
at program location ¢ (similarly for the output machine #). As usual, we can
specify whatever safety policy of interest by disallowing transitions that would
violate the policy (i.e., modeling errors as “getting stuck”). Also, we need to
define a soundness relation | 3 a between concrete states for the input machine
and abstract states, as well as a simulation relation | ~ h between concrete
states of the input and output machines.

Note that for a given assembly program, we use the same locations for all
decompilations since we consider one-to-one decompilations for presentation pur-
poses (otherwise, we would consider a correspondence between locations at dif-
ferent levels). Let £o and #H, denote the initial machine states (as a mapping
from starting locations to states) such that they have the same starting locations
each with compatible states (i.e., dom(£y) = dom(#p) and Lo(¢) ~ Hy(€) for all
¢ € dom(Ly)). Now consider running the decompiler pipeline to completion (i.e.,
to fixed point) and let A, be the mapping from locations to abstract states at
fixed point. Note that A, must contain initial abstract states compatible with
the concrete states in £y (i.e., dom(Ly) C dom(Ay) and Lo(¢) 3 A (€) for
all ¢ € dom(£)).

We can now state the local soundness properties for a decompiler module’s
step. A decompiler’s step need only give sound results when the query object
it receives as input yields answers that are sound approximations of the ma-
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chine state, which we write as h < ¢ (and which would be defined and shown
separately).

Property 1 (Progress). If | ~ h, | 2 a, h 3 q, step((¢,a),1;) = (Iy,A’) and
I8 h ~~y W@, then I, 81 ~, 1'Q¢ (for some I').

Progress says that whenever the decompiler can make a step and whenever the
output machine is not stuck, then the input machine is also not stuck. That is, a
decompiler residuates soundness obligations to higher-level decompilers through
its output instruction. Thus far, we have not discussed the semantics of the
intermediate languages very precisely, but here is where it becomes important.
For example, for stack slots to be soundly translated to temporaries by the
Locals decompiler, the semantics of the memory write instruction in Locals IL
is not the same as a memory write in the assembly in that it must disallow
updating such stack regions. In essence, the guarantees provided by and the
expectations of a decompiler module for higher-level ones are encoded in the
instructions it outputs. If a decompiler module fails to perform sufficient checks
for its decompilations, then the proof of this property will fail.

To implement a verifier that enforces a particular safety policy using a de-
compiler pipeline, we need to have a module at the end that does not output
higher-level instructions to close the process (i.e., capping the end). Such a mod-
ule can be particularly simple; for example, we could have a module that simply
checks syntactically that all the “possibly unsafe” instructions have been de-
compiled away (e.g., for memory safety, all memory read instructions have been
decompiled into various safe read instructions).

Property 2 (Preservation). If | ~ h, 1 3 a, h $ ¢q and step((¢g,a),I,) =
(Iy, A"), then for every I’ such that I, 8 [ ~, I’@Q¢, there exists h',a’ such
that I ¢ b~y h'@QC where I’ ~ b/ and o’ = Ay (€) where I S d’.

Preservation guarantees that for every transition made by the input machine,
the output machine simulates it and the concrete successor state matches one of
the abstract successors computed by step (in Ay ).

3 Decompiler Examples

In this section, we describe a few decompilers from Fig. 1. For each decompiler,
we give the instructions of the output language, the lattice of abstract values,
and a description of the decompilation function step. We use the simplified
notation step(acurrs Iin) = (Louts @suce) t0 say that in the abstract state acypr
the instruction I;, is decompiled to I,,; and yields a successor state agye.. We
write aguc.@F to indicate the location of the successor, but we elide the location
in the common case when it is “fall-through”. A missing successor state @gycc
means that the current analysis path ends. We leave the query object implicit,
using ¢ to stand for it when necessary. Since each decompiler has similar struc-
ture, we use subscripts with names of decompilers or languages when necessary
to clarify to which module something belongs.
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Decompiling Calls and Lo-  jpgtr I, =1, |x:=call l(e,...,en)
cals. The Locals module | 2 := icall [e](eq1, ..., en)
deals with stack conventions | return e

and introduces the notion of ghg values 7 := T | n|sp(n)|ra]&e|cs(r)

statically-scoped local vari-
ables. The two major changes from assembly instructions (I-) are that call
and return instructions have actual arguments. The abstract state includes a
mapping I' from variables x to abstract values 7, along with two additional
integers, nj, and np;, that delimit the current activation record (i.e., the extent
of the known valid stack addresses for this function) with respect to the value of
the stack pointer on entry. The variables mapped by the abstract state include
all machine registers and variables t,, that correspond to stack slots (with the
subscript indicating the stack offset of the slot in question). We need only track
a few abstract values 7: the value of stack pointers sp(n), the return address for
the function ra, code addresses for function return addresses &/, and the value
of callee-save registers on function entry cs(r). These values form a flat lattice,
with the usual ordering.

Many of the I'te:sp(n) nw<n<ng n=0(mod4)
cases for the
step function
propagate the input instruction unchanged and update the abstract state. We
show here the definition of step for the decompilation of a stack memory read
to a move from a variable. For simplicity, we assume here that all stack slots are
used for locals. This setup can be extended to allow higher-level decompilers to
indicate (through some high-to-low communication) which portions of the stack
frame it wants to handle separately. We write I' - e : 7 to say that in the
abstract state (I';nj,;npn;), the expression e has abstract value 7. For verifying
memory safety, a key observation is that Locals proves once and for all that such
a read is to a valid memory address; by decompiling to a move instruction, no
higher-level decompiler needs to do this reasoning. The analogous translation for
stack writes appears on, for example, line 19 in Fig. 3.

step((I'; 1uo; i), 7 := mle]) = (r:=tn, (I'lr = I'(tn)]; 1200; 70i))

The following rule gives the translation of function calls:

I'(zra) =& I'(rsp) =sp(n) n=0(mod4) gq.isFunc(e)=k I’ = scramble(I,n,k)

step((I';njp; npi ), icall [e]) = (zry := icall [e](z1, ..., zk), (I [rsp — sp(n+4)]; nio; npi) QL)

It checks that the return address is set, ry, contains a word-aligned stack pointer,
and e is the address of a function according to the query. Based on the calling
convention and number of arguments, it constructs the call with arguments and
the return register. The successor state I is obtained first by clearing any non-
callee-save registers and temporaries corresponding to stack slots in the callee’s
activation record, which is determined by scramble using the calling conven-
tion, n, and k. Then, r,, is updated, shown here according to the x86 calling
convention where the callee pops the return address. In the implementation, we
parameterize by a description of the calling convention. Further details, including
the verification of stack overflow checking, is given in the extended version [9].
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Symbolic Evaluator. The SymEval (€) module does the following analysis
and transformations for higher-level decompilers to resolve some particularly
pervasive problems when analyzing assembly code.

1. Simplified and Normalized Expressions. High-level operations get compiled
into long sequences of assembly instructions with intermediate values ex-
posed (as exemplified in Fig. 3). To analyze one instruction at a time, we
need to assign types to all intermediate expressions, but this undertaking
quickly becomes unwieldy. Additionally, arithmetic equivalences are used
extensively by compilers (particularly in optimized code). We want to ac-
cumulate larger expression trees and perform arithmetic simplification and
normalization before assigning types. Observe how SymEval does this work
in the example decompilation of line 17 in Fig. 4.

2. Static Single Assignment (SSA). In contrast to source-level variables, flow-
sensitivity is generally required to analyze registers because registers are
reused for unrelated purposes. To have a set variables suitable for source-level
analyses, the symbolic evaluator yields an SSA-like program representation.

3. Global Value Numbering (GVN). The same variable may also be placed in
multiple locations (yielding an equality on those locations). For example, to
check that a reference stored on the stack is non-null, a compiler must emit
code that first loads it into a register. On the non-null path, an assembly-
level analysis needs to know that the contents of both the register and the
stack slot is non-null. So that higher-level decompilers do not have to deal
with such low-level details, the symbolic evaluator presents a single symbolic
value o that abstracts some unknown value but is stored in both the register
and the stack slot (implicitly conveying the equality). Combined with the
above, the symbolic evaluator can be viewed as implementing an extended
form of GVN [2]. Further details are given in the extended version [9].

Decompiling Object-Oriented Features. The OO decompiler (O) recog-
nizes compilations of class-based object-oriented languages, such as Java. The
output instruction language for the OO decompiler includes the instructions
from the symbolic evaluator, ex- ;o " _ | a = puttield [e,n]
cept it is extended for virtual | o = invokevirtual [eg,n(e1, ..., en)
method dispatch, field reads, and  expr  eo = ez | getfield [e,n]
field writes. Almost all of the heavy lifting has been done by the symbolic eval-
uator, so OO is quite simple. The abstract values that we need to track are
straightforward: a type for object references, which may be qualified as non-null
or possibly null.

The decompilation of virtual method dispatch (as on line 17 in Fig. 4) is as
follows:

F(ﬁ) =nonnullobj I'kFej:7 -+ I'Fem:™m q.isMethod(,@,n) =TI X X Tm —T

step(I,a = icall (m[m[8] + n]](B, e1,...,em))
= (o = invokevirtual [3,n|(e1,....,em), ['[a — 7])
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It checks that the object reference is non-null and that the dispatch table is
obtained from the same object as the object being passed as the receiver object.
Observe that since the abstract state is independent of the register and memory
state, the successor abstract state is particularly easy to derive. One additional
bit of interesting work is that it must recognize null-checks and strengthen a
possibly-null object to a non-null one. Because of the symbolic evaluator, OO
simply updates the type of a symbolic value a and need not worry about the
equivalences between all the registers or temporaries that contain «.

Implementation and Experience. We have implemented and tested the
above decompiler modules in multiple decompiler pipelines, including three main
ones for assembly generated from Java programs by gcj, C programs by gcc,
and Cool programs by coolc. All decompiler pipelines start from a very sim-
ple untyped RISC-like assembly language to minimize architecture dependence.
We have parsers for x86 and MIPS that translate to this generic assembly. The
Locals module is parameterized by the calling convention, so we can easily han-
dle several different calling conventions (e.g., standard x86, standard MIPS, or
the non-standard one used by coolc). In these pipelines, we use communica~
tion in three main ways: queries for identifying function or method calls (as in
Fig. 4), queries for pointer types, and reinterpretations for exceptional succes-
sors (as in Decompiling Control-Flow of Sect. 2). The responses for the isFunc
and isMethod queries contain a bit more information than as shown in Fig. 4,
such as the calling convention for the callee and between JavaTypes/Cool Types
and OO, the types of the parameters and the return value (i.e., whether they
are object references). The OO decompiler also queries JavaTypes/CoolTypes
to determine certain pointer types that may require consulting the class table,
such as whether a read field is an object reference.

Each of the decompiler modules de-

scribed above is actually quite small (at Modularization

. 4000 —
most ~600 lines of OCaml). Furthermore, w00 | P _
each module is approximately the same size | , 3000 | [%* BlLs
providing some evidence for a good division | § 2500 1 . :?:I;al
of labor. The overhead (i.e., the definition |5 2000 {—497| 07— nofa
of the intermediate languages and associ- % izgg 1060 B CoolTypes
ated utility functions) seems reasonable, as s0] [ L1 || mTable Parsing
each language only required 100—150 lines PO i) I
of OCaml. The entire coolc pipeline (in- Decompilers  Monolithic
cluding the Cool type analysis but not the Analyzer

framework code) is 3,865 lines compared to 3,635 lines for a monolithic assembly-
level analyzer from our previous work [8], which uses the classic reduced product
approach (as shown visually above). Cool is a fairly realistic subset of Java, in-
cluding features such as exceptions, so the CoolTypes module includes the han-
dling of exceptions as described in Decompiling Control-Flow of Sect. 2. The
additional code is essentially in the definition of the intermediate languages, so
what we conclude is that our pipeline approach does give us a modular and
easier to maintain design without imposing an unreasonable code size penalty
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with respect to the monolithic version. Additionally, note that 2,159 and 1,515
of the 3,865 lines of the coolc decompiler pipeline are reused as-is in the gcj
and gcc pipelines, respectively.

Comparing the implementation experience with our previous assembly-level
analyzer, we found that the separation of concerns imposed by this framework
made it much easier to reason about and implement such assembly-level analy-
ses. For example, because of the decompilations, Cool/Java type inference is no
longer intermingled with the analysis of compiler-specific run-time structures.
With this framework, we also obtained comparable stability in a much shorter
amount of time. Many of the bugs in the implementation described in our prior
work [8] were caused by subtle interactions in the somewhat ad-hoc modulariza-
tion there, which simply did not materialize here. Concretely, after testing our
coolc decompiler pipeline on a small suite of regression tests developed with
the previous monolithic version, we ran both the decompiler pipeline and the
previous monolithic versions on the set of 10,339 test cases generated from Cool
compilers developed by students in the Spring 2002, Spring 2003, and Spring
2004 offerings of the compilers course at UC Berkeley (on which we previously
reported [8]). Of the 10,339 test cases, they disagreed in 182 instances, which
were then examined manually to classify them as either soundness bugs or in-
completenesses in either the decompiler or monolithic versions. We found 1 in-
completeness in the decompiler version with respect to the monolithic version
that was easily fixed (some identification of dead code based on knowing that a
pointer is non-null), and we found 0 soundness bugs in the decompiler version.
At the same time, we found 5 incompletenesses in the monolithic version; in 2
cases, it appears the SymEval module was the difference. Surprisingly, we found
3 soundness bugs in the monolithic version, which has been used extensively by
several classes. We expected to find bugs in the decompiler version to flush out,
but in the end, we actually found more bugs in the more well-tested monolithic
version. At least 1 soundness bug and 1 incompleteness in the monolithic version
were due to mishandling of calls to run-time functions. There seem to be two
reasons why the decompiler version does not exhibit these bugs: the updating
of effects after a call is implemented in several places in the monolithic version
(because of special cases for run-time functions), while in the decompiler version,
the Locals decompiler identifies all calls, so they can be treated uniformly in all
later modules; and the SSA-like representation produced by SymEval decompiler
greatly simplifies the handling of interprocedural effects in higher-level modules.

As another example of the utility of this approach, after the implementation
for the class table parser was complete (which are already generated by gcj to
support reflection), one of the authors was able to implement a basic Java type
inference module in 3-4 hours and ~500 lines of code (without the handling of
interfaces and exceptions).

4 Case Studies

To explore the feasibility of applying existing source-level tools to assembly code,
we have used BLAST [18] and Cqual [17] on decompilations produced by our
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gcc pipeline. To interface with these tools, we have a module that emits C from
SymEval IL. SymEval IL is essentially C, as register reuse with unrelated types
have been eliminated by SSA and expression trees have been recovered. However,
while a straightforward translation from SymEval IL produces a valid C program
that can be (re)compiled and executed, the typing is often too weak for source-
level analysis tools. To avoid this issue for these experiments, we use debugging
information to recover types. When debugging information is not available, we
might be able to obtain typing information using a decompiler module that
implements a type reconstruction algorithm such as Mycroft’s [24].

We have taken the
benchmarks shown in the
table, compiled them to
x86 (unoptimized), and

decompiled them back to gqpmouse.c (B
C before feeding the de- tlan.c B) 10909 10734 8.16 41.20 94.30
Q

(
(

compilations to the source. £2madnac (Q) 11239 5235 244 0.97 105
)

level tools (B for BLAST and Q for Cqual). In all cases, we checked that the tools
could verify the presence (or absence) of bugs just as they had for the original
C program. In the table, we show our decompilation times and the verification
times of both the original and decompiled programs on a 1.7GHz Pentium 4 with
1GB RAM. The BLAST cases gpmouse.c and tlan.c are previously reported
Linux device drivers for which BLAST checks that lock and unlock are used
correctly [18]. For gamma_dma.c, a file from version 2.4.23 of the Linux kernel,
Cqual is able to find in the decompiled program a previously reported bug involv-
ing the unsafe dereference of a user-mode pointer [20]. Both Cqual and BLAST
require interprocedural analyses and some C type information to check their
respective properties. We have also repeated some of these experiments with
optimized code. With gpmouse, we were able to use all the -02 optimizations
in gcc 3.4.4, such as instruction scheduling, except ~fmerge-constants, which
yields code that reads a byte directly from the middle of a word-sized field, and
-foptimize-sibling-calls, which introduces tail calls. The latter problem we
could probably handle with an improved Locals module, but the former is more
difficult due to limitations with using the debugging information for recovering
C types. In particular, it is challenging to map complicated pointer offsets back
to C struct accesses. Similarly, it is sometimes difficult to insert casts that do
not confuse client analyses based only on the debugging information because it
does not always tell us where casts are performed. Finally, we do not yet handle
all assembly instructions, particularly kernel instructions.

Code Size Decomp. Verification
Test Case C  x86 Orig. Decomp.
(loc) (loc) (sec) (sec) (sec)

) 7994 1851 0.74 0.34 1.26

5 Related Work

In abstract interpretation, the problem of combining abstract domains has also
been considered by many. Cousot and Cousot [15] define the notion of a re-
duced product, which gives a “gold standard” for precise combinations of ab-
stract domains. Unfortunately, obtaining a reduced product implementation is
not automatic; they generally require manual definitions of reduction opera-
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tors, which depend on the specifics of the domains being combined (e.g., [11]).
Roughly speaking, we propose a framework for building reduced products based
on decompilation, which is particular amiable for modularizing the analysis of
assembly code. Cortesi et al. [13] describe a framework (called an open product)
that takes queries as the central (and only) means of communication. They al-
low arbitrary queries between any pair of domains, whereas our queries are more
structured through decompilation. With this structure we impose, modules need
only agree upon a communication interface with its neighbors. Combining pro-
gram analyses for compiler optimization is also a well-known and well-studied
problem. Lerner et al. [21] propose modular combinations of compiler optimiza-
tions also by integrating analysis with program transformation, which then serve
as the primary channel of communication between analyses. We, however, use
transformation for abstraction rather than optimization. For this reason, we use
layers of intermediate languages instead of one common language, which is es-
pecially useful to allow residuation of soundness obligations.

Practically all analysis frameworks, particularly for low-level code, perform
some decompilation or canonicalization for client analyses. For example, Code-
Surfer/x86 [4] seeks to provide a higher-level intermediate representation for
analyzing x86 machine code. At the core of CodeSurfer/x86 is a nice combined
integer and pointer analysis (value set analysis) for abstract locations. The mo-
tivation for this analysis is similar to that for the Locals module, except we
prefer to handle the heap separately in language-specific ways. Their overall ap-
proach is a bit different from ours in that they try to decompile without the
assistance of any higher-level language-specific analysis, which leads to complex-
ity and possible unsoundness in the handling of, for example, indirect jumps and
stack-allocated arrays. While even they must make the assumption that the code
conforms to a “standard compilation model” where a run-time stack of activa-
tion records are pushed and popped on function call and return, their approach
is more generic out of the box. We instead advocate a clean modularization to
enable reuse of decompiler components in order to make customized pipelines
more palatable.

Troger and Cifuentes [27] give a technique to identify virtual method dispatch
in machine code binaries based on computing a backward slice from the indirect
call. They also try to be generic to any compiler, which necessarily leads to diffi-
culties and imprecision that are not problems for us. Cifuentes et al. [10] describe
a decompiler from SPARC assembly to C. Driven by the program understanding
application, most of their focus is on recovering structured control-flow, which
is often unnecessary (if not undesirable) for targeting program analyses.

6 Conclusion and Future Work

We have described a flexible and modular methodology for building assembly
code analyses based on a novel notion of cooperating decompilers. We have shown
the effectiveness of our framework through three example decompiler pipelines
that share low-level components: for the output of gcc, gcj, and compilers for
the Cool object-oriented language.
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We are particularly interested in assembly-level analyses for addressing mobile-
code safety [25, 23], ideally in a foundational but also practical manner. As such,
we have designed our decompilation framework with soundness in mind (e.g.,
making decompilers work one instruction at a time and working in the frame-
work of abstract interpretation), though we have not yet constructed machine-
checkable soundness proofs for our example decompilers. To achieve this, we
envision building on our prior work on certified program analyses [7], as well as
drawing on abstract interpretation-based transformations [16, 26]. Such a mod-
ularization of code as we have achieved will likely be critical for feasibly proving
the soundness of analysis implementations in a machine-checkable manner. This
motivation also partly justifies our use of reflection tables produced by gcj or
debugging information from gcc, as it seems reasonable to trade-off, at least,
some annotations for safety checking.
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