
QUICr: A Reusable Library for Parametric
Abstraction of Sets and Numbers

Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

University of Colorado Boulder

Abstract. This paper introduces QUICr, an abstract domain combinator
library that lifts any domain for numbers into an efficient domain for
numbers and sets of numbers. As a library, it is useful for inferring
relational data invariants in programs that manipulate data structures. As
a testbed, it allows easy extension of widening and join heuristics, enabling
adaptations to new and varied applications. In this paper we present the
architecture of the library, guidelines on how to select heuristics, and an
example instantiation of the library using the Apron library to verify
set-manipulating programs.

1 Introduction

Programs do not consist entirely of scalar variables. In nearly all programming
languages, collections are either implemented as a library or built-in as a first-class
type. Therefore, when verifying programs, it is vital to support containers as well
as scalar values. In the decision procedures community, this is widely recognized
with support for arrays, sets, and maps [1–3], but when invariant generation is
concerned, such as in abstract interpretation [4], only arrays have been carefully
considered [5–11], leaving other containers rarely explored [12–14]. Given that
there is a plethora of abstract domains for reasoning about scalars [15, 16], it is
necessary to build abstract domains that not only reason about containers, but
also interact efficiently and precisely with existing domains for scalars. The best
way to ensure interaction is, rather than building abstract domains for containers,
building domain combinators that construct abstract domains for containers
from existing abstract domains for numbers. Recently, such a domain for arrays
was created [5], and a domain for sets was created [12]. This paper describes an
implementation of the domain for sets called QUICr1.

The implementation of the domain for sets is an OCaml functor that takes a
numeric abstract domain and builds a domain for simultaneous reasoning about
numbers and sets of numbers. It constructs a relational abstract domain such
that without knowing the specific contents of a set, that set can be related to
another set by equality or subset relationships. This kind of reasoning is useful
for a variety of applications:

1 Library available at http://pl.cs.colorado.edu/projects/quicgraphs

CAV 2014.
c©Springer-Verlag Berlin Heidelberg 2014.



2 Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

– Whole-program verification of container-manipulating programs – The QUICr
library can reason about constants and known sets as well as unknown sets. It
does not conflate known parts with unknown parts unnecessarily and thus can
keep track of sets that are partially known and partially unknown. Iteration
over these sets as well as addition and removal from these sets is supported
allowing the inference of a wide range of program properties.

– Modular verification of container-manipulating programs – If a whole program
is not known, a precondition can be provided as a relational constraint
between sets without knowing any contents. Inferred loop invariants and
post-conditions will also be relational with respect to any existing sets. The
QUICr library will automatically utilize any capabilities of the underlying
numerical domain to express relationships between set variables.

– Shape/data abstraction combinators – Advanced domain combinators such
as those provided by shape analyzers [17–19] typically cannot to incorporate
collection data abstractions into their inductive definitions. To verify both
shape and data properties of programs, current analyzers [20] rely on multi-set
abstractions. By adding relational domains, data can be related between
multiple inductive definitions and thus more precisely represented.

– Parametric abstraction combinators – Effective reasoning about sets enables
the construction of new domain combinators that do not yet exist today
without relational set abstractions. When combining abstract domains [21,
22], it is often useful to be able to express relationships between an unbounded
number of elements in each abstract domain. With a relational domain for
sets it is possible to express these relationships efficiently and effectively.

The goal of this paper is to both document how to use the QUICr library
as well as to inspire thinking about applications for set domains. Towards this
goal we provide an overview of the underlying representation as it is imple-
mented in the library (Section 2). This knowledge is sufficient to understand
the heuristics currently employed in the library and how the heuristics can
be extended to handle additional and different situations that may arise from
as-of-yet unknown applications (Section 3). To demonstrate that the QUICr
library is precise and efficient with the built-in heuristics, we also give results
from some modular verification of container-manipulating programs (Section 4).

Abstract Interpreter

QUICr

Numeric Domain
Apron/PPL
Other

Code

Invariants
Proofs

2 Overview of QUIC Graphs

The QUICr library provides an implementation of the
QUIC graphs [12] abstract domain combinator for
numeric domains. It is used as part of an abstract
interpretation system (see inset) that not only proves
properties of programs, but performs necessary invari-
ant generation. QUICr represents, accumulates and
manipulates set constraints, while sharing equality in-
formation with the numeric domain in a way similar to



QUICr: A Reusable Library for Parametric Abstraction of Sets and Numbers 3

A

B

C

D

E[
[

[

⌫ < 10

⌫ < 113 < ⌫ < 11

⌫ < x

^ x  11
3 <

⌫ <
11

⌫ < 11
a

b

c

d

3 < ⌫

Fig. 1. Example QUIC graph and accompanying numeric domain instances, showing
a sequence of inferences: a is derived by pushing the external numeric domain fact
x ≤ 11 and ν < x; b is derived by inferring a new self-loop with > and pushing a ; c

is derived by pushing b t ν < 10 and 3 < ν; and d is derived by inference/transitive
closure of the graph.

Nelson Oppen [23]. This combination allows representing and inferring constraints
that consist of both set constraints involving union, intersection, subset, and
equality, along with numeric constraints that are dictated by the representations
used by the underlying numeric domain.

[x = y]

A:=C ∪ {x};
B:=C ∪ {y}[
x = y ∧ A = B

∧ A = C ∪ {x}

]
For straight-line code, QUICr can be used to implement

a decision procedure and can compute the validity of Hoare
triples for set manipulating programs. For example, the inset
shows a Hoare triple that can be validated using QUICr in-
stantiated with an equivalence classes-based numeric domain.
The QUICr library manipulates the formulas to learn that
A = B because they are both equal to C unioned with the same value. The problem
that QUICr solves is not only how to efficiently represent and manipulate these
formulas to construct a decision procedure, but how to do so to automatically
infer loop invariants.

QUICr represents set constraints using a constraint hypergraph where each
vertex represents either the empty set, a singleton set, or a set variable, while each
hyperedge represents a constraint between the linked vertexes. Each constraint is
constructed of three parts: (1) a union of each edge target; (2) an intersection of
each edge source; and (3) a numeric domain instance that labels the edge and
represents a fact that holds on each element ν in the intersection. Each edge then
represents the constraint that each element in the intersection must satisfy the
label constraint and must also be in the union.

Figure 1 shows an instance of a QUIC graph. On the left is a graph representing
the set constraints and on the right is a numerical domain constraint. This
particular graph represents the following three basic facts:

A ⊆ {ν ∈ B ∪ C | 3 < ν} B ⊆ {ν ∈ D ∪ E | ν < x} x ≤ 11

There are several other edges shown using lighter lines that represent facts derived
from the basic facts. These derived facts come from a three-part lazy inference
process that (1) pushes facts from one edge to another, strengthening numeric
domain instances along the way, (2) infers new edges from the existing edges



4 Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

Table 1. Heuristics refine the candidate generation strategy to both improve perfor-
mance and increase precision over a naive candidate generation by providing hints [24]
for join and widen operations

Name Description Effect

Empty
Remove

Replace edges with empty set
with equivalent edges without that
empty set.

Improves performance by removing re-
dundant edges.

Min
Rewrite

Assign a total order to all vertexes
in the graph and for each edge and
add an edge using the identical edge
using the minimum equivalent ver-
tex for each vertex.

Increases use of empty sets and thus of
Empty Remove; increases use of single-
ton sets and reductions associated with
singletons; creates likely-common edges.

Patt
Match

Pattern matching identifies certain
subgraphs and eagerly adds derived
facts based on those subgraphs.

Improves precision by adding additional
candidates that correspond to likely edges
in the join; often arise from specific code
patterns (iteration over sets).

using a lazy form of transitive closure, and (3) cycles equalities found in the set
constraints back to the numeric constraints as necessary. These three inference
operations rely solely on basic domain operators provided by numeric domains,
such as built-in meet, join, and widen operators. These inferred strengthenings
are used to implement domain operations such as join, widen, and containment.

Because the graph representation can be exponential in number of variables,
the QUICr implementation lazily derives facts, on demand. To implement this,
QUICr uses a rewrite rules approach, which has two benefits: (1) it allows easy
viewing of progress – each rule can print out status information to indicate where
it is being applied and why; (2) it allows easy extension of the rules – adding
new rules or reordering rule application is simply a matter adding new calls or
reordering calls in the rule application function. This architecture can thus be
easily extended to improve precision by identifying application-specific reductions
or to increase performance by eliminating application of some rules.

To implement join and widen operations, QUICr employs a generator/checker
strategy. A list of candidate edges is generated with unknown numeric domain
constraints. The analyzer attempts to derive each of these edges in both inputs
to join or widen. When the edge can be derived in both, it is added to the
result using a computed numeric domain constraint. Otherwise, the candidate is
ignored. Initially, the candidates are chosen to be all of the edges from both sides
of the join. Unfortunately, this strategy suffers from a variety of problems. Edges
that are derivable by lazy inference in both graphs, but are not directly in either
graph will be lost. Additionally, there can be many edges that are redundant or
nearly redundant, causing many extra checker invocations. To improve precision
and performance, QUICr employs heuristics to refine the initial list of candidate
edges. The implemented heuristics and their effects are detailed in Table 1.



QUICr: A Reusable Library for Parametric Abstraction of Sets and Numbers 5

3 QUICr Usage and Extension

QUICr is implemented as a functor in the OCaml language. A functor is a module
constructor that takes a module as a parameter and produces another module.
In this case, it takes a numeric abstract domain as a parameter and produces an
abstract domain for sets of numbers. The current requirements on the numeric
abstract domain are that (1) it must be possible to add and remove fresh variables
from the domain – this is used to add or remove the bound variable; (2) it must
provide sound top, bottom, meet, join, widen, and containment operators – these
are used when pushing facts; and (3) it must provide an interface to retrieve and
add equality constraints in the numeric domain. If these conditions are met, any
numerical abstract domain can be substituted.

Unlike the implementation in [12], QUICr is more general and comes with
four numerical domains provided: (1) a simple equivalence class abstract domain,
where variables can be equal to each other and numeric constants; and domains
provided by Apron: (2) boxes; (3) octagons; and (4) polyhedra. Additionally, it
can be instantiated with any numeric domain that meets the Apron interface
(such as PPL [16]). Adapting other existing domains only requires developing a
functor that behaves as an interface adapter.

While built-in heuristics that are described in Table 1 are sufficient for many
applications (see Section 4), they might not be sufficient for every application. If
this is the case, additional heuristics can be added. The easiest form of heuristic
to add is additional pattern matches. QUICr provides a graph matching system
that can match arbitrary subgraphs against a template pattern. These matches
can trigger rewrites and refine candidate generation. This is especially useful if a
particular pattern is not being discovered by the built-in heuristics. For example,
patterns are provided to identify nested unions and to then unnest the unions.
This situation arises frequently when iteratively copying and manipulating sets.

Once instantiated, QUICr provides pretty printers for set constraints. It can
output to both the console as well as to HTML and LATEX. The provided example
application uses the HTML output to produce programs annotated with the
standard mathematical representation of sets.

4 Instantiation

Provided with the library is an example analyzer that allows selecting from the
command line among the three of the four included numeric domains. It uses
a simple input language reminiscent of JavaScript to analyze set and number
manipulating programs. To evaluate the effectiveness of the QUICr, it is instanti-
ated with the Apron-provided polyhedra numeric domain [15]. Then, by hand
translation of Python programs, the resulting abstract domain is applied to all of
the set-manipulating programs in the Python test suite, attempting to validate
the assertions specified in the test suite. For example, the copy test iteratively
copies one set to another, producing a set identical to the original. The results
are shown in Table 2.



6 Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

Table 2. Results on a set of small benchmarks. #N: # of numeric domain variables, #S:
# of set variables, #A: # of assertions to be proved, #P: # of assertions automatically
proved, T(s): Time taken (seconds), #I: number of iterations of abstract interpreter
before convergence. – represents a time out (600 seconds). Heuristics were selected
based on the first four tests and validated on remaining tests.

#N #S #A #P T(s) #I

copy 1 6 2 2 0.2 2
filter 4 6 2 2 0.6 3
merge 2 14 2 1 0.6 4
partition 4 8 4 4 1.1 3
generic max 3 8 6 3 0.9 6
b filter 6 6 2 2 0.7 3
b map 9 7 2 2 0.2 5
b max min 3 4 1 1 0.4 3

. . .

#N #S #A #P T(s) #I

b reduce 7 4 1 0 0.4 3
iter ind 20 12 1 1 84.4 39
mul ret 9 2 2 2 0.2 6
nest dep 5 7 1 0 2.2 12
resize1 15 5 5 4 1.7 18
simp cond 11 5 4 3 4.6 12
simp nest 9 10 2 0 – 1399
srange 6 2 2 2 0.1 6

Total 37 29 98.3 125

The shown benchmarks are those that include loops over the contents of a set
or multiple sets and therefore must infer loop invariants. The inference of these
loop invariants is based on the widening operation and thus not guaranteed to
be precise. However, it is nearly always fast and is able to prove a significant
number of real properties automatically.

5 Ongoing Development

Not only is QUICr useful today, but it is useful as a platform for development
of future set and multi-set domain combinators. The graph structure can be
extended by adding additional edge types. For example, we are evaluating an
edge type that utilizes an underapproximating numeric domain. With such an
edge type, it is possible to infer equalities with set comprehensions and to support
set complement operations.

Additionally, the graph structure can be extended to add additional bound
variables. Currently there is one bound variable per edge, but this may be an
unnecessary restriction. With multiple bound variables, more complex relation-
ships can be represented in the base domain. For example, with multiple bound
variables we could represent the constraint that a set consists of elements that
are the sum of elements from two other sets. We want to exploit this to be able
to infer functions that map one set onto another.

Despite our use of QUICr to perform verification of container-manipulating
programs, we believe that sets can be used as part of many other analyses. It is
our desire for the QUICr library to be integrated into new, innovative domain
combinators that effectively use set relations to represent unbounded numbers of
connections between domains. We also hope to see additional extensions beyond
our own to support more advanced set operations including cardinality queries,
Cartesian products, and multi-set operations.



QUICr: A Reusable Library for Parametric Abstraction of Sets and Numbers 7

References

1. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD. (2009) 45–52

2. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (2007)

3. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: VMCAI.
(2006) 427–442

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

5. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL. (2011) 105–118

6. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
ESOP. (2010) 246–266

7. Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array
assertions. In: SAS. (2009) 3–18

8. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: FASE. (2009) 470–485

9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI. (2008) 339–348

10. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: CAV. (2007) 193–206
11. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array

operations. In: POPL. (2005) 338–350
12. Cox, A., Chang, B.Y.E., Sankaranarayanan, S.: QUIC graphs: Relational invariant

generation for containers. In: ECOOP. (2013) 401–425
13. Pham, T.H., Trinh, M.T., Truong, A.H., Chin, W.N.: Fixbag: A fixpoint calculator

for quantified bag constraints. In: CAV. (2011) 656–662
14. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:

POPL. (2011) 187–200
15. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static

analysis. In: CAV. (2009) 661–667
16. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1-2) (2008) 3–21

17. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: Memory safety for systems-level code. In:
CAV. (2011) 178–183

18. Chang, B.Y.E., Rival, X.: Modular construction of shape-numeric analyzers. In:
Festschrift for Dave Schmidt. (2013) 161–185

19. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL. (1999) 105–118

20. Bouajjani, A., Dragoi, C., Enea, C., Rezine, A., Sighireanu, M.: Invariant synthesis
for programs manipulating lists with unbounded data. In: CAV. (2010) 72–88

21. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. (1979) 269–282

22. Toubhans, A., Chang, B.Y.E., Rival, X.: Reduced product combination of abstract
domains for shapes. In: VMCAI. (2013) 375–395

23. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2) (1979) 245–257

24. Laviron, V., Logozzo, F.: Refining abstract interpretation-based static analyses
with hints. In: APLAS. (2009) 343–358


